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Abstract—The large diffusion of highly-parallel shared-
memory multi-core machines has led Parallel Discrete Event
Simulation (PDES) platforms to a shift towards a share-
everything model. This model is based on loose coupling between
simulation objects and threads, lasting (as an extreme) no more
than the lifetime of individual events. Concurrent threads can
therefore CPU-dispatch events destined to any object at any
point in time, thus fully sharing the workload of events to
be processed on a fine grain basis. This demands for efficient
mechanisms to share the overall pool of pending events by
enabling parallelism in insertion and extraction operations.
In this article we present a lock-free event pool which also
provides amortized O(1) time complexity for both insertions
and extractions. It can sustain highly concurrent accesses,
while not leading to noticeable performance degradation when
scaling up the thread count. Experimental results demonstrate
that our solution stands as a core facility capable of further
raising up the pragmatical impact of such an emerging share-
everything PDES paradigm.

I. INTRODUCTION

The historical design approach of Parallel Discrete Event
Simulation (PDES) platforms accounted for different threads
(or processes) in charge of taking care of the execution
of disjoint subsets of simulation objects. However, the ad-
vent and increasing diffusion of multi-processor/multi-core
machines has led to a shift towards a of share-everything
paradigm, where a thread can in principle take care of exe-
cuting any concurrent simulation object, at any point in time.
Examples of PDES platforms adhering (or approaching) to
this paradigm can be found in [1]–[4].

A relevant innovation by share-everything PDES is that
event pools are no longer accessed by threads in isolation,
rather in a (fully) shared mode. This is required to enable
threads not currently busy with some object to concurrently
extract from the shared event pool the higher-priority (i.e.
lower-timestamp) pending events, bound to whichever sim-
ulation object. This allows delivering computing power to
higher-priority pending simulation work along the whole
lifetime of the model’s execution. Still, threads can con-
currently access the pool to post newly scheduled events
resulting from processing activities at the involved objects.
As a consequence, the event-pool data structure has become
a performance-critical component along a new dimension,
which is represented by the level of concurrency of no-
longer isolated accesses.

In this article we present a lock-free concurrent event-pool
data structure tailored for share-everything PDES platforms,
which enables unleashed parallelism of enqueue/dequeue op-
erations. Unlike existing non-blocking data structures suited
for managing pools, such as non-blocking (skip)lists [5],
[6], which pay a linear (or at least logarithmic) cost for
insertion operations, our solution provides O(1) amortized
time complexity. Also, concurrent accesses’ non-blocking
synchronization is guaranteed in our proposal by relying
only on conventional facilities offered by the underlying ISA
(Instruction Set Architecture), such as the Compare-and-
Swap (CAS) machine instruction. This makes our solution
of wide applicability in a variety of off-the-shelf machines
by different vendors.

We released our non-blocking O(1) event pool as free
software1, and we have also integrated it with a last gener-
ation share-everything open source PDES system. Further,
we present a performance study showing the effectiveness
of our proposal in differentiated settings. We conducted our
experiments on a 32-core HP ProLiant machine, equipped
with 64 GB of RAM, which outline excellent scalability
of our lock-free O(1) event-pool data structure up to the
maximum count of physical processing elements in the
underlying machine.

The remainder of this article is structured as follows.
In Section II we discuss related work. The lock-free O(1)
event pool is presented in Section III. Section IV provides
experimental results.

II. RELATED WORK

Several data structures for event pools have been proposed
in the literature. The Calendar Queue [7] is a timestamp-
ordered data structure based on multi lists, each one asso-
ciated with a time bucket, offering amortized constant time
insertion of events with generic timestamps and constant
time extraction of the event with the minimum timestamp.
The Ladder Queue [8] is a variant of the Calendar Queue
which is more suited for skewed distributions of the times-
tamps of the events, thanks to the possibility of dynamically
splitting an individual bucket in sub-intervals (i.e. sublists
of records) if the number of elements associated with the

1Source code available at https://github.com/HPDCS/NBCQ.



bucket exceeds a given threshold. The LOCT Queue [9]
is an additional variant which allows reducing the actual
overhead for constant time insertion/extraction operations
thanks to the introduction of a compact hierarchical bitmap
indicating the status of any bucket (empty or not). None of
these proposals has been devised for concurrent accesses.
Therefore, their usage in scenarios with sharing among
multiple threads would require to rely on a global lock
for serializing the accesses, which would be detrimental to
scalability, as shown in [10].

