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Abstract—The increasing scale and complexity of scientific
applications are rapidly transforming the ecosystem of tools,
methods, and workflows adopted by the high-performance com-
puting (HPC) community. Big data analytics and deep learning
are gaining traction as essential components in this ecosystem in
a variety of scenarios, such as, steering of experimental instru-
ments, acceleration of high-fidelity simulations through surrogate
computations, and guided ensemble searches. In this context, the
batch job model traditionally adopted by the supercomputing in-
frastructures needs to be complemented with support to schedule
opportunistic on-demand analytics jobs, leading to the problem of
efficient preemption of batch jobs with minimum loss of progress.
In this paper, we design and implement a simulator, CoSim,
that enables on-the-fly analysis of the trade-offs arising between
delaying the start of opportunistic on-demand jobs, which leads
to longer analytics latency, and loss of progress due to preemption
of batch jobs, which is necessary to make room for on-demand
jobs. To this end, we propose an algorithm based on dynamic
programming with predictable performance and scalability that
enables supercomputing infrastructure schedulers to analyze the
aforementioned trade-off and take decisions in near real-time.
Compared with other state-of-art approaches using traces of
the Theta pre-Exascale machine, our approach is capable of
finding the optimal solution, while achieving high performance
and scalability.

Index Terms—High-performance computing, batch job pre-
emption, job checkpointing

I. INTRODUCTION

Big data analytics and deep learning are rapidly gaining
traction both in the industry and scientific computing. A key
driver for this trend has been the unprecedented accumulation
of big data, which exposes plentiful learning opportunities
thanks to its massive size and variety. Unsurprisingly, there has
been a significant interest to adopt deep learning at a very large
scale on supercomputing infrastructures in a wide range of
scientific areas, e.g., fusion energy science [1], computational
fluid dynamics [2], lattice quantum chromodynamics [3], vir-
tual drug response prediction [4], and cancer research [5].

One of the main use cases of big data analytics and deep
learning in scientific computing is to use them as a tool to
complement high-performance computing (HPC) simulations
running on supercomputing infrastructures in a variety of
scenarios: steering of experimental instruments (e.g., calibrate
scientific instruments in real-time to correct anomalies in
experimental data and/or refocus dynamically on areas of inter-
est), acceleration of high-fidelity simulations through surrogate

computations (e.g., under the right circumstances, expensive
steps of an HPC simulation can be replaced with faster deep
learning predictions), guided ensemble searches (e.g., when
running a set of simulations to find a molecule that docks to
a protein, deep learning can be used to predict the next most
promising simulations to try next).

These scenarios require running opportunistic on-demand
jobs when certain conditions are triggered, e.g., an analytics
job that looks for anomalies in the experimental data collected
by the instrument, a deep learning training and/or inference.
These jobs need to start within a given deadline, often in the
order of minutes. Failure to start them by the given deadline
leads to a missed opportunity (e.g., it’s too late to calibrate
the instrument) and/or incur a performance penalty (e.g., idle
simulations that wait for the next deep learning prediction or
otherwise take alternative suboptimal decisions). On the other
hand, HPC datacenters traditionally adopt a batch job schedul-
ing model where users request compute and accelerator (e.g.,
GPU) resources of the datacenters for the required amount of
time (wall time), while the scheduler decides when to run each
job based on various trade-offs such as the need to maximize
the utilization of machines, and job priority. Popular HPC
datacenter schedulers, e.g., SLURM (Simple Linux Utility
Resource Manager) [6], COBALT [7], and TORQUE (Tera-
scale Open-source Resource and QUEue manager) [8], cannot
co-schedule batch jobs with opportunistic on-demand jobs.

