
Noname manuscript No.
(will be inserted by the editor)

Improved Algorithms for Exact and Approximate Boolean
Matrix Decomposition

Yuan Sun · Shiwei Ye · Yi Sun · Tsunehiko Kameda

the date of receipt and acceptance should be inserted later

Abstract An arbitrary m×n Boolean matrix M can
be decomposed exactly as M = U ◦V , where U (resp.
V) is an m×k (resp. k×n) Boolean matrix and ◦ de-
notes the Boolean matrix multiplication operator. We
first prove an exact formula for the Boolean matrix J

such that M =M ◦JT holds, where J is maximal in the
sense that if any 0 element in J is changed to a 1 then
this equality no longer holds. Since minimizing k is NP-
hard, we propose two heuristic algorithms for finding
suboptimal but good decomposition. We measure the
performance (in minimizing k) of our algorithms on sev-
eral real datasets in comparison with other representa-
tive heuristic algorithms for Boolean matrix decompo-
sition (BMD). The results on some popular benchmark
datasets demonstrate that one of our proposed algo-
rithms performs as well or better on most of them. Our
algorithms have a number of other advantages: They
are based on exact mathematical formula, which can

This work was supported by the Ministry of Education of
Japan under Scientific Research grants 25280121 and 26560134
awarded to Yuan Sun.

Yuan Sun
Information and Society Research Division, National Institute
of Informatics, Tokyo, Japan
E-mail: yuan@nii.ac.jp

Shiwei Ye
School of Electrical & Communic. Eng., University of China
Academy of Science, Beijing, China
E-mail: shiwye@ucas.ac.cn

Yi Sun
School of Electrical & Communic. Eng., University of China
Academy of Science, Beijing, China
E-mail: sunyi@ucas.ac.cn

Tsunehiko Kameda
School of Computing Science, Simon Fraser University, Vancou-
ver, Canada
E-mail: tiko@sfu.ca

be interpreted intuitively. They can be used for approx-
imation as well with competitive “coverage.” Last but
not least, they also run very fast. Due to interpretability
issues in data mining, we impose the condition, called
the “column use condition,” that the columns of the
factor matrix U must form a subset of the columns of
M .

In educational databases, the “ideal item response
matrix” R, the “knowledge state matrix” A and the
“Q-matrix” Q play important roles. As they are related
exactly by R = A◦QT , given R, we can find A and Q

with a small number (k) of “knowledge states,” using
our exact BMD heuristics.

1 Introduction

Matrix decomposition, also called matrix factorization,
has a long history and is an indispensable tool in Ma-
trix algebra [12]. Many applications of matrix decom-
position to data mining are described in a recent book
on massive data mining by Rajaraman et al. [36]. The
well-known singular value decomposition (SVD), for ex-
ample, is now a well-established technique, and has
been applied in diverse areas, ranging from statistics,
image processing, signal processing, and data analyt-
ics, to name a few. Although SVD provides a powerful
tool in many applications, it suffers from the lack of
interpretability in some applications [27]. To address
the interpretability issue, researchers investigated non-
negative factorization (NMF) [5,21,22,43]. In applica-
tions such as digital image analysis, DNA analysis, and
chemical spectral analysis, for example, it is required
that the factor matrices have only non-negative ele-
ments.

ar
X

iv
:1

51
2.

08
04

1v
1

 [
cs

.D
M

]
 2

5
D

ec
 2

01
5

2 Yuan Sun, et al.

To deal with categorical data in data mining, there
have recently been intensive research activities in Boolean
matrix decomposition (BMD). A good overview can be
found in the Ph.D. thesis of Miettinen [28], who laid a
ground work on BMD. In connection with data mining,
BMD has attracted a great deal of research interest in
recent years, as evidenced by a large number of recent
publications. The seminal work by Miettinen et al. [28,
30] was a catalyst to ignite a wave of interest in BMD
and its applications to data mining, for example, [2–
4,17,30,29,45], although there had been some related
work prior to that, e.g., [31,37], in combinatorics re-
search. BMD also has applications in such areas as ed-
ucational testing [41] and access control [38], as well as
in more traditional data analysis.

By M ∈ {0,1}m×n, we mean that M is an m×n
Boolean matrix. BMD aims to find two matrices U ∈
{0,1}m×k and V ∈ {0,1}k×n such that the difference
||M −U ◦V ||L under some norm L is minimized with
a given k or as small a k as possible. The minimum
possible k is called the Boolean rank of M . It is known
that the Boolean rank of a binary matrix may be larger
or smaller than its real rank [13]. Moreover, the rank of
any real matrix can be computed efficiently by Gaussian
elimination, while finding the Boolean rank of a binary
matrix is NP-hard [34].