The work in [11] provides an event-pool data structure
enabling parallel accesses via fine-grain locking of a sub-
portion of the data structure upon performing an operation.
However, the intrinsic scalability limitations of locking still
lead this proposal to be not suited for large levels of
parallelism, as also shown in [12].

As for non-blocking management of sets by concurrent
threads, various proposals exist (e.g., non-blocking linked
lists [5] or skip-lists [6]), which anyhow do not offer
constant-time operations. The non-blocking linked list pays
a linear cost for ordered insertions, while the skip-list
pays logarithmic cost for this same type of operation. The
proposal in [13] is based on non-blocking access to a multi-
bucket data structure, and provides amortized O(1) time
complexity for both insertion and extraction operations.
However, it does not provide a non-blocking scheme for
the dynamical resize of the bucket width. Hence, to achieve
adequate amortizing factors, all the threads would need
to (periodically) synchronize to change the bucked width
and redistribute events over the reshaped buckets. On the
other hand, avoiding at all the synchronized reshuffle of
the buckets might give rise to non-competitive amortizing
factors (say too many elements associated with a bucket).
These problems are completely avoided with our proposal
since we provide truly amortized O(1) time complexity joint
to non-blocking operations, including the reshuffle of the
bucket width.

Non-blocking operations in combination with constant
time complexity have been studied in [10], which presents
a variation of the Ladder Queue where the elements are
at any time bound to the correct bucket, but the bucket
list is not ordered. Constant time is achieved since the ex-
traction from an unordered bucket returns the first available
element, which does not necessarily corresponds to the one
with the minimum timestamp. This proposal is intrinsically
tailored for PDES systems relying on speculative processing,
where unordered extractions leading to causal inconsisten-
cies within the simulation model trajectory are reversed (in
terms of their effects on the simulation model trajectory) via
proper rollback mechanisms. However, still for speculative
PDES, a few recent results [1], [2] have shown the relevance
of fetching events from the shared pool in correct order, as
a means to build efficient synchronization schemes able to
exploit alternative forms of reversibility, which stand aside

of the traditional Time Warp protocol [14]. Correct order
of delivery is guaranteed in our proposal, since we always
deliver the highest priority event currently in the event pool,
which has been inserted by any operation that is linearized
prior to the extraction.

The recent proposal in [3] explores the idea of managing
concurrent accesses to a shared pool by relying on Hardware
Transactional Memory (HTM) support. Insertions and ex-
tractions are performed as HTM-based transactions, hence in
non-blocking mode. However, the level of scalability of this
approach is limited by the level of parallelism in the under-
lying HTM-equipped machine, which nowadays is relatively
small. Also, HTM-based transactions can abort for several
reasons, not necessarily related to of conflicting concurrent
accesses to a same portion of the data structure. As an
example, they can abort because of conflicting accesses to
the same cache line by multiple CPU-cores, which might be
adverse to PDES models with, e.g., very large event pools.

Overall, compared to literature results, our proposal is
the unique that jointly offers: i) non-blocking concurrent
accesses, ii) amortized O(1) operations via non-blocking
dynamic resize of the buckets’ width, iii) total order while
managing timestamped event records, and iv) independence
from specific hardware support.

III. THE LOCK-FREE O(1) EVENT POOL

Our lock-free event-pool data structure is inspired to the
Calendar Queue [7]. It is a non-blocking priority queue
whose schematization is shown in Figure 1. The logical
(simulation) time axis is partitioned into a sequence of slots,
called virtual buckets, which are then mapped to the entries
of a circular array—the calendar. Each virtual bucket is
therefore associated with a logical time span (the bucket
width) that determines what events should be placed into a
given virtual bucket.

