
Design Patterns for Multilevel Modeling and
Simulation

Luca Serena∗, Moreno Marzolla∗†, Gabriele D’Angelo∗†, Stefano Ferretti‡
∗Department of Computer Science and Engineering, University of Bologna, Italy
†Center for Inter-Department Industrial Research ICT, University of Bologna, Italy
‡Department of Pure and Applied Sciences, University of Urbino Carlo Bo, Italy

{luca.serena2,moreno.marzolla,g.dangelo}@unibo.it, stefano.ferretti@uniurb.it

Abstract—Multilevel modeling and simulation (M&S) is be-
coming increasingly relevant due to the benefits that this method-
ology offers. Multilevel models allow users to describe a system
at multiple levels of detail. From one side, this can make
better use of computational resources, since the more detailed
and time-consuming models can be executed only when/where
required. From the other side, multilevel models can be as-
sembled from existing components, cutting down development
and verification/validation time. A downside of multilevel M&S
is that the development process becomes more complex due to
some recurrent issues caused by the very nature of multilevel
models: how to make sub-models interoperate, how to orchestrate
execution, how state variables are to be updated when changing
scale, and so on. In this paper, we address some of these issues
by presenting a set of design patterns that provide a systematic
approach for designing and implementing multilevel models.
The proposed design patterns cover multiple aspects, including
how to represent different levels of detail, how to combine
incompatible models, how to exchange data across models, and
so on. Some of the patterns are derived from the general software
engineering literature, while others are specific to the multilevel
M&S application area.

Index Terms—Multilevel modeling, Design patterns, Agent-
based models, Multiscale simulation.

I. INTRODUCTION

Modeling and simulation are powerful tools that are used
to study the behavior of a complex system without the need
of conducting experiments on the “real thing”. Over the years,
many modeling methodologies have been developed and are
routinely used; different research communities tend to have
their own preferred set of tools, e.g., Agent-Based Models
(ABMs) are frequently used in the social sciences, whereas
continuous (equation-based) models are frequently used to
study the diffusion of epidemics [1].

The most frequently used class of models are monolithic,
meaning that a single model takes care of the whole system

This is the author’s version of the article: “Luca Serena, Moreno
Marzolla, Gabriele D’Angelo, Stefano Ferretti, Design Patterns for Multi-
level Modeling and Simulation, proc. 2023 IEEE/ACM 27th International
Symposium on Distributed Simulation and Real-Time Applications (DS-
RT’23), Singapore, October 4—5, 2023, pp 48—55”. ©2023 IEEE.
Personal use of this material is permitted. Permission from IEEE must
be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work
in other works. The publisher version of this paper is available at
https://dx.doi.org/10.1109/DS-RT58998.2023.00015.

(models that have some internal structuring that merely derives
from software engineering good practices of decomposition
are still considered “monolithic”). Although monolithic mod-
els are appropriate for many kinds of studies, they fall short
when large, complex scenarios must be investigated. Firstly,
the possibility of combining existing models can reduce devel-
opment time and simplify verification and validation, provided
that the sub-models have already been properly validated.
Secondly, complex scenarios may be too large and/or too
complex to be evaluated at the maximum level of detail. These
facts have motivated the use of multilevel models, sometimes
referred to as multilayer or multi-resolution models.

Multilevel models employ multiple sub-models that may
or may not be active at the same time; sub-models can be
based on different paradigms (continuous, discrete, agent-
based, stochastic, and so forth), and may describe the system
(or part thereof) at different levels of detail. One key aspect of
multilevel modeling is that the decomposition into sub-models
does not need to be static, as Figure 1 depicts. In particular,
multilevel models are allowed to: (i) switch any part of the
system under study to a different type of model (e.g., from
continuous to discrete models or back; Figure 1.a), (ii) dynam-
ically change the spatial resolution of any part of the model
(Figure 1.b), (iii) dynamically change the time resolution of
any part of the model (Figure 1.c), or (iv) dynamically change
the amount of state variables, i.e., the accuracy (Figure 1.d).

Multilevel techniques allow multiple level of details to be
used either for different portions of the system under study,
or at different points in simulated time. The goal is to make
better use of available computational resources: indeed, large
and complex models might not be executed efficiently if they
are represented at the maximum possible level of detail. Even
when they could, they would produce a large amount of data
that, for the most part, would probably be unimportant. Taking
as an example a multilevel traffic model, we might employ
an equation-based representation of the aggregate flow of
vehicles, and switch to a more accurate agent-based model
on areas where interesting patterns emerge, such as road
congestion; this allows the simulation to “zoom in” and study
in detail how congestion develop and resolve. As soon as the
traffic is back to normal, the model can switch back to the
faster, but less accurate, equation-based model.