A naive solution to address this problem could simply
reserve a set of nodes for on-demand jobs and use the rest of
the nodes for batch jobs. Although applied in practice, such a
solution is not desired as it is hard to predict how many nodes
are needed by the on-demand jobs. Using too few nodes for
on-demand jobs leads to missed opportunities, whereas, using
too many nodes leads to idle nodes and slow progress of the
batch jobs. Furthermore, even if such predictions were perfect,
there may be significant fluctuations in datacenter utilization
patterns that make it hard to dynamically move the nodes back
and forth between on-demand and batch queues. At the other
extreme, an alternative naive solution could simply use all
nodes for batch jobs and start killing batch jobs to make room
for on-demand jobs when needed. This solution does not lead
to missed opportunities but may incur significant overhead on
the batch jobs due to loss of progress.

In this paper, we propose an alternative solution to address
these challenges that relies on checkpointing for suspending
and resuming batch jobs, if required, to make room for time-978-1-7281-7343-6/20/$31.00 ©2020 IEEE



sensitive on-demand jobs, thereby minimizing the amount of
lost progress by the batch jobs. To this end, we introduce
CoSim, a simulation framework that aims to identify the opti-
mal combination of jobs that should be either checkpointed or
killed to free a fixed number of nodes that are required to run
the on-demand job. Unlike other approaches, CoSim simulates
all outcomes resulting from a variable deadline up to the given
maximum in a single pass, thereby eliminating the need to
run separate simulations for each fixed deadline. Using this
approach, the scheduler can make more informed decisions
by considering the various trade-offs arising from delaying
the start of the on-demand jobs and losing progress on the
batch jobs. Specifically, we make the following contributions
in this paper:

• We formulate the problem statement, introducing a series
of assumptions and general considerations for simulating
the outcomes of checkpointing batch jobs to vacate nodes
for running on-demand jobs (Section II).

• We introduce a series of design principles and an algo-
rithm based on the dynamic programming to find the op-
timal combination of batch jobs that incurs the minimum
loss of progress while satisfying the deadline of the on-
demand jobs. Our algorithm produces an optimal solution
for every possible deadline up to a given maximum in a
single pass (Section III).

• We evaluate our approach in a series of experiments using
three scenarios extracted from the batch job traces of
Argonne’s Theta pre-Exascale machine. We compare our
approach with an exhaustive search based on backtrack-
ing and a greedy approach. The results show significant
performance and scalability improvement as compared
to backtracking, as well as a significant improvement in
the quality of the solution compared as compared to the
greedy approach (Section IV).

II. PROBLEM FORMULATION

The problem of co-scheduling batch jobs with opportunistic
on-demand jobs in an HPC datacenter can be formulated
as follows. Let’s assume that N batch jobs are running at
time t0, and each of these jobs is characterized by the tuple
〈id, jn, loss, tckpt〉, where id is a unique identifier of the
job, jn is the number of compute nodes the batch job is
running on, loss quantifies the amount of lost progress if
the job is killed (e.g., node-hours since the last checkpoint
or since the beginning if no checkpoint was taken), tckpt is
the time required to checkpoint the job to successfully suspend
its execution without loss of progress.

Given K nodes that need to be released not later than t0+T
(for the purpose of starting opportunistic on-demand jobs), the
goal is to find all optimal subsets of batch jobs Si ⊂ N and
corresponding killing or checkpointing strategy for all t0 <
i < t0 + T . A subset Si is optimal if it satisfies the following
properties simultaneously: (1) at least K nodes are released
by the deadline t0+i; (2) the accumulated loss of work due to
killing jobs is minimized; (3) if there are multiple subsets Si

for which the accumulated loss due to job kills is minimized,

then prefer the subset for which the checkpointing overhead
is minimized. We refer to this as the eviction problem.

Using the subsets Si and corresponding strategy, an HPC
datacenter scheduler can simulate the outcome of multiple
hypothetical scenarios with a variable deadline i corresponding
to the trade-off between maximizing the value of the on-
demand jobs and minimizing the loss of the batch jobs.