Each bucket is the head element of a non-blocking linked
list realized as in [5], where one bit in the pointer to the
next node is used to indicate whether a node has been
logically deleted—it is still linked to the list, but it must
be considered as already extracted by some concurrent (or
already-finalized) operation. We rather exploit two bits of
the pointer to the next element to introduce 2 additional
per-node states, to indicate whether nodes have to be moved/
validated, as we shall discuss in the reminder of the paper.
This is to allow non-blocking dynamic reorganizations of
the calendar bucket size, which we enable in our solution
while still permitting regular operations to be concurrently
processed.

To ensure consistency of concurrent accesses to our
data structure, we rely on two different Read-Modify-Write
(RMW) instructions, namely Compare-and-Swap and Fetch-
and-Add. The former atomically updates a given memory
location if its current value is equal to an input value
provided to the instruction, otherwise the update fails. The
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Figure 1. Conceptual organization of the non-blocking event pool.

latter allows to atomically retrieve the content of a memory
location and increment its value. Given the possibility of
failures for the Compare-and-Swap instruction, we rely on
retry cycles to let an operation based on this machine
instruction to be executed again, until it succeeds. This is
typical of non-blocking algorithms.

As shown in Figure 1, our event pool relies on a pointer
to a metadata table, referred to as set table, which is
organized as follows. The buckets field points to the
circular array which keeps the heads of the non-blocking
linked lists. size tells how many elements are globally
present within the set. bw determines the current bucket
width, while length keeps the size of the circular array.
current is the “index” of the virtual bucket from which
the last element was extracted or a new minimum has
been inserted—the actual bucket can be simply computed
as current mod length. The new_table field is a
pointer used to setup a new version of the calendar. We will
refer to the creation of a new version as the resize operation.

Upon the execution of an enqueue or a dequeue oper-
ation, we first execute the READTABLE procedure, shown
in Algorithm 3. The goal of this procedure is to obtain a
reference to a valid set table, and to check whether some
resize operation of the calendar is currently taking place. If
a valid set table is found, enqueue and dequeue operations
can continue. Otherwise, their execution is deferred until the
current resize operation is completed. In the meanwhile, the
deferred thread participates to the ongoing resize operation.

The pseudocode for the ENQUEUE() operation is shown
in Algorithm 1. This operation takes an event e associated
with timestamp Te as a parameter. After having retrieved a
valid set table using Algorithm 3, the operation determines
what is the virtual bucket the event e being inserted belongs
to, computed as b Te

BW c, where BW is the (current) bucket
width. Now, let B be the number of actual buckets of the
calendar. Then, the event e is placed into the i-th bucket,
where i = b Te

BW c mod B—according to the classical
Calendar Queue organization, multiple virtual buckets are
associated with the a same physical bucket entry.

Algorithm 1 Non-blocking ENQUEUE
1: procedure ENQUEUE(event e)
2: tmp← new node(e)
3: dig ← DIGEST()
4: repeat
5: h← READTABLE( )

6: nc←
⌊

n

h.bw

⌋
7: bucket← h.table[nc mod h.length]
8: 〈left, right〉 ← bucket.SEARCH(tmp.t, VAL| MOV)
9: tmp.next ← right

10: until CAS(&left.next, UNMARK(right), tmp)
11: repeat
12: old← h.current
13: until nc > old.value ∨ CAS(&h.current, old, 〈nc, dig〉)
14: Fetch&Add(&h.size, 1)