In the last decades many applications employing multilevel

ar
X

iv
:2

40
3.

16
71

3v
1

 [
cs

.S
E

]
 2

5
M

ar
 2

02
4

https://dx.doi.org/10.1109/DS-RT58998.2023.00015

Fig. 1: The four main realizations of multi-level modeling.

frameworks have been used in several fields of study, e.g.,
human mobility, traffic modeling, urban planning, social sci-
ences, and others (see Section II). Despite the advantages
outlined above, multilevel modeling brings some issues that
must be addressed: how can sub-models interact? How can
sub-models be scheduled for execution to make efficient use
of the available computational resources? How can sub-models
be orchestrated?

The analysis of the scientific literature reveals that there are
some recurrent solutions to the issues above. In this paper,
we summarize these solutions into a set of design patterns,
with the aim of contributing towards a wider adoption of
multilevel M&S. Some of the design patterns come directly
from the software engineering domain; others are specific to
the multilevel M&S domain. Although reasonably complete,
due to space constraints the collection of patterns described
here is not meant to be exhaustive; however, we believe that
it covers the most important aspects.

This paper is structured as follows: in Section II we
introduce the concepts of multilevel modeling and design
pattern. Then, from Section III to Section VII we describe the
design patterns grouped by function. Finally, some concluding
remarks are discussed in Section VIII.

II. BACKGROUND

Several modeling and simulation paradigms exist. They can
be classified according to at least two dimensions: (i) how the
state space is represented, and (ii) how time is represented.

In continuous-space models the state space is represented by
continuous values (e.g., real numbers). Conversely, in discrete-
space models the state space is described used discrete values;
a classical example is discrete Cellular Automata (CA), where
each cell can assume a finite set of values. In some cases, both
continuous and discrete variables are used to represent the state
space; in this case we have mixed models.

For what concerns time management, we similarly have
continuous-time and discrete-time models [2]. In continuous-
time models, the state space changes continuously over time;
these models usually are based on sets of Ordinary Differential
Equations (ODEs). In discrete-time models, the state space is
updated only at specific points in time. Additionally, there are
time-stepped models, where the time is divided into regular

discrete time frames, each one potentially corresponding to
a defined length of time. Finally, stochastic models such as
Monte Carlo simulations do not rely on any representation
of time, since they are concerned with the computation of
numerical results using stochastic processes involving a large
number of simulated experiments.

Different choices of space and time representation lead to
different types of models; to cite a few:

• Equation-Based Models (EBMs) are usually continuous-
space, continuous-time and based on differential equa-
tions [3]; EBMs can usually be handled efficiently and
are well suited for describing aggregate parameters over
very large populations of entities.

• ABMs are usually continuous-space, discrete-time and
consist of a collection of autonomous, interacting com-
putational objects (agents) that are situated in space and
time [4]. ABMs are well suited for representing systems
where interactions among agents, and between agents
and the environment, are particularly important. However,
ABMs can be computationally demanding, particularly if
the number of agents is high.

• CA are usually discrete-space, time-stepped (although all
possible variants exist); CA represent the domain as a
lattice of cells with simple rules to update the state of
each cell based on the state of a subset of neighbors.
Many classes of CA can be evaluated quite efficiently
through parallel computations.

In multilevel models, different paradigms can coexist [5];
sub-models might be either semantically distinct (e.g., an ur-
ban simulation where different components describe pedestrian
mobility, traffic flows, air pollution, land use and so forth), or
describe the same item at different levels of detail (e.g., traffic
models that switch from EBMs for aggregate traffic flows and
detailed ABMs that describe individual vehicles) [6].

The application spectrum of multilevel M&S techniques
is very wide. In biology, chemistry or material science
macroscale continuum models can be used to simulate the
behavior of fluids, solids, and other materials, molecular
simulators can study the dynamics and the interactions of
atoms and molecules, while an intermediate scale can be used
to simulate the behavior of larger groups of molecules, such

as polymers or proteins [7], [8]. In crowd and traffic simu-
lation, usually an ABM describes the behavior of individual
pedestrians and vehicles [9], while a macroscopic model deals
with equations that describe an aggregate high-level view of
the system [10], [11]. Finally, a recurrent scheme to study
the diffusion of epidemics is to have within-host models that
describe pathogen-host interactions, taking into consideration
immune system responses and the effect of therapies, and
between-host models that capture the dynamics of the infection
as it spreads from individual to individual [12]–[14].