We note that while we formulate the problem of HPC dat-
acenters, a similar formulation can be done for opportunistic
jobs in cloud computing architectures where there is an upper
bound on elasticity, e.g., the user cannot afford to run on
more than a fixed amount of virtual machines (VMs) at a
time and must evict existing jobs if necessary. Without loss of
generality, CoSim can be applied in such scenarios as well.

III. DESIGN PRINCIPLES AND APPROACH

This section introduces the high-level design principles of
our proposed approach and explains aspects related to the
checkpointing model and exploration algorithm that implement
these design principles.

A. Design principles

CoSim is based on the following design principles:
1) Mix of system-level and application-level checkpointing:

We differentiate between system-level and application-level
checkpointing, because they present an interesting trade-off:
system-level checkpointing techniques, such as DMTCP [9],
are application-agnostic and can be performed at any moment
t0. However, they involve large checkpoint sizes because the
entire memory space of all application processes needs to be
persisted to a stable storage, e.g., a parallel file system (PFS).
Therefore, system-level checkpointing may take a long time to
complete. On the other hand, application-level checkpointing
is typically performed by HPC applications regularly using
either a custom solution or a checkpointing library, such as,
VELOC [10]. In this case, the checkpoint size is smaller as
each application process needs to save only the critical data
structures needed for a restart and therefore faster to write to
the stable storage. However, it is necessary to wait for the
application to reach a moment t1 > t0 when it is safe to
checkpoint. Depending on how far away t1 is from t0 and
how much larger a system-level checkpoint is compared with
an application-level checkpoint, one or the other may be faster.
Furthermore, it is important to note that even if the system
and application-level checkpointing overheads are equal, it is
still important to choose the application-level checkpoint over
the system-level checkpoint, because using application-level
checkpoint enables the batch job to make additional progress
during the interval (t0, t1). We incorporate such considerations
in our simulator.

2) Simultaneous exploration of the full on-demand deadline
range: As discussed in Section II, our goal is to solve the
eviction problem for all deadlines in the range (t0, t0 + T ),
because the scheduler needs to consider the trade-off between
delaying the on-demand jobs, which may lead to lower quality
of the results due to slow reaction time, and losing progress



of the batch jobs. Thus, a naive strategy would be to iterate
over all deadlines i in range (t0, t0 + T ) and solve the
problem independently for each i. However, such a strategy
is sub-optimal, because the problems resulting from fixing
all deadlines i in range (t0, t0 + T ) have identical inputs
except for the deadline i, therefore they may be decomposed
into sub-problems that are shared across several instances and
thus need to be solved only once. Our approach leverages
this observation to construct an algorithm based on dynamic
programming that is capable of taking advantage of such
decompositions to solve all deadlines in a single pass. This
algorithm is explained in Section III-C.

3) Polynomial response time: A key requirement for ex-
ploring the full on-demand deadline range is to ensure fast
response time so that the scheduler can decide quickly, prefer-
ably at moment t0, about the jobs that must be checkpointed
to the PFS to run the incoming on-demand jobs. Thus, an
algorithm that is not polynomial in any variable, such as, the
number of jobs N , maximum deadline T , or the number of
nodes to be released K, will lead to unacceptable response
time, considering that modern HPC datacenters routinely run
several batch jobs simultaneously and may need to release
a large number of nodes for on-demand jobs to accommo-
date bursts of opportunistic events. Therefore, our proposed
solution is designed to satisfy such constraints, and delivers
response times in the order of milliseconds or less.

B. Loss and checkpointing model

We estimate the loss incurred by killing a batch job as
the number of node-hours that have elapsed since its last
application-level checkpoint until t0, the moment when the
nodes need to be evicted to make room for the on-demand
jobs. This is based on a configurable interval that can be
independently adjusted for each job in our simulator. In
practice, the interval is fixed based on empirical observations,
e.g., every hour, because the checkpoints are used both to
survive failures and to record intermediate results. However, if
checkpoints are only used for fault tolerance, then an optimal
checkpointing interval can be computed [11].