In this paper, we initially require that ||M −U ◦
V ||L = 0 under any norm L, namely we are interested
in exact BMD.1 Therefore, unless otherwise specified,
||M || (resp. ||v||) shall denote the number of non-0 el-
ements in M (resp. vector v), i.e., the l0 norm. It is
clear that this problem is equivalent to the covering
of a bipartite graph with bi-cliques, as pointed out by
Lubiw [25]. Unfortunately, the minimum bi-clique cov-
ering of a bipartite graph, hence BMD, is an NP-hard
problem [35] even for the chordal bipartite graphs [32].
Therefore it is impractical to insist that we discover U
and V with the minimum k, especially when the size
of M is large. For more information on bicliques, the
reader is referred to [1,6,14]. It is known that a mini-
mum bi-clique cover can be found in polynomial time
for some subclasses of bipartite graphs [10,25,26,32].

Geerts et al. [11] formulate the problem as follows.
A tile consists of a set of 1’s in a Boolean matrix that
appear at every intersection of a set of rows and a set
of columns, and the number of those 1’s is called the
area of the tile. A tile is also called a combinatorial
rectangle in a communications context [18]. A set of tiles
is called a tiling. Geerts et al. [11] investigate several
tiling problems cast in the context of databases. We

1 Later in this paper we relax the requirement of exact de-
composition, and also discuss approximation to BMD.

paraphrase some of them as problems of covering 1’s in
a given matrix M .

1. Minimum tiling. Find a tiling containing the small-
est number of tiles that together cover all the 1’s in
M .

2. Maximum k-tiling. Find a tiling consisting of at most
k tiles covering the largest number of 1’s in M .

3. Large tile mining (LTM). Given a minimum thresh-
old σ, find all tiles whose area is at least σ.

Our main goal is to solve the minimum tiling prob-
lem above efficiently, because it is directly related to
BMD. Geerts et al.’s main interest is in designing an al-
gorithm for maximum k-tiling. It can be used to solve
minimum tiling problem. In contrast, we directly attack
minimum tiling in a limited search space, as explained
below.

We mentioned non-negative factorization (NMF) ear-
lier in connection with the interpretability issue. To
address this issue from a different angle, Drineas et
al. [7,8] introduced CX- and CUR-decompositions. In
the CX-decomposition a given matrix M is decomposed
into two matrices C and X such that the “difference”
between M and CX is minimized, with the condition
that the columns of C must be a subset of the columns
of M , namely, the column use condition is imposed.
In the CUR-decomposition, on the other hand, a given
matrix M is decomposed into three matrices C,U and
R, with the condition that the columns of C (resp. rows
of R) must be a subset of the columns (resp. rows) of
M . Miettinen applies CX- and CUR-decompositions to
BMD (where all the factor matrices, as well as M , are
Boolean) and proposes heuristic algorithms [27].

To address the interpretability issue, we also adopt
the column use condition that the set of columns of the
factor matrix U form a subset of the columns of M
in our decomposition M = U ◦ V . Arguments in sup-
port of imposing this condition in some data mining
applications can also be found in [15]. Note that in CX-
decomposition, a parameter k is given and it is required
to find an optimal C with k columns that minimizes the
“difference” between M and CX. Therefore, the algo-
rithms in [27] cannot be used directly for our purpose,
which is to find C and X with the minimum k such
that CX exactly equals M . In any case, imposing the
column use condition has a beneficial effect of reducing
the search space for an optimal BMD.

1.1 Main contributions of this paper

We first derive a closed-form formula for J satisfying
M = M ◦JT , where J is “maximal” in the sense that
if any 0 in J is changed to a 1, then this equality

Boolean Matrix Decomposition 3

is violated. We then propose two heuristic algorithms
for decomposing M ∈ {0,1}m×n into U ◦V such that
U ∈ {0,1}m×k satisfies the column use condition and
its column dimension is minimized. Matrix J greatly
facilitates finding a set of candidate tiles.