Multilevel techniques simplify the development of complex
models, because they allow code reuse from existing sub-
models, cutting down development and validation times. An-
other key aspect is the possibility of changing the level of
detail or the type of paradigm at run-time, to get a suitable
trade-off between computational efficiency of coarse-grained
models and accuracy of fine-grained representations. Indeed, it
is often the case that only some critical parts of a simulation
are worth being represented at a high level of accuracy, so
using the maximum level of detail everywhere might be a
waste of time and resources.

However, multilevel M&S techniques raise several issues,
some of which are concerned with software engineering
aspects (e.g., how to integrate components that were not
necessarily created to work together), while others are domain-
specific (e.g., how to ensure consistency among sub-models).
Although the concrete solutions of these issues are problem-
specific, there are some recurrent patterns that are frequently
used in the literature.

In software engineering, design patterns are standardized
and reusable solutions to recurrent software design problems
that have been proven to work effectively in practice. Design
patterns are not algorithmic solutions; rather, they are abstract
descriptions of solution schemes to classes of problems that
must be instantiated to each specific problem.

Conceptualized for the first time by Gamma et al. [15],
software design patterns have become an important tool for
helping developers to design high-quality, maintainable, and
efficient software systems.

In this paper, we describe some design patterns that are
found in multilevel M&S applications. The patterns are clas-
sified into five categories, as illustrated in Figure 2:

• Orchestration patterns deal with the flow of execution of
sub-models (Section III).

• Structural patterns describe how sub-components can be
aggregated into complex models (Section IV). Note that
these patterns are taken directly from [15], since they are
relevant for multilevel modeling besides general Object-
Oriented programming.

• Execution policy patterns specify the mapping between
components and execution units (Section V).

• Information exchange patterns define how data can be
transferred between models of different types, e.g., con-
tinuous and discrete-space models (Section VI).

• Multiscale patterns define how models employing differ-
ent levels of details can be integrated (Section VII).

III. ORCHESTRATION PATTERNS

Multilevel models involve the execution of multiple com-
ponents, that may be of different types (e.g., continuous
and discrete models), or of the same type using different
parameters (e.g., different time-steps). The components may be
organized arbitrarily, i.e., not necessarily in a strict hierarchy.

Orchestration patterns define how execution is passed from
one component to another. In the Model’s Controller pattern,
sub-models are executed by an external entity called Con-
troller, who acts as an interface to the user. In the Director-
Worker pattern, control is passed from the active component
to a different one. Finally, the Concurrent Modularity pattern
does not assume a strict hierarchical structuring of sub-
modules, and allows components to interact in a peer-to-peer
way.

The Director on Hold and Worker on Demand patterns are
possible realization of the Director-Worker paradigm. In the
Director on Hold realization, the Director is suspended until
the worker(s) terminates execution. The Worker on Demand
pattern pre-allocates the pool of workers in order to avoid the
overhead of dynamically creating/destroying them.

A. Models’ Controller

In this pattern there exists one entity, the Controller, that
is in charge of (i) acting as the interface to the user or
a higher-level model; (ii) scheduling the execution of the
various sub-models; (iii) keeping a global state; (iv) managing
the exchange of information among sub-models (see top of
Figure 3).

The presence of a Controller has the advantage of centraliz-
ing the scheduling and management logic, therefore allowing
separation of concerns between functionality and implemen-
tation. It also allows more flexibility, as adding an additional
sub-model is somewhat easier, since only the Controller is
involved. An obvious disadvantage is that the Controller might
become very complex if a large number of incompatible sub-
models are used.

The Controller pattern has been used in [16] to investigate
crowd evacuation using a multilevel model. The model relies
on a synchronization module to schedule execution of micro
and macro scales and manage the exchange of information.

B. Director-Worker

The Director-Worker pattern (bottom part of Figure 3) relies
on a hierarchical structuring of sub-models. Each sub-model
can act as a worker with respect to its parent module, and as
a director with respect to children modules (if any). Control is
passed from a Director to a Worker. The Director implements
some of the functionalities of the Controller above; however,
unlike the Controller, a Director is itself a sub-model, whereas
the Controller is an external entity that is not part of the
model. The Director-Worker pattern can be combined with
the Composite pattern (see Section IV).

The Controller and Director-Worker patterns are not mutu-
ally exclusive. For instance, in [17] there is a simulator at the
top of the hierarchy that relies on a wrapper script to manage

Rounding
Strategies
(Sec. VI.E)

Worker on
Demand

(Sec. III.D)

Sequential
Execution
(Sec. V.A)

Orchestration Patterns

Director-Worker
(Sec. III.B)

Models'
Controller
(Sec. III.A)

Bridge
(Sec. IV.B)

Adapter
(Sec. IV.C)

Composite
(Sec. IV.A)

Structural Patterns
Execution Policy

Patterns

Parallel
Execution
(Sec. V.B)

Adaptive
Resolution
(Sec. VII.B)

Spatial Aggregation/
Disaggregation

(Sec. VII.A)

Multiscale
Patterns

Pipe through
temp. files
(Sec. VI.B)

Return
Value

(Sec. VI.A)

Shared
Memory

(Sec. VI.C)

Information Exchange
Patterns

Concurrent
Modularity
(Sec. III.E)

Director
on Hold

(Sec. III.C)

Fig. 2: Summary of the patterns described in this paper. Those originally described in [15] are shaded.