In order to simulate alternatives that mix application-level
checkpointing with system-level checkpointing, we consider
the time to checkpoint each batch job:

tckpt = max(

jn∑
i=1

sckpt(i)/Ba,maxjn
i=1(sckpt(i)/Bc)) (1)

where jn is the number of nodes occupied by the batch
job, Ba is the aggregated I/O bandwidth of the PFS, Bc is the
maximum I/O bandwidth of a compute node, and sckpt(i) is
the size of the checkpoint on node i ∈ [1 . . . jn]. The intuition
behind this is that the checkpointing time is bounded either by
the maximum aggregated bandwidth of the PFS or the slowest
node (if the nodes do not consume the maximum aggregated
bandwidth).

In the case of application-level checkpointing, we must
wait for the next checkpoint to happen, which introduces a
delay in addition to tckpt. Therefore, the application-level

checkpointing duration is ta = tckpt+ delay, where delay is
the difference between the next scheduled checkpoint and t0.
Since system-level checkpointing can be performed instantly
at t0, its duration, ts, will be equal to tckpt, i.e., ts = tckpt.
However, the two approaches will have a different checkpoint
size on each node, resulting in the trade-off that is explained
in Section III-A.

In a typical HPC datacenter, the size of each batch job is
usually large enough to saturate the aggregated I/O bandwidth
of the PFS. Therefore, we consider a simple checkpointing
model where the jobs are checkpointed serially. In this case,
the total time required for checkpointing a set of batch jobs
is the sum of their corresponding ta or ts. In fact, under
such circumstances, checkpointing multiple batch jobs in
parallel would perform worse than checkpointing the batch
jobs serially, because of over-subscribing the aggregated I/O
bandwidth of the PFS. Nevertheless, we note that our model
can be further refined to simulate concurrent checkpointing of
the batch jobs in the case of small jobs that do not saturate
the aggregated I/O bandwidth of the PFS.

C. Exploration algorithm

In this section we propose a dynamic programming algo-
rithm based on the aforementioned design principles.

The key observation that inspires our algorithm is the fact
that the eviction problem is related to the discrete backpack
problem: given N items, where Wi and Vi represent the weight
and value of the ith item, fill a backpack that can carry a
maximum weight K such that the combined value of all items
is maximized without overflowing K. By analogy, we can
consider the batch jobs as items and the backpack as the set of
nodes where the jobs are running. This problem has a simple
dynamic programming decomposition: maximum value for N
items is the greater of: (1) the maximum value for N − 1
items and capacity K (excludes item N ); (2) VN plus the
maximum value obtained for N−1 items and capacity K−WN

(includes item N ). By solving this decomposition recursively
and applying memoization techniques, a runtime complexity
of O(N · K) can be achieved. Note that this decomposition
solves the problem not only for a backpack of capacity K,
but at the same time for all backpacks of capacity i such that
0 < i ≤ K.

Starting from this observation, we adopt a similar strategy
but with two important differences. First, we need to free at
least K nodes, which means that the optimal solution may
involve more than K nodes. Therefore, we need to consider
up to M nodes, where M is the number of nodes occupied by
all batch jobs at the moment t0. Second, the eviction problem
introduces a new dimension in the decomposition, i.e., the
deadline T to start the on-demand jobs. Specifically, it is not
enough to release at least K nodes within a deadline T when
considering N − 1 batch jobs and then try for the N th batch
job all four alternatives, i.e., ignore, kill, application-level
checkpoint, and system-level checkpoint, because the optimal
solution for N − 1 batch jobs may get close to the deadline



Algorithm 1: Dynamic programming algorithm to free
K nodes within a range of deadlines [0 . . . T ] with
minimal loss of compute progress.