Two important performance criteria are (i) how close
is the common dimension k of the generated U and
V to the (Schein) rank of M , which is the minimum
possible, and (ii) how fast U and V can be computed.
We demonstrate that our algorithms do rather well in
these aspects in comparison with other known algo-
rithms without the column use condition [3,4,11,45],
despite the fact that some of them are based on fairly
“sophisticated” concepts. Obviously, without the col-
umn use condition, one should be able to achieve a
smaller (not larger to be exact) k. When the objective
is exact BMD, in spite of this restriction, our algorithms
do as well as or better than the others on four out of
the five popular datasets we have tested,2 which we find
somewhat surprising.

Our algorithms can also be used for “from-below”
approximation3 [3,4] as well with competitive coverage
(i.e., the fraction of the 1’s covered by the selected tiles).
Since matrix operations are available in popular mathe-
matical software packages such as Matlab, Maple, and
the R-language, we made special efforts to state our al-
gorithms in matrix operations. We believe that it has
helped to enhance readability.

1.2 Related work

It is clear that BMD is easily reducible to the set cover
(SC) problem. Feige [9] shows that SC can be solved
approximately with the guaranteed approximation ra-
tio of O(logn) in the worst case. Umetani et al. [42] give
a survey on SC algorithms, but new heuristics are still
being proposed, e.g., [19]. Belohlavek et al. [4] comment
that using a SC heuristic (without any modification) to
solve BMD is not very effective. In another context, Mi-
ettinen also states that in practice algorithms without
provable approximation factors performed better [27].

We now review the known heuristic algorithms for
BMD, which are closely related to our work reported
in this paper. Geerts et al. [11] concentrate on ‘maxi-
mum k-tiling’ and ‘large tile mining’ mentioned before.
Their algorithm, which we call Tiling, uses the well
known greedy SC heuristic to iteratively find tiles that
cover the most uncovered 1’s in the given matrix M .
Unfortunately, it cannot be used for exact BMD.

2 See Table I in Section 5. The rows labeled 100% shows the
data for exact decomposition.

3 For any 1 element in U ◦V , the corresponding element in
M must be a 1.

Miettinen et al. designed an algorithm, named Asso,
to solve the discrete basis problem [30]. As such it does
not find tiling, and does not exclude tiles which may
cover 0’s in the matrix. Therefore, in general, it is not
suitable for finding exact BMD, which is the main topic
of this paper.

Work by Belohlavek et al. [3,4] addresses exact as
well as approximate BMD. They make use of lattice the-
oretic concepts and ideas from formal concept analysis,
and propose two heuristic algorithms, named GreConD
and GreEss, which find good “from-below” approxima-
tion as well as exact BMD. They do not impose the
column use condition. In [3], they compare the perfor-
mance of their algorithms with other known algorithms.

Another group of researchers, Xiang et al., worked
on the “summarization” of a database [45]. Essentially,
they also try to find a tiling that covers all 1’s in a
given transactional database, which can be represented
by a Boolean matrix. However, the objective function
that they want to minimize is not the number of tiles in
the tiling, but the total size of the “description length,”
where the “description length” of a tile is defined as
the sum of the number of 1’s in a row of the tile and
the number of 1’s in a column of the tile. They propose
a heuristic algorithm, named Hyper, to minimize this
objective function, and claim that it also tends to min-
imize the number of tiles, which is the dimension k in
our model.

1.3 Paper organization

The rest of the paper is organized as follows. Section 2
gives some basic definitions which will be used through-
out the paper, and reviews a minimal set of Boolean al-
gebra facts needed to understand this paper. Section 3
is devoted to the proofs of our major mathematical
results, which form the theoretical basis for the algo-
rithms proposed in Section 4. We propose two new al-
gorithms for decomposing a given M into the unknown
U and V , and illustrate them with a simple example.
Section 5 presents some experimental results, which are
very encouraging. In Section 6, as an example of pos-
sible practical applications, we show how to apply our
algorithms to educational data mining. Section 7, con-
cludes the paper with some discussions.

2 Preliminaries

In this section the basic notations and definitions used
throughout this paper are given. We also cite some ba-
sic formulae of Boolean matrix theory. Some standard
terms in matrix theory are used without definition since

4 Yuan Sun, et al.

they are readily available, for example, in books by
Golub and Van Loan [12] and Kim [16].

2.1 Notations and Definitions

Let M = [µij] ∈ {0,1}m×n. Although there is no intrin-
sic size or magnitude attribute in the value 0 (False)
and 1 (True), we assume that the “larger than” (>) re-
lation 1> 0 holds and 1−0 = 1,1−1 = 0−0 = 0. In an
expanded form, it is represented as

M =

µ1
µ2
.

.

.