Model_B
- params
+ setup()
+ run()

Model_A
- A_params
- B_params
+ run()
- setup_B(B_main_params)
- launch_modelB()

Model_A
- params
+ setup()
+ run()

Launcher
- modelA
- modelB
+ run()
- setup_A(A_params)
- setup_B(B_params)
- launch_model_A()
- launch_model_B()

Model_B
- params
+ setup()
+ run()

Fig. 3: Class diagrams of the Model’s Controller (top) and
Director-Worker pattern (bottom).

the various instances of the underlying models. Thus, in this
case the wrapper script can be considered both as a Worker
in a Director-Worker scheme and as a Models’ Controller of
the lower-level modules.

C. Director on Hold

The Director on Hold pattern is the simplest realization of
the Director-Worker paradigm: the Director instantiates new
Workers when needed, and suspends itself while the Workers
are active. At the end, Workers are terminated and the Director
resumes execution. Although very simple, this strategy may
incur a significant overhead if creation/destruction of Workers
is a costly procedure. Indeed, while EBMs might be cheaper
to build and destroy, the same cannot be said for ABMs, as
the creation of the agents and the storage of their state is
often a non-negligible activity. Furthermore, the Director does
not execute any computation while the Workers are active,
therefore reducing the level of concurrency that might be
allowed by the model.

D. Worker on Demand

This pattern addresses one of the limitations of the Director
on Hold pattern, namely, the overhead of creating/destroying
Workers when needed. In the Worker on Demand pattern, as
shown in Figure 4, all workers are created at the beginning
of the execution and are kept in stand-by; when one or
more Workers are required, those in the pool are dynamically
assigned to complete some task.

The Worker on Demand pattern separates initialization of
Workers from the execution of tasks, with two main benefits:
complex entities are created only once (in case there is a large
number of entities this may save significant time during the life
of the model), and the state of the entities can be stored and
retrieved for additional examination. The drawback, however,
is that the pool of Workers takes up memory space even
when inactive, making this strategy not applicable in memory-
constrained environments.

Worker 2

loop

Worker 1Director

Worker 2 is closed

Worker 2 is instantiated

Worker 1 is closed

Worker 1 is instantiated

Output of the Workers
returned to the Director

Workers are run

Fig. 4: Sequence diagram of Worker on Demand.

E. Concurrent Modularity

As already discussed, it is convenient to run multiple model
instances in parallel when possible. The Concurrent Mod-
ularity pattern allows concurrent execution of semantically
different models, possibly of different types. For example,
a multilevel urban traffic model might include sub-models
for vehicle movements, pedestrian movements, air pollution,
and sound pollution. These sub-models might be executed
concurrently, provided that interactions are properly accounted
for (see Section VI).

The Concurrent Modularity pattern entails a thorough time
management, since different (sub-)models may use different
time granularity and/or different concepts of time; the latter
happens, for example, when one mixes continuous and time-
stepped models.

The issue of time management can be addressed in different
ways, such as:

• A time translation mechanism, where the local time of a
sub-model is translated into a global time understood by
all other components.

• Checkpointing, where sub-models proceed in lockstep
and are synchronized periodically. A sub-model that
reaches a checkpoint stops execution, and resumes when
all other sub-models have also reached the same check-
point.

• Rollback mechanisms, where inconsistencies in state up-
dates are detected and undone by rolling back the (virtual)
simulation time to a previous time where a consistent
state were computed [18].

IV. STRUCTURAL PATTERNS

Structural patterns describe how software elements can be
composed into larger structures while promoting flexibility and
code maintainability. The patterns described in this section are
taken from [15], where they have been initially proposed in
the context of software engineering.

for each (c: children)
 c->step(dt);

Agent Aggregator
(Composite)

- l ist<Component> children
+ step(dt: Time)
+ add(Component c)
+ remove(Component c)
+ getChildren()

Component
+ step(dt: Time)

Agent
(Leaf)

+ step(dt: Time)

Client
- l ist <Component> agents
+ run()

children

Fig. 5: UML class diagram of Composite pattern applied to a
multiscale ABM scenario.