Input: List J of N batch jobs running at t0, K, T
Output: List of job eviction strategies Si, 0 < i < T

1 a[0, 0]← 0
2 u[0, 0]← ∅
3 M ← 0
4 for (id, jn, loss, ts, ta) ∈ J do
5 M ←M + jn

6 for (id, jn, loss, ts, ta) ∈ J do
7 b← a
8 v ← u
9 for (n, t) ∈ a do

10 if b[n+ jn, t] > a[n, t] + loss then
11 b[n+ jn, t]← a[n, t] + loss
12 v[n+ jn, t]← u[n, t] ∪ {(id, “kill”)}
13 if t+ ta <= T ∧ b[n+ jn, t+ ta] > a[n, t] then
14 b[n+ jn, t+ ta]← a[n, t]
15 v[n+ jn, t+ ta]← u[n, t] ∪ {(id, “app”)}
16 if t+ ts <= T ∧ b[n+ jn, t+ ts] > a[n, t] then
17 b[n+ jn, t+ ts]← a[n, t]
18 v[n+ jn, t+ ts]← u[n, t] ∪ {(id, “sys”)}

19 a← b
20 u← v

21 for i ∈ [0 . . . T ] do
22 (x, y)← argmin(a[x = K . . .M, y = 0 . . . i])
23 Result[i]← (a[x, y], u[x, y])

24 return Result

T , thereby limiting the set of valid choices for job N (e.g.,
no further checkpointing is possible within T ).

As a consequence, we propose a two-dimensional decom-
position based on both the number of nodes and the deadline.
We denote with the tuple 〈jnN , lossN , tsN , taN 〉 the number
of nodes, loss of progress due to job killing, system-level
checkpointing duration, and application-level checkpointing
duration for job N . Then, the minimum loss for N jobs, M
nodes, and deadline T denoted as a[N,M, T ] is the lesser of:
(1) ignore job N , i.e., a[N − 1,M, T ]; (2) kill job N , i.e.,
lossN + a[N − 1,M − jnN , T ]; (3) take an application-level
checkpoint of job N , i.e., a[N−1,M−jnN , T−taN ]; and (4)
take a system-level checkpoint of job N , i.e., a[N − 1,M −
jnN , T − tsN ]. Algorithm 1 presents our approach to solve
this decomposition with a runtime of O(N ·M ·T ). The output
of this algorithm is a list Si for 0 < i < T , where Si is the set
of jobs to be evicted using an optimal strategy such that the
compute loss is minimized, and, in case of multiple solutions
with minimal compute loss, the checkpointing overhead is
minimized too.

We note that Algorithm 1 uses a temporary minimum loss
matrix b and a corresponding solution matrix v to hold the
updates resulting from considering all alternatives for job
id. This is needed in order to avoid repeatedly selecting
the same id in subsequent decompositions. Furthermore, the
application-level checkpointing strategy takes precedence over

the system-level checkpointing during the updates, and thus
becomes a preferred choice in the case of equal loss and
checkpointing time.

Another important observation is that Algorithm 1 solves
the eviction problem not only for at least K nodes, but the
entire node spectrum [0 . . .M ]. This enables the scheduler to
consider more advanced trade-offs for on-demand jobs, such
as running the on-demand jobs with more or less than K
requested nodes, which can be used to dynamically adjust
the latency and/or the quality of the on-demand results. Such
trade-offs can be incorporated at no additional simulation cost
using our proposed approach.

IV. PERFORMANCE EVALUATION

To evaluate our proposal, we study the traces of Argonne’s
Theta pre-Exascale machine and extract three representative
scenarios that create a challenging situation with respect to
the eviction problem: most of the nodes are occupied by a
relatively large number of batch jobs, leading to many possible
combinations that need to be explored. For each scenario,
we augment the traces with additional data that enables us
to apply our model in order to extract the parameters of
each batch job: compute loss and application-level/system-
level checkpointing duration. We then compare our dynamic
programming algorithm with two other approaches: a greedy
algorithm (linear complexity) and a backtracking algorithm
that performs an exhaustive search (exponential complexity).
For the rest of this section, we introduce the methodology of
our proposal and discuss the results of the comparison.