µm

 =

µ11 µ12 ... µ1n

µ21 µ22 ... µ2n

. . . .

. . . .

. . . .

µm1 µm2 ... µmn

 (1)

where µi = [µi1,µi2, ...,µin] is called the ith row vector,
and [µ1j ,µ2j , ...,µmj]T is called the jth column vector
of M . We also often use M [i, :] (resp. M [:, j]) to de-
note the i-th row (resp. j-th column) vector of M . The
matrix whose (i, j) elements is µij , where 0 = 1 and
1 = 0, is called the complement of M and is denoted
by M . The matrix whose (i, j) elements is µji is called
the transpose of M , and is denoted by MT . The n×n
identity matrix is denoted by In×n, and [0]m×n shall
denote an m×n matrix whose elements are all 0’s. Let
R (resp. N) denote the set of all real numbers (resp.
natural numbers, including 0).

Definition 1 Let p = [p1,p2, . . . ,pn] ∈ {0,1}1×n and
q = [q1, q2, . . . , qn] ∈ {0,1}1×n. We say the p dominates
q if pi ≥ qi for all i= 1, . . . ,n, and write p≥ q. We write
p > q if p ≥ q and pi > qi for some i (1 ≤ i ≤ n), and
say that p strictly dominates q. Dominance relation is
similarly defined for a pair of column vectors.

Definition 2 We define a partial order “≤” on a pair
of binary matrices P = [pij]∈ {0,1}m×n and Q= [qij]∈
{0,1}m×n. We write P ≤ Q, if pij ≤ qij , for all i =
1,2, . . . ,m and j = 1,2, . . . ,n.

Definition 3 Let P = [pij]∈ {0,1}m×n and Q= [qij]∈
{0,1}m×n such that P ≤ Q. We say the P covers the
set of 1 entries in Q at {(i, j) | pij = 1}.

Definition 4 If U = [uij] ∈ {0,1}m×n and V = [vij] ∈
{0,1}m×n, the element-wise Boolean sum of U and V

is defined by

U ∨V = [uij ∨vij] ∈ {0,1}m×n,

and element-wise Boolean product of U and V is defined
by

U ∧V = [uij ∧vij] ∈ {0,1}m×n,

where 0∨0 = 0, 1∨0 = 0∨1 = 1∨1 = 1, 0∧0 = 1∧0 =
0∧1 = 0, and 1∧1 = 1.

For U = [uij] ∈ {0,1}m×k and V = [vij] ∈ {0,1}k×n,
their ordinary arithmetic product is defined by

P = UV = [pij] ∈ Rm×n, pij =
k∑

t=1
uitvtj . (2)

Their Boolean product is defined by

B =U ◦V = [bij]∈ {0,1}m×n, bij =∨k
t=1(uit∧vtj). (3)

In a Boolean product, 1’s and 0’s are considered as
Boolean values, while in an arithmetic product, they
are treated as integers. Let M be given by (1) and c be
a constant. The matrix whose (i, j) element is cµij is
called a scaler multiple of M and is denoted by c ·M .

2.2 Brief review of matrix algebra relevant to this
paper

The materials in this subsection, except Lemma 1, can
be found in [12,16].

Proposition 1 Associativity.
(a) (UV)W = U(VW)
(b) (U ◦V)◦W = U ◦ (V ◦W).

We can thus write UVW (resp. U ◦V ◦W) for (a) (resp.
(b)) without ambiguity.

Proposition 2 Transpose of product.
(a) For U ∈ {0,1}m×k and V ∈ {0,1}k×n, (U ◦V)T =

V T ◦UT holds.
(b) For U ∈Rm×k and V ∈Rk×n, (UV)T =V TUT holds.

ut

Proposition 3 Product expansion.

M = U ◦V = U [:,1]◦V [1, :]∨U [:,2]◦V [2, :]∨ . . .
∨U [:,k]◦V [k, :]

= ∨k
t=1{U [:, t]◦V [t, :]} (4)

The following proposition follows directly from (3).

Proposition 4 Let p= [p1 p2 . . .pm] and q= [q1 q2 . . . qn]
be two Boolean row vectors. We have

pT ◦q =
[
q1 ·pT q2 ·pT . . . qn ·pT

]
(5)

=

p1 ·q
p2 ·q
.

.

.

pm ·q

 ∈ {0,1}
m×n. (6)

Boolean Matrix Decomposition 5

For example, if p= [0 1 0 1 0 1] and q= [0 1 0 1 1],
then

pT ◦q =

.