A. Composite

The Composite pattern enables the hierarchical composition
of objects according to a tree-like structure, allowing atomic

and composite objects to be treated uniformly. This makes it
easy to add new types of objects to a system, as the interface
for all components remains the same. The pattern is composed
of three main elements (see Figure 5):

• Component, an interface that defines the common meth-
ods for both the Leaf and the Composite.

• Leaf, an end node of a tree structure.
• Composite, an internal node of a tree structure.
An application of this design pattern is in the context of

hierarchical ABMs. Here, composite objects are actors at the
macro level that act as container of agents at the micro level.
The composite object may therefore represent a portion of a
model that is represented at a coarser level of detail; when
more accuracy is required, the composite executes the low-
level agents that it contains, which in turn might be composite
objects and contain some finer-grain sub-models.

This pattern could be applied in [19], where the authors
studied the spread of black rats by means of commercial
transportation. In this work, the main building block of the
simulator is represented by the concept of World, defined
as a complete and self-sufficient sub-model with its own
places, agents, spatial resolution and temporal scale. Worlds
can possibly be nested, representing part of another World at
greater level of detail. The Composite pattern could be then
applied in order to provide a high-level management of all the
worlds in the system.

B. Bridge

The Bridge pattern allows developers to separate the ab-
straction (interface) from the implementation [15]. The Bridge
pattern is composed of three main components:

• Abstraction, which defines the high-level interface that
clients will use.

• Implementor, which serves as an interface for describing
the technical functionalities of the Abstraction.

• Concrete Implementor, which defines the concrete imple-
mentation of the Implementor.

Separating the implementation from the interface is one
of the cornerstones of Object-Oriented programming; among
other things, it allows different implementations of some
abstract object to be interchanged, even at run-time, without
the need to modify clients that are using the abstract objects.
The Bridge pattern can be applied in ABMs, enabling to
separate the definition of the agents from the code that defines
the behavior of certain types of simulated entity, as shown in
Figure 6. For example, in a simulation we could have different
types of human agents (the Abstraction), characterized by
different types of behavior in response to certain events.
Bridge can find an application also in the context of multiscale
modeling, for instance when individual and aggregate agents
coexist in the same simulated environment like in [20], where
the movement of pedestrians is simulated dealing with a
hierarchy of crowds, groups, and individuals. This pattern
allows the developers to make changes to the behavior of the
agents without affecting how the Client interacts with them.

Also, by abstracting away the details of the implementation,
the Abstraction provides a simpler interface for the Client,
improving the management of the agents at a high-level.

Micro_Behavior
(Concrete Implementor)
+ act()

Agent
(Abstraction)

- Behavior ab
+ Agent(Behavior ab)
+ operate()

Meso_Behavior
(Concrete Implementor)
+ act()

Macro_Behavior
(Concrete Implementor)
+ act()

Behavior
(Implementor)

+ act()

Client
+ l ist <Agent> agents

Fig. 6: Class diagram of the Bridge pattern applied to a
multiscale ABM scenario.

C. Adapter
The Adapter pattern allows two or more components with

incompatible interfaces to work together by creating an adapter
that converts one interface to another [15]. The Adapter pattern
is composed of four components:

• Client, the object that uses the Adapter to interact with
the Adaptee.

• Adaptee, the object that needs to be adapted to work with
the Client.

• Target, the object that the Client wants to use.
• Adapter, the object that acts as an intermediary between

the Client and the Adaptee. The Adapter translates the
interface of the Adaptee to the interface expected by the
Client (i.e., the Target interface).

Macro_Model
(Adaptee)

+ macro_simulate()

Adapter
- macro_model
+ Adapter (Macro_model m)
+ simulate()

Micro_Model
(Target)

+ simulate()

Client
- list <Adapter> macro_areas
- list <Micro_Model> micro_areas
+perform_simulation()

Fig. 7: UML class diagram of the Adapter pattern applied to
a multiscale modeling scenario.

Since multilevel M&S is based upon multiple cooperating
components (sub-models), the Adapter pattern is extremely
useful when the sub-models were not intended to work to-
gether. This is usually the case when the multilevel model

is built upon existing components. Another use case for the
Adapter pattern is shown in Figure 7, and involves a multiscale
traffic model. In these scenarios, the space is often split
into micro zones where the behavior of vehicles is modelled
individually, and macro zones where the traffic is represented
in terms of aggregate metrics such as density, average speed
and traffic flow. Suppose that a traffic model was initially
developed using one level only, e.g., using only micro zones.
Then, the Adapter pattern can be employed to make the macro
zones (the Adaptees) look like micro zones from the point of
view of the coordinator (the Client).