A. Batch job traces

In this paper, we consider the case of Argonne’s Theta
supercomputer, a 11.69 petaflops pre-Exascale Cray XC40
system based on the second-generation KNL Intel Xeon Phi
7230 SKU. The system has 4392 nodes, each equipped with
64 core processors (256 hardware threads), 16 GB of high-
bandwidth MCDRAM (300-450 GB/s), 192 GB of main mem-
ory (DDR4 RAM, 20 GB/s), and a 128 GB SSD (700 MB/s).
The interconnect topology is based on Dragonfly with a
total bisection bandwidth of 7.2 TB/sec. Durable storage is
provided by a Lustre parallel file system that is accessible to
the compute nodes through a POSIX mount point. The total
aggregated bandwidth is 250 GB/s.

First, we study the DIM_JOB_COMPOSITE trace1 of batch
jobs executed on Theta between 2017 and 2019. Specifically,
we extract for each job the required fields pertaining to the
runtime (start time, execution time) and the number of nodes.
Then, we aggregate this information to obtain the number of
batch jobs and the number of nodes utilized by the batch jobs
per time unit. We focus in particular on the year 2019, which
reflects the most recent utilization pattern: a total of 91,217
batch jobs were executed during the entire year.

We zoom on the node utilization (Figure 1a) and the number
of jobs (Figure 1b) per hour during January 2019. A similar

1https://reports.alcf.anl.gov/data/theta.html
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Fig. 1: Trace analysis for January 2019.

Fig. 2: Scenario-1: 12 batch jobs running on 4352 nodes.

pattern can be observed for the rest of the year. These figures
reveal several interesting observations:

• During the entire year, all 4392 nodes were occupied
for only around 1.5 days. However, the most frequent
number of occupied nodes is 4352, which is close to the
maximum capacity and appears for a total of 34 days.
Therefore, the likelihood of having to run on-demand jobs
when the machine runs batch jobs close to full capacity
is very high.

• When the machine is operating close to capacity (4352
occupied nodes), the number of jobs is relatively high,
peaking at around 25 jobs.

• About 61% of the batch jobs reported an execution time
of less than 30 minutes. We consider these batch jobs
expendable, such that killing them incurs negligible loss.

Based on these observations, we construct three representa-
tive scenarios, each of which occupies 4352 nodes at moment
t0 and a variable number of jobs: 12, 16, 24. We deliberately
avoid expendable jobs in these scenarios (i.e., no expendable
job is running at moment t0) in order to create a challenging
situation where all jobs may incur a significant loss of node-
hours. The scenarios are illustrated in Figure 2, Figure 3 and
Figure 4. The regions of interest during which all jobs are
running are marked with between two vertical timestamps
relative to the beginning of the earliest job. For example,
Figure 2 captures a scenario of 12 jobs running for a total
of 10 hours and 15 minutes, where, all batch jobs overlap for
about 2 hours, i.e., from 02:41 to 04:52. The moment t0 is
chosen within these regions of interest.

B. Augmentation of the traces with checkpointing parameters

The DIM_JOB_COMPOSITE trace does not capture any
information about the checkpointing behavior of the batch
jobs. Lacking such information, we augment the scenarios with

Fig. 3: Scenario-2: 16 batch jobs running on 4352 nodes.

Fig. 4: Scenario-3: 24 batch jobs running on 4352 nodes.

a series of synthetically generated checkpointing information
based on empirical observations. Specifically, we assume
that all batch jobs conduct application-level checkpoints at
an hourly interval. Since the batch jobs have different start
times, the likelihood that their application-level checkpoints
are written concurrently to the PFS is very small. Furthermore,
we assume that each batch job allocates between 40%-90%
of the memory available on each node. In this case, the
size of the system-level checkpoint on each node coincides
with the allocated memory. Out of this memory, we assume
20%-60% holds critical data structures that are written by
application-level checkpointing approaches. This is the size of
the application-level checkpoints. We use a random threshold
for each batch job, both for the application-level and system-
level checkpoints, which is then used in Equation 1 to calculate
the application-level and system-level checkpointing duration.