As already hinted, the i-th bucket is a non-blocking
linked list, for which we assume the availability of the
search procedure already defined in [5]. When executed,
this procedure returns a couple of nodes, called left and
right nodes. The SEARCH() operation tries to identify a
coherent snapshot of the list, despite concurrent accesses,
so that the left and the right nodes point to the nodes which
would “surround” the new node. To cope with events with
the same timestamp (not supported by the original proposal
in [5]) we associate each event record with both a timestamp
and a sequence number, which is always unique for all
concurrent events. Indeed, an event has its sequence number
set to zero, unless other concurrent events are present. In
this latter case, the left node for the ENQUEUE() operation
will point to the node associated with the highest sequence
number so far in the batch of concurrent events. The newly-
inserted node gets its sequence number augmented by one
unit, making it represent concurrent events’ insertion order—
our proposal therefore provides a total order of the elements
in the calendar. Monotonicity of sequence numbers is guar-
anteed under concurrency scenarios thanks to the insertions
using Compare-and-Swap instructions. As a final note, the
sequence number can be abstracted as being one component
of the timestamp, thus leading our data structure to always
manage records associated with different timestamp values.
We will implicitly assume such an abstraction in the remain-
ing part of the presentation.

Compare-and-Swap is also used to make concurrent exe-
cutions of enqueue/dequeue operations safe, independently
of event timestamps’ and sequence numbers’ management.
Therefore, we rely on a Compare-and-Swap instruction
to update the next pointer of the “future” previous node
atomically. This is reflected in line 10 of Algorithm 1. Upon
finalizing the ENQUEUE() operation, the size field of the
set table is atomically increased by using a Fetch-and-Add.
We exploit this field to resize the calendar, in case the
fetched value of size fires the triggering condition, as we
shall discuss.

The pseudocode of the DEQUEUE() operation is shown
in Algorithm 2. Initially, a valid current should be taken



Algorithm 2 Non-blocking DEQUEUE
1: procedure DEQUEUE( )
2: while true do
3: h← READTABLE()
4: oldCur ← h.current
5: cur ← oldCur.value
6: bucket← h.table[oldCur.value mod h.t_size]
7: 〈left, right〉 ← bucket.SEARCH(0, VAL | MOV)
8: rNext← right.next
9: newCur ← h.current

10: if (newCur 6= oldCur ∧ newCur.value ≤ cur) then
11: continue
12: else if ISMARKED(left.next,MOV) then
13: continue
14: else if ¬ISMARKED(rNext, VAL) then
15: continue
16: else if right = tail∧ h.t_size = 1 then
17: return null
18: else if right.ts < cur · h.bw then
19: CAS(&h.current, cur, 〈bright.ts/h.bw, DIGEST()〉c)
20: else if right.ts ≥ (cur + 1) · h.bw then
21: CAS(&h.current, cur, 〈cur + 1, DIGEST()〉 )
22: else if CAS(&right.next, rNext, MARK(rNext)) then
23: Fetch&Add(&h.size, -1)
24: return right.event

from the valid set table. Therefore, similarly to ENQUEUE(),
the DEQUEUE() operation relies on READTABLE(). We again
resort to the SEARCH() procedure defined in [5] to find
the first node which is valid, yet we specify a “wildcard”
timestamp set to zero as the priority for the search. In this
way, we are sure that the left node will point to the head of
the list, while the right node will point exactly to the node
with minimum timestamp in the list.

Nevertheless, we must ensure that the right node belongs
to the current virtual bucket, since the list associated with a
physical bucket entry can span multiple virtual buckets. To
this end, we check the timestamp of the node, and if it falls
in the simulation-time span covered by the current virtual
bucket, we can attempt to extract it. In the negative case,
the right node belongs to a different year of the calendar,
and we therefore switch to the correct bucket. This happens
as well in case the right node is the tail of the list, since
it only represents an overflow node required by the non-
blocking list management.

Our event pool is designed to be independent of the nature
(speculative vs conservative) of the share-everything PDES
platform it would be integrated with. Hence, differently
from the traditional Calendar Queue, we support insertions
associated with simulation time intervals in the past of
the current bucket. If current has been updated by
a concurrent ENQUEUE() operation, then DEQUEUE() is
retried in our design. This choice is dictated by correctness
motivations (linearizability) and helps as well to deliver
the highest priority (say lowest timestamp) event whose
concurrent insertion in the event pool has been already
materialized. This can be relevant for actual implementations
of share-everything PDES platform, as discussed in [1].
Also, all the Compare-and-Swap instructions that target

current should emulate Load-Link and Store-Conditional
instructions so as not to loose updates by concurrent oper-
ations. This is done in our implementation by relying on a
couple 〈thread id, counter〉 which is installed by a thread
as a field of current (represented as a digest) each time
a successful Compare-and-Swap instruction succeeds.