. 1 . 1 1

.

. 1 . 1 1

.

. 1 . 1 1

 (7)

Thus pT ◦q represents a tile. We identify pT ◦q with
the tile it represents, and sometimes call this expression
itself a tile. The formula in the following lemma will be
used to simplify our algorithms later.

Lemma 1 Let p = [p1 p2 . . .pm] and q = [q1 q2 . . . qn]
be two Boolean row vectors, and let C ∈ {0,1}n×m.
Then the following equality holds.

||C ∧ (pT ◦q)||= qCpT . (8)

Proof The quantity ||C∧(pT ◦q)|| is clearly the number
of 1 elements of C such that the corresponding element
of pT ◦q is also a 1. By Proposition 4, the (i, j) element
of pT ◦q is a 1 if pi = qj = 1, and a 0 otherwise. Note
that CpT ∈ Nn×1 on the right hand side of (8) is a
column vector such that its ith element is the number
of 1’s in the ith row of C, which are counted if it is in
column j satisfying C[i, j] = pj = 1. Now q(CpT) “picks
up” the ith element of CpT provided qi = 1 and adds
the picked up numbers. ut

3 BMD Theorems

In the rest of this paper, we refer to matrix U ∈{0,1}m×k

defined by

U =

u1
u2
.

.

.

um

 =

u11 u12 ... u1k

u21 u22 ... u2k

. . . .

. . . .

. . . .

um1 um2 ... umk

 (9)

and matrix V ∈ {0,1}k×n defined by

V =

v1
v2
.

.

.

vk

 =

v11 v12 ... v1n

v21 v22 ... v2n

. . . .

. . . .

. . . .

vk1 vk2 ... vkn

 (10)

The following lemma follows easily from the fact
that 1∨1 = 1.

Lemma 2 Define matrices G= [gij] =UV ∈Nm×n and
H = [hij] =U ◦V T ∈ {0,1}m×n. Then for i= 1,2, . . . ,m
and j = 1,2, . . . ,n we have

gij = 0 ⇔ hij = 0
gij ≥ 1⇔ hij = 1. (11)

The following proposition follows easily from defini-
tion.

Proposition 5 Let p,q ∈{0,1}1×a be two Boolean row
vectors. Then “p dominates q” can be expressed as

p≥ q⇔ p◦qT = q ◦pT = 0⇔ p◦qT = q ◦pT = 1. (12)

Lemma 4 below plays an important role in what
follows. In order to prove it, we first need to show a
technical lemma.

Lemma 3 Let P ∈ {0,1}a×p be an arbitrary Boolean
matrix.

(a) For any two row vectors u,v ∈ {0,1}1×a we have

[v = (u◦P)◦PT]⇒ v ≥ u (13)

(b) For any two matrices U,V ∈ {0,1}b×a we have

[V = U ◦P ◦PT]⇒ V ≥ U. (14)

Proof (a) Suppose v = (u◦P)◦PT holds. Then vj = 0
(i.e., vj = 1) if and only if

(u◦P)◦P [j, :]T = 0.

By Proposition 5, this implies that u◦P dominates the
jth column of PT , i.e., the jth row of P . Since this
clearly happens if uj = 1, we have uj = 1⇒ vj = 1. It
follows that v ≥ u.

(b) Let ui (resp. vi) be the ith row vector of matrix
U (resp. V), as in (9) (res. (10)). Then (13) holds for
each i (1≤ i≤ b), namely,

[vi = (ui ◦P)◦PT]⇒ vi ≥ ui,

and (14) follows. ut

Without loss of generality, we assume from now on
that the given matrix M has no all-0 row or all-0 col-
umn. We now prove the following theorem, which pro-
vides a basis for the algorithms given in the next sec-
tion.

Lemma 4 Let M ∈{0,1}m×n, U ∈{0,1}m×k, and V ∈
{0,1}n×k satisfy M = U ◦V T , and define

J ≡ M
T ◦U (15)

Then we have

(a) V ≤ J , and
(b) M = U ◦JT

6 Yuan Sun, et al.

Proof (a) From (15), we get

J = M
T ◦U (16)

PluggingM =U ◦V T into (16) and using Proposition 2(a),
we obtain

J = U ◦V T
T
◦U = V ◦UT ◦U. (17)

Eq. (14) is the same as (17) if we set P = UT , V = J ,
and U = V , which yields J ≥ V .