C. Compared approaches

Throughout our evaluations, we compare three approaches
that can be used to solve the eviction problem:
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Fig. 5: Response time for Scenario-1 consisting of 12 batch jobs. Note the log scale on the Y axis. Lower is better.
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Fig. 6: Response time for Scenario-2 consisting of 16 batch jobs. Note the log scale on the Y axis. Lower is better.

1) Greedy: This algorithm implements a greedy strategy
that tries to minimize the loss by checkpointing the most ex-
pensive jobs (high loss), while killing the least expensive jobs
(low loss). To this end, it sorts the batch jobs in descending
order of loss and tries to checkpoint them using the fastest
available checkpointing method (application or system level).
When the total checkpoint duration becomes larger than the
deadline T , it iterates over the sorted jobs in reverse order
starting from the end, killing them one by one until at least
K nodes have been released. While it does not produce an
optimal solution, this algorithm has linear complexity and
therefore has a very fast response time.

2) Backtracking: This algorithm implements an exhaustive
search of all possible choices for each batch job: keep running
(exclude), kill, checkpoint at application-level, checkpoint at
system-level. It optimizes the search by early abandoning of
all combinations that cannot achieve a lower loss than the best
combination found so far. Unlike Greedy, this approach always
produces an optimal solution, however it has an exponential
complexity and therefore may become untractable for large
problem sizes.

3) CoSim: This is our proposal that implements Algo-
rithm 1. It guarantees an optimal solution just like Backtrack-
ing, but at the same time it has a fast response time thanks to
its polynomial complexity.

D. On-demand job configurations

For each of the three scenarios mentioned in Section IV-A,
we consider the maximum deadline T = 15 minutes. We are
interested in the optimal eviction strategy for all deadlines
in the range [0 . . . 15] with a granularity of one minute.
Furthermore, for each of the three scenarios, we consider three
different values for K, the minimum number of nodes that

need to be evicted in order to make room for the on-demand
jobs, i.e., 512, 1024, and 2048 for Scenario-1, Scenario-2, and
Scenario-3, respectively. This roughly corresponds to 12.5%,
25% and 50% of the total capacity of Theta.

E. Results

First, we focus on the performance and scalability of the
three approaches. To this end, we measure the response time
taken by each approach in order to produce the optimal
eviction strategy for all deadlines in the range [0 . . . T ]. As
a consequence, in the case of Greedy and Backtracking, a
separate run is executed for each i ∈ [0 . . . T ]. Therefore, for
an increasing i, the response time measures the accumulated
runtime of all i runs. In the case of CoSim, a single run is
sufficient to obtain the full solution thanks to the memoization
of overlapping sub-problems. This metric is important because
it determines how soon the scheduler can take decisions, which
in turn impacts the value that can be extracted from the on-
demand jobs (i.e., faster response time leads to better on-
demand job results).

The results for each of the three scenarios are depicted in
Figure 5, Figure 6 and Figure 7 respectively. Note that due
to the large differences in algorithmic complexity between the
three approaches, the y-axis is represented in a log scale. As
expected, CoSim keeps a constant response time regardless
of the deadline T . Despite the accumulation of response time
from an increasing number of runs, the Greedy approach is still
at least 30x faster than the other two approaches thanks to its
linear complexity. It is interesting to observe that for a small K
and a small number of batch jobs (as illustrated by Scenario-
1), Backtracking is faster than our approach. However, with
increasing K and number of batch jobs (as illustrated by
Scenario-2 and Scenario-3), the limitation of the exponential
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Fig. 7: Response time for Scenario-3 consisting of 24 batch jobs. Note the log scale on the Y axis. Lower is better.
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Fig. 8: Relative compute loss of the Greedy approach relative to optimal solution produced by CoSim and Backtracking. Lower is better.

search becomes clearly visible, despite the aggressive early
pruning optimization. In this case, our approach is up to
five orders of magnitude faster. As a general conclusion, we
observe that our approach has the advantage of providing the
optimal solution within a predictable constant time, which is
well suited for real-time scheduling decisions.