Similarly to [5], we handle DEQUEUE() operations by
trying to mark the right node as invalid, by setting one bit in
the next pointer. This logically downgrades the shared node
to a thread-private status, meaning that the thread running
the DEQUEUE() can safely manipulate its content. To ensure
consistency, this is atomically done by using a Compare-
and-Swap. While trying to extract the event with the highest
priority, the Compare-and-Swap might fail due to concurrent
operations, and the DEQUEUE() is simply retried. If none
of the above conditions forces the DEQUEUE() operation to
restart, the minimum timestamp element has been success-
fully identified and downgraded to thread-private status, thus
it can be safely returned for usage by the overlying PDES
engine.

The amortized O(1) time complexity of insertion and
deletion operations is obtained by ensuring that, on average,
the number of elements within each bucket is balanced,
similarly to the classical Calendar Queue. To this end, when
we detect that the number of elements in the buckets is
no longer balanced, we execute the resize operation. As
mentioned, this is triggered by the value of size upon a
queue operation, if the number of total events is over or
below a certain threshold. To carry on a resize operation,
we first “freeze” the current valid table. To this end, we
allocate a new set table, and we publish a pointer to it into
the new_table field of the old set table. Therefore, any
thread operating on it will know that a resize operation is
taking place, and will start to participate.

Before moving items from the old table to the new one,
we mark each entry of the bucket array and the first nodes
of the associated non-blocking lists as MOV (exploiting the
aforementioned 2-bit status information within the pointer to
the next node). This guarantees that dequeue operations are
restarted any time that a node marked as MOV is encountered.
This prevents dequeueing nodes while a resize operation
is being executed, and allows the threads executing such
dequeues to join the resize operation.

We then determine a new bucket width and a new length
of the bucket array according to the strategy proposed in [7].
In particular, we scan a certain amount of events, depending
on the total number of events placed in the queue, and
we compute the average timestamp separation. This is the
average distance, on the simulation time axis, between each
couple of events, and it can be used to determine the new
bucket width. The result is stored with a Compare-and-Swap
in the bw field of the new_table.

Clearly, we want to achieve non-blocking properties also
during the resize operation. Our strategy to reach this target



is based on flagging nodes to be migrated towards the
new installation of the calendar as MOV nodes. Each thread
that successfully flags as MOV a node to be migrated (via
Compare-and-Swap) or finds a node as already marked,
then allocates a new node instance to be linked to the
new installation, as a copy of the original node. Then it
enqueues it in the new installation by leaving it initially
marked as invalid (INV) to prevent its extraction. After,
the original node to be removed from the old calendar is
flagged with the address of the new node instance in the new
installation. At this point the node in the new installation
is moved from the invalid state to the valid one (VAL),
and the original copy is removed from the old installation.
All these operations are still based on Compare-and-Swap.
This migration logic is motivated by the fact that a thread
performing a migration operation of a node might be delayed
(e.g. because of a reschedule on CPU). This does not lead
to blocking scenarios in our implementation since any other
thread that is still running the migration can take care of
trying to migrate a same node originally targeted by the
delayed thread, and can take care of finally flagging the
nodes in the old and in the new versions of the calendar. In
fact, if a thread tries to move again a node flagged as MOV,
which has already been inserted in the new installation of the
calendar, the move will fail since the timestamp associated
with the node is already found to be in the new calendar
version, and the thread will simply take care of aligning the
flags of the two buffer instances (old and new). Clearly, the
number of nodes to be still migrated will eventually be equal
to zero, a condition that will be detected by simply finding
all buckets empty.