V. EXECUTION POLICY PATTERNS

Execution policies refers to rules and guidelines that govern
the mapping of the model to the underlying execution unit(s).
The choice of execution policy depends on several factors,
such as the size and complexity of the model, the amount
of computational resources available, and the desired level of
performance that should be achieved.

A. Sequential Execution

In a sequential execution pattern, the model is executed on
a single execution unit, e.g., a single processor or processor
core. This is the most common approach, either because
the vast majority of models are inherently sequential, or
because the existing implementations are. Sequential execution
is appropriate when the time required to analyze a model is
not the bottleneck.

B. Parallel Execution

Parallel execution involves splitting the model into smaller
parts that can be executed simultaneously on multiple exe-
cution units, possibly over multiple interconnected machines.
Parallel execution has traditionally been applied to speed
up the execution of monolithic models, e.g., by processing
events in parallel during discrete-event simulations [21] or
by employing parallel solvers for analyzing large sets of
differential equations.

In the context of multilevel M&S, parallelization may be
useful when some form of domain partitioning is used to
split the simulation space into separate partitions, each one
being modeled at a different level of granularity and/or using
different types of models. If the partitions are independent,
they can be evaluated in parallel, although in practice the level
of parallelism might be reduced because neighboring partitions
could need to exchange data periodically, or some form of
global consistency must be ensured.

VI. INFORMATION EXCHANGE PATTERNS

Information Exchange patterns define how data can be ex-
changed between sub-models. Different factors can affect the
way in which the information is transferred, such as the type
of information (i.e., discrete vs continuous), or the relationship
between the involved components (i.e., hierarchical vs peer-
to-peer).

A. Return Value

The Return Value pattern is the most trivial way to exchange
data in a Director-Worker scenario. The Director calls The
Worker that returns back to the Director some result. This
strategy is very simple but is difficult to implement if the
Director is allowed to execute concurrently with the Workers.
In this scenario, the execution of Workers is an asynchronous
operation that may return well before the Workers terminate.
This problem can be addressed using the futures pattern used
in concurrent programming [22], where the Worker returns
a object representing the “promise” to compute a result; the
Director will block if it tries to read the result when it has not
been computed yet.

B. Pipe through Temporary Files

Another way to exchange information is through temporary
files. This provides the following advantages:

• Flexibility: it is easy to add fields within the list of values
to be returned.

• Versatility: it can be used also for flat models, since the
consumers only need to know the location of the data
file(s), and possibly when new data are available.

• Data organization: developers may choose the most
appropriate data representation (e.g., JSON, XML, ...)
depending on the type of information that needs to
be stored and the requirements of the producers and
consumers.

However, also known limitations must be considered:
• File operations (creation, read, write) entails some over-

head, which can be relevant to a greater or lesser extent
depending on the number of operations.

• If the application aborts, the user must ensure that all tem-
porary files are deleted before the simulator is launched
again, to avoid pollution of a new execution with stale
information.

• Some additional mechanism must be put in place to
inform the consumers when new data is available.

C. Shared Memory

In the Shared Memory pattern, data is stored in some
memory region that is make accessible by all sub-models.
Although this is somewhat more efficient than using temporary
files, shared memory needs to be emulated on distributed-
memory architectures. Furthermore, if shared memory is used
for two-way communication, special care should be taken to
avoid read-write conflicts.

D. Rounding Strategies

Exchanging data between sub-models that are base on
continuous and discrete state representations is a common
problem in multilevel modeling. In such scenarios, rounding
strategies must be carefully defined, in order to ensure global
consistency properties such as conservation of some model-
specific entities.

As a practical example, let us consider a multilevel epidemic
model where a set of ODEs is used to predict the diffusion

of a contagious disease through a population. To better study
the contagion in critical zones such as schools, hospitals, or
crowded areas, the model might delegate some regions to
more detailed ABMs. In this scenario, it is essential that the
total population is conserved, i.e., assuming that the system
is closed, the sum of susceptible, infected, recovered and
removed individuals must remain the same as time progresses.
However, ODE-based models are continuous while ABMs are
discrete, so we need to ensure that the values of state variables
– in this case, the number of individuals in each of the four
classes above – are stationary.

Several rounding strategies have been proposed in the
literature: for example, the model could keep track of rounding
errors and add/remove individuals in the ABMs when needed.

VII. MULTISCALE PATTERNS

Multiscale patterns deal with the issues related to represent-
ing the same sub-model at different levels of detail. The use of
multiscale methodologies is motivated by the need to choose
an optimal trade-off between execution time and precision of
the results.