Next, we focus on the quality of the results of the Greedy
approach. Since both our approach and the Backtracking
approach produce the optimal solution, we use it as a baseline
that we substract from the minimum loss found by the Greedy
approach. We call this the relative compute loss. This metric is
important, because it indicates what result quality degradation
can be expected in order to benefit from faster response time.

As can be observed in Figure 8, the relative compute loss
is very high, indicating that degradation in the quality of
the result found by Greedy is unacceptable. In fact, with the
exception of T > 13 for Scenario-3, the relative compute loss
is increasing for an increasing T , which means Greedy suffers
from an increasing degradation in the quality of the result.
Also, it is important to note that in absolute terms, the mini-
mum compute loss is decreasing with an increasing T for all
three approaches, because more checkpointing opportunities
become available. In fact, the optimal minimum loss is found
by CoSim and Backtracking is often 0 (meaning no job needs
to be killed), especially for larger T . Therefore, even when the
relative compute loss seems to decrease for an increasing T ,
it is still missing the optimal compute loss by a large margin.

Based on this observation, we conclude that sacrificing
the result quality for faster response time is not beneficial,
especially when considering that our approach runs in the
order of milliseconds in the worst case.

V. RELATED WORK

Scheduling of batch and on-demand jobs for concurrent
execution where resources sharing is limited to each type of
job has been widely studied [12]–[19] in the past. However,
not much work has been done for collocating both batch and
on-demand jobs on the same set of resources [20]. SPRUCE
(Special Priority and Urgent Computing Environment) [21]
supports on-demand jobs by considering a basic preemptive
scheduling scheme with no checkpointing. However, this leads
to a significant loss of progress for the batch jobs.

Checkpointing based preemptive scheduling has been tradi-
tionally used at the operating system level for multi-tasking.
However, recent checkpointing-based preemptive scheduling
schemes [13], [22] focus on reducing their overheads and
improving their effectiveness in reducing the average job
turnaround time. Nevertheless, these techniques do not directly
address the challenges of co-scheduling batch and on-demand
jobs in HPC settings.

Large-scale datacenters operated by industry (e.g., Face-
book [23] and Google [24]), leverage centralized job execution
environments where the centralized system accumulates jobs
from multiple datacenters, and then runs the computation [25].
However, it leads to increased network traffic and job com-
pletion time when the data volume grows exponentially [26],
[27]. Furthermore, regulations may restrict moving data across
continents due to security and privacy constraints, thus making
such approaches impractical to adopt in production environ-
ments at large.

VI. CONCLUSIONS

In this paper, we present CoSim, a simulator that enables on-
the-fly analysis of the trade-offs arising between delaying the



start of opportunistic on-demand jobs, which leads to longer
analytics latency, and loss of progress due to preemption of
batch jobs, which is necessary to make room for such on-
demand jobs. The key idea of our proposal is to implement
preemption through a combination of either killing or check-
pointing (at application-level or system-level) a subset of batch
jobs running on the compute nodes to free enough nodes by
a given deadline. To this end, we introduce a checkpointing
and loss model to develop a dynamic programming algorithm
to minimize the loss for a variable deadline up to a given
threshold, which gives the scheduler high flexibility in ex-
ploring a wide range of alternatives. CoSim finds the optimal
solution up to 5 orders of magnitude faster than backtracking
approaches and offers a predictable response time in the
order of milliseconds, thereby eliminating the need for greedy
approaches that are fast but find only approximate solutions.

In the future, we plan to investigate several avenues: (1) ap-
plicability of our proposal to cloud computing; (2) refinement
of checkpointing model (interval, interactions with PFS); (3)
integration with the workload schedulers at Argonne National
Laboratory’s supercomputers to validate CoSim for real-life
on-demand workloads.
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