A. Garbage Collection

After that a node is marked as logically deleted by a
thread, we do not know whether other threads are using
the same buffer for, e.g., list traversal. In our approach, to
safely reclaim event buffers, each thread maintains a couple
of private lists of to-be-freed nodes, namely old and new
lists, and an array of T flags, where T is the number of
threads. Whenever a node is extracted from the queue or
a table is swapped with a new one, the corresponding
buffer is connected to the new list, and the thread updates
its entry in the arrays. In this way, we never lose a reference
to a memory buffer. If a thread reads every flag in its array
as set, it releases every pointer in the old list and swaps the
old and the new lists, also resetting the array of flags. This
check is done periodically in our implementation.

IV. EXPERIMENTAL RESULTS

We experimentally assessed our proposal in two different
scenarios. The first is a stand-alone evaluation of the non-
blocking O(1) event pool, which has been based on a
workload adhering the well known Hold Model [15]. In
the second scenario we tested the non-blocking O(1) event

Algorithm 3 Non-blocking READTABLE
1: procedure READTABLE( )
2: h← array
3: curSize← h.size
4: if h.new = null ∧ resize is NOT required then
5: return h
6: compute newSize
7: CAS(&h.new, null, new array(newSize))
8: newH ← h.new
9: if newH.bw≤ 0 then

10: for i← 0 to h.t_size−1 do
11: retry-loop to mark i-th head as MOV
12: retry-loop to mark first node of i-th bucket as MOV
13: MST ← compute bucket width
14: CAS(&newH .bw, −1.0, MST )
15: for i← 0 to h.length−1 do
16: while i-th bucket of h is non-empty do
17: get first right node of bucket i
18: if right 6= tail then
19: retry-loop to mark it as MOV
20: else
21: break
22: create a copy of the right node
23: while true do
24: search for right.ts in a virtual bucket vb of newH
25: if found node n with same key then
26: release copy
27: copy ← n
28: break
29: else if successful to insert copy as INV with a CAS then
30: break
31: if CAS(&right.replica, null, copy) then
32: Fetch&Add(&newH.size, 1)
33: else if right.replica6= copy then
34: try-loop to mark copy as DEL
35: retry-loop to ensure that newH.current.value ≤ vb
36: retry-loop to mark right.replica as VAL
37: retry-loop to mark right as DEL
38: CAS(&q.array, h, newH)
39: return newH

pool when integrated within an open source share-everything
PDES environment. This allowed us to assess its benefits
when employed within a real parallel simulation framework.
All the tests have be run on a 32-core HP ProLiant machine
running Linux (kernel 2.6) equipped with 64 GB of RAM.
The number of threads running the test-bed programs has
been varied from 1 to 32.

A. Experiments with the Hold Model

The Hold Model is devised to emulate and evaluate the
steady-state behavior of event pools. It is based on pre-
populating the event pool with a given (parametric) number
of events and on performing a sequence of dequeue/enqueue
operations. In our tests, each concurrent thread performs
either an enqueue or a dequeue with equal probability
set to 0.5 (Markov Hold Model). Each run ends when
the total number of performed operations (across all the
concurrent threads) reaches 106. This guarantees the highest
concurrency degree (depending on the selected number of
threads) along the whole lifetime of the run, since no thread
is ever switched off before the ending condition is reached.

We used four different priority increment distributions for
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Figure 2. Results with the Hold Model.

the generation of the timestamps of new events to be inserted
in the event pool, namely uniform, triangular, negative
triangular and exponential. Also, we generated (for each
considered distribution) 4 different tests, each one associated
with different amounts of events pre-filled in the event pool,
namely 25, 400, 4000, and 32,000. This allowed us to assess
our proposal in settings resembling either small models (say
with reduced number of activities to be performed, which
are already posted into the event pool) and larger ones.
The performance achieved by our non-blocking O(1) event
pool has been tested against the one achievable by relying
on a classical Calendar Queue, with concurrent accesses
synchronized by a spin-lock to make them consistent.