A. Spatial Aggregation-disaggregation

A recurrent scheme of multiscale model is to have a
microscopic level where the behavior of the involved entities
is described at a high level of details, and a macroscopic level
that deals with aggregate metrics. The two levels might employ
different types of models (e.g., ABM for the micro level, and
equation-based model for the macro level), or the same type
of model with different parameters (e.g., an equation-based
model for both levels using a finer time/space subdivision
to increase accuracy). The micro level is used when/where
“interesting” phenomena emerge; for example, in a large urban
traffic model, the micro level would be used to focus on traffic
jams or transient congestion zones, in order to study how these
pattern form.

Aggregation and disaggregation is a modeling pattern that
involves collapsing a large number of entities at the micro
level to build a single entity at the macro level (aggregation),
and the opposite act of creating multiple entities at the micro
level to represent a single entity of the macro level (disag-
gregation). Therefore, the Aggregation/Disaggregation design
pattern establishes the rules by which it is possible to switch
between two levels of detail. This pattern is often used in the
context of ABM, although in principle it can be applied to
other types of models as well.

Multiple realizations of this design patterns have been
described in the scientific literature [23]:

• Zoom pattern, where the micro entities are destroyed
when transitioning into the macro zones, and their in-
formation is lost.

• Puppeteer pattern, where the micro entities are not de-
stroyed but frozen and temporarily controlled by the
macro agents. Micro entities are still able to update their
internal state according to their own dynamics, but cannot

autonomously perform actions, which are delegated to the
macro model.

• View pattern, where the state of micro entities is computed
to reflect the state of the macro entities they emanate
from.

• Cohabitation pattern, where the interactions between mi-
cro and macro entities are bidirectional, so they influence
each other.

B. Adaptive Resolution

In many multiscale frameworks, the level of detail of a sub-
model is defined by its spatial or time resolution. In these
scenarios it is necessary to specify the conditions that trigger a
change of resolution. The Adaptive Resolution pattern involves
the definition of these conditions, that is necessarily model-
dependent. As an example, in [24] the authors propose an
adaptive multiscale infection propagation model that combines
the accuracy of ABMs with the computational efficiency of
equations-based simulations. The model starts with the agent-
based paradigm in order to thoroughly represent the initial
dynamics of the diffusion of the pathogen, and then it switches
to an equation-based methodology after a certain threshold of
infected individuals is reached, so as to support a population-
averaged approach.

VIII. CONCLUSIONS

In this paper we described a set of design patterns that
can be used to address some of the issues encountered in
the development of multilevel models. The patterns are di-
vided into five categories. Orchestration Patterns are strategies
to organize the various building blocks; Structural Patterns
are design solutions for developing software systems with
a hierarchical structure; Execution Policy patterns provide
a rationale for executing the building block of a complex
models; Multiscale patterns are solutions for representing a
system with multiple scales of detail; finally, Information
Exchange patterns describe how data can be exchanged among
the sub-models.

The novelty of this proposal is to bring the methodological
contribution provided by design patterns into the context of
multilevel modeling and simulation. In fact, ad-hoc answers
for recurrent modeling issues were missing from the state of
art, as most of the effort in multilevel M&S has traditionally
been devoted – with some exceptions – to application devel-
opment rather than methodological studies.

The list of patterns described here in not exhaustive; we
are currently working towards extending our collection by
leveraging a recent review of the state of the art [1].

ACKNOWLEDGEMENTS

Moreno Marzolla was partially supported by the Istituto
Nazionale di Alta Matematica “Francesco Severi” – Gruppo
Nazionale per il Calcolo Scientifico (INdAM-GNCS) and by
the ICSC National Research Centre for High Performance
Computing, Big Data and Quantum Computing within the
NextGenerationEU program.

REFERENCES

[1] L. Serena, M. Marzolla, G. D’Angelo, and S. Ferretti, “A review of
multilevel modeling and simulation for human mobility and behavior,”
Simulation Modelling Practice and Theory, p. 102780, 2023.

[2] A. M. Law, Simulation modeling and analysis. Mcgraw-hill, 2015.
[3] H. Van Dyke Parunak, R. Savit, and R. L. Riolo, “Agent-based modeling

vs. equation-based modeling: A case study and users’ guide,” in Multi-
Agent Systems and Agent-Based Simulation: First International Work-
shop, MABS’98, Paris, France, July 4-6, 1998. Proceedings 1. Springer,
1998, pp. 10–25.

[4] S. De Marchi and S. E. Page, “Agent-based models,” Annual Review of
political science, vol. 17, pp. 1–20, 2014.

[5] S. Ghosh, “On the concept of dynamic multi-level simulation,” in Proc
19th annual symposium on Simulation, 1986, pp. 201–205.

[6] L. Serena, M. Marzolla, G. D’Angelo, and S. Ferretti, “Multilevel mod-
eling as a methodology for the simulation of human mobility,” in 2022
IEEE/ACM 26th International Symposium on Distributed Simulation and
Real Time Applications (DS-RT). IEEE, 2022, pp. 49–56.