The results for all the tests we performed are shown in
Figure 2, where each reported sample results as the average
over 10 different runs of a same configuration. In particular,
we plot the wall-clock time for carrying out the target
number of event-pool operations while varying the number
of employed threads between 1 and 32. From the results,
we can draw two main conclusions. First, similarly to the
Calendar Queue, our non-blocking O(1) event pool is able to
deliver performance that (once fixed the number of threads)
is essentially independent of both the event timestamps’
distribution and the number of pre-filled events (the queue
size). This is an indication of excellent capability of dynamic
reorganization of the bucket width in our solution. Also, the
wall-clock time curves are essentially flat while scaling up
the number of concurrent threads, which indicates how our
proposal is resilient to performance degradation phenomena
caused by conflicting accesses when increasing the level
of concurrency in the event-pool operations. As somehow
expected, flatness of the wall-clock time is not achieved
by the spin-lock protected Calendar Queue, which leads to
performance degradation that is linear versus the number of
employed threads. Additionally, the absolute performance of
the spin-lock protected Calendar Queue becomes worse than
the one of our non-blocking O(1) event pool as soon as the
number of concurrent threads oversteps the value 8/12.

B. Experiments with a share-everything PDES platform

We have integrated our proposal with the share-everything
PDES engine standing at the core of the RAMSES spec-

ulative simulation framework [1]. In this engine, a meta-
data layer is used to keep track of what simulation object is
currently being run by any thread, and of the corresponding
event timestamp. Meta-data are updated by threads upon
extracting events from an underlying event pool, which is
fully shared by all the threads. These meta-data are used to
compute a reduction to assess what event is associated with
the current commit horizon of the simulation, which can be
therefore safely processed, with no need for reversibility of
the state updates it performs. This is achieved by the worker
thread by triggering a native version of the application
code, not including support for squashing the performed
computation. If the event is not safe (i.e. events in its
past could still affect it), then the worker thread runs a
modified version of the application code, that is transparently
instrumented (by an ad-hoc compile/link procedure) in order
to generate at run-time so called undo code blocks, which
are minimal blocks of machine instructions that can be used
to revert the updates performed by the event processing
phase. The simulation model lookahead is exploited at the
engine level in order to determine what other events—
beyond the one associated with the commit horizon of the
simulation—can be processed safely, since they will not
eventually be affected by causality errors. In this engine,
the fully-shared event pool only keeps so called schedule-
committed events, namely those that are generated by events
that will never be rolled back. Hence if a thread processes
an event speculatively, then the produced output events are
kept buffered outside the event pool up to the point in time
where the event becomes safe (thanks to the advancement
of the commit horizon). They are simply discarded—with
no inclusion at all in the shared event pool—if the original
event is eventually rolled back. Conflicting accesses by
multiple threads to the same simulation object, say because
of extraction from the event pool of two or more events
destined to the same object, are resolved via a read/write
spin-lock approach giving higher priority to lower timestamp
events. In the original implementation of this engine, the
shared event pool residing at the lowermost layer was a
Calendar Queue protected via a spin-lock.

As test-bed application we used PHOLD [16], configured
with 1024 simulation objects. Each object schedules two
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Figure 3. Results with PHOLD.