[7] P. D. Dans, J. Walther, H. Gómez, and M. Orozco, “Multiscale simula-
tion of dna,” Current opinion in structural biology, vol. 37, pp. 29–45,
2016.

[8] M. Martins, S. Ferreira Jr, and M. Vilela, “Multiscale models for
biological systems,” Current opinion in colloid & Interface Science,
vol. 15, no. 1-2, pp. 18–23, 2010.

[9] J. Nguyen, S. T. Powers, N. Urquhart, T. Farrenkopf, and M. Guckert,
“An overview of agent-based traffic simulators,” Transportation research
interdisciplinary perspectives, vol. 12, p. 100486, 2021.

[10] I. T. Haman, V. C. Kamla, S. Galland, and J. C. Kamgang, “Towards an
multilevel agent-based model for traffic simulation,” Procedia Computer
Science, vol. 109, pp. 887–892, 2017.

[11] E. Cristiani, B. Piccoli, and A. Tosin, Multiscale modeling of pedestrian
dynamics. Springer, 2014, vol. 12.

[12] N. Mideo, S. Alizon, and T. Day, “Linking within-and between-host
dynamics in the evolutionary epidemiology of infectious diseases,”
Trends in ecology & evolution, vol. 23, no. 9, pp. 511–517, 2008.

[13] A. E. S. Almocera, V. K. Nguyen, and E. A. Hernandez-Vargas,
“Multiscale model within-host and between-host for viral infectious
diseases,” Journal of Mathematical Biology, vol. 77, no. 4, pp. 1035–
1057, 2018.

[14] R. Qesmi, J. M. Heffernan, and J. Wu, “An immuno-epidemiological
model with threshold delay: a study of the effects of multiple exposures
to a pathogen,” Journal of mathematical biology, vol. 70, no. 1, pp.
343–366, 2015.

[15] E. Gamma, R. Johnson, R. Helm, R. E. Johnson, and J. Vlissides,
Design patterns: elements of reusable object-oriented software. Pearson
Deutschland GmbH, 1995.

[16] M. Xiong, S. Tang, and D. Zhao, “A hybrid model for simulating crowd
evacuation,” New Generation Computing, vol. 31, pp. 211–235, 2013.

[17] G. D’Angelo, S. Ferretti, and V. Ghini, “Distributed hybrid simulation
of the internet of things and smart territories,” Concurrency and Com-
putation: Practice and Experience, vol. 30, no. 9, p. e4370, 2018.

[18] D. R. Jefferson, “Virtual time,” ACM Trans. Program. Lang.
Syst., vol. 7, no. 3, p. 404–425, jul 1985. [Online]. Available:
https://doi.org/10.1145/3916.3988

[19] P. A. Mboup, K. Konaté, and J. Le Fur, “A multi-world agent-based
model working at several spatial and temporal scales for simulating
complex geographic systems,” Procedia Computer Science, vol. 108,
pp. 968–977, 2017.

[20] S. R. Musse and D. Thalmann, “Hierarchical model for real time sim-
ulation of virtual human crowds,” IEEE Transactions on Visualization
and Computer Graphics, vol. 7, no. 2, pp. 152–164, 2001.

[21] R. M. Fujimoto, Parallel and Distributed Simulation Systems. Wiley,
2000.

[22] B. Liskov and L. Shrira, “Promises: Linguistic support for efficient
asynchronous procedure calls in distributed systems,” SIGPLAN Not.,
vol. 23, no. 7, p. 260–267, jun 1988.

[23] P. Mathieu, G. Morvan, and S. Picault, “Multi-level agent-based simula-
tions: Four design patterns,” Simulation Modelling Practice and Theory,
vol. 83, pp. 51–64, 2018.

[24] G. V. Bobashev, D. M. Goedecke, F. Yu, and J. M. Epstein, “A hybrid
epidemic model: combining the advantages of agent-based and equation-
based approaches,” in 2007 winter simulation conference. IEEE, 2007,
pp. 1532–1537.

https://doi.org/10.1145/3916.3988

	Introduction
	Background
	Orchestration patterns
	Models' Controller
	Director-Worker
	Director on Hold
	Worker on Demand
	Concurrent Modularity

	Structural patterns
	Composite
	Bridge
	Adapter

	Execution policy patterns
	Sequential Execution
	Parallel Execution

	Information Exchange Patterns
	Return Value
	Pipe through Temporary Files
	Shared Memory
	Rounding Strategies

	Multiscale patterns
	Spatial Aggregation-disaggregation
	Adaptive Resolution

	Conclusions
	References