different types of events, regular and diffusion events. Both
types of events resemble classical PHOLD events, as their
processing leads to spending some CPU time, via a busy
loop emulating a given event granularity. The difference
among regular and diffusion events lies in that the former
class generates events, while the latter does not generate any
other event. Both types of events lead anyhow to perform
updates on the state of the target simulation object. In partic-
ular, the updates involve statistics related to the advancement
of the simulation, such as the number of events processes
(and of which type) and average values (as well as peaks) of
the simulation time advancement experienced by the objects
when processing new events. Such an event pattern leads
to the scenario where the average number of events (of any
type) hosted by the shared event pool does not change along
time, but we experience punctual fluctuations. The selection
of this event pattern is an explicit choice aimed at observing
how burst insertions of diffusion events in the event pool,
which are generated when processing regular events, lead
to run-time dynamics (possibly) affected by phase-intensive
accesses to the shared event-pool data structure. In our tests
we set the number of diffusion events generated by a regular
event, referred to as Fan-Out, to the values 1 and 50. The
latter settings leads to scenarios with higher intensity of the
burst of insertion operations of new events in the shared
pool upon committing some regular event. Also, it well
mimics PDES dynamics proper of epidemic models. As for
the timestamp increments when generating new events, we
selected an exponential distribution with mean set to one
simulation-time unit. As for the CPU requirements by the
events, we set it on the order of 60 microseconds, which
emulates low to medium granularity settings, which are
proper of a vast variety of discrete event models. Further,
we selected two different lookahead values, namely 10% and
0.1% of the average timestamp increment, so as to observe
run-time dynamics under different patterns in relation to safe
vs speculative processing.

In Figure 3 we report the speedup achieved when running
the shared-everything PDES engine with different number
of threads up to 32, compared to the case of execution
with a single thread. We still took the spin-lock protected
Calendar Queue as the baseline for performance comparison

in this study. By the data we observe how our non-blocking
O(1) event pool allows for close to linear speedup for
lookahead value set to 10% of the average event timestamp
increment, with coefficient 1 (ideal speedup) when running
up to 8 threads, and with coefficient at least 0.7 when
running with higher concurrency (i.e. up to 32 threads).
The curve referring to Fan-Out 50 stands quite close to
the one with Fan-Out 1, in fact the two speedup curves
differ by slightly more than 10% only when running with
32 threads. This is a clear indication that our non-blocking
event pool is able to efficiently handle scenarios with bursts
of (concurrent) operations—just depending on the pattern
according to which (sets of) new events are produced by
the application code when processing some event. This is
not guaranteed by the spin-lock protected Calendar Queue
that, beyond showing scalability problems when running
with more than 16 threads, also shows a clear decrease of
performance for the scenario with Fan-Out set to 50 and
thread count larger than 8. In fact, spin-lock based accesses
to the event pool are adverse in scenarios where more
intense bursts of enqueue operations occur, a phenomenon
that with Fan-Out set to 50 becomes evident as soon as the
concurrency level in the access to the pool is non-minimal.
Very similar considerations can be drawn for the experiments
with definitely reduced lookahead, set to 0.1% of the aver-
age event timestamp increment. Also, with such a reduced
lookahead value, more/longer synchronization phases across
threads take place at the level of the synchronization meta-
data management layer within the PDES engine (since
lower lookahead leads to reduced likelihood of processing
safe events, and to higher likelihood of delayed commit
for speculatively executed events). As a consequence, a
larger percentage of time is spent by the threads within
the synchronization layer managing causality meta-data,
which leads to a slightly reduced pressure in the access to
the shared event pool. This allows the spin-lock protected
Calendar Queue to achieve a bit higher speedup (compared
to lookahead set to 10%) when the Fan-Out parameter is
set to 1. For our non-blocking O(1) event pool, the reduced
pressure leads to achieve the same speedup with the two
different Fan-Out values (1 or 50) even when running with
32 threads (at this point the speedup is still 0.55 of the
ideal one). This indicates higher potential for performance
benefits by our solution, compared to the spin-lock protected
Calendar Queue, in scenarios where the pressure of event
pool accesses (slightly) diminishes.

V. CONCLUSION

In this article we have presented a lock-free event pool
offering O(1) amortized time complexity of concurrent
insertion/extraction operations. Our proposal is well suited
for emerging organizations of PDES platforms to be hosted
on top of shared memory multi-core machines, where con-
current threads are allowed to (fully) share the workload of



events to be processes on a very fine grain basis. Hence
a fully-shared event pool, guaranteeing high throughput
of concurrent operations joint with the delivery of higher
priority events upon extractions stands as a core building
block for the improvement of the performance delivered by
this kind of share-everything PDES platforms. We have also
reported experimental data demonstrating the efficiency of
our proposal.
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