(b) Define N = U ◦JT . We want to show that N =
M . From (15), we get

NT = J ◦UT =M
T ◦U ◦UT , (18)

which yields NT ≥MT or N ≤M by (14). On the other
hand, from J ≥ V (proved in (a) above) we get M =
U ◦V T ≤ U ◦JT =N . It follows that M =N . ut

From now on, we consider the special case in Lemma 4,
where U =M , hence

J =M
T ◦M ∈ {0,1}n×n. (19)

Lemma 4 has an important implication, which we state
as a theorem.

Theorem 1 Given an arbitrary matrix M ∈{0,1}m×n,
let J be defined by (19). Then V ≤ J holds for any ma-
trix V ∈ {0,1}n×n satisfying M =M ◦V T . ut

Matrix J has a number of other important proper-
ties.

Lemma 5 For any M ∈ {0,1}m×n, matrix J defined
by (19) has the following properties.

(a) J [i, j] = 1⇔M [:, i] ≥M [:, j], i.e., column i domi-
nates column j of M .

(b) J [i, j] = J [j, i] = 1⇔M [:, i] = M [:, j] ⇔ J [:, i] = J [:
, j] and J [i, :] = J [j, :].

(c) J [i, j] = 1> J [j, i] = 0⇔M [:, i]>M [:, j] ⇒ J [:, j]>
J [:, i] and J [j, :]< J [i, :].

Proof (a) If we let p=MT [:, i] and q=MT [:, j] in (12),
then we get MT [:, i]≥MT [:, j] if and only if

M
T [:, i]◦M [:, j] = 1,

which holds if and only if J [i, j] = 1 by (19).
(b) By interchanging i and j in part (a), we get

J [j, i] = 1⇔ M [:, i] ≤ M [:, j]. It follows that J [i, j] =
J [j, i] = 1 ⇔ M [:, i] = M [:, j]. Thus any column that
dominates M [:, j] also dominates M [:, i], and vice versa,
namely J [:, i] = J [:, j]. Moreover, any column that is
dominated by M [:, j] is also dominated by M [:, i], and
vice versa, namely J [i, :] = J [j, :].

(c) J [i, j] = 1>J [j, i] = 0 implies that M [:, i] strictly
dominates M [:, j], i.e., M [:, i]>M [:, j]. In this case, any
column of M that dominates M [:, i] also dominates M [:
, j], which implies J [:, j]> J [:, i], and any column of M
that is dominated byM [:, j] is also dominated byM [:, i],
hence J [j, :]< J [i, :]. ut

The properties proved in Lemma 5 can be verified
in the following example.

Example 1

M =

1 1 1 1 1
0 0 1 1 0
1 1 0 0 1
1 0 0 1 1

 ; J =M
T ◦M =

1 1 0 0 1
0 1 0 0 0
0 0 1 0 0
0 0 1 1 0
1 1 0 0 1

We now prove another useful property of matrix J .

Lemma 6 Given an arbitrary matrix M ∈ {0,1}m×n,
let J be defined by (19). If any 0-element in J is changed
to a 1, then M =M ◦JT no longer holds.

Proof Assume that J does not have the maximum num-
ber of 1’s and assume that J [i, j] = 0, 1≤ i, j ≤n, can be
changed from 0 to 1 without violating Lemma 4(b) with
U =M , i.e., M =M ◦JT . Letwj = J [j, ·], so that (wj)T

is the jth column of JT . If the ith element of wj is 0,
i.e., J [j, i] = 0, then M [·, j] 6≥M [·, i] by Lemma 5(a).
Let w′

j be obtained from wj by changing its ith ele-
ment from 0 to 1. Since M ◦ (w′j)T ≥M [·, i], we have
M [·, j] 6≥M ◦ (w′j)T , a contradiction. We conclude that
if any element in J is changed from a 0 to a 1, then
M =M ◦JT is violated. ut

Theorem 2 Let M = U ◦V be an optimal decomposi-
tion of M , satisfying the column use condition,4 where
U ∈ {0,1}m×k, V ∈ {0,1}k×n and k is the minimum
possible. Then for each i = 1,2, ,k, we have U [:, i]◦
V [i, :] ∈ {M [:, t]◦J [t, :] | t= 1, . . . ,n}.

Proof Let

U ◦V = ∨k
i=1{U [:, i]◦V [i, :]},

and consider a particular term U [:, i]◦V [i, :] in it. Since
U consists of columns of M , there is an h such that
U [:, i] = M [:,h]. By Theorem 1, J [h, :] is the maximal
row vector such that U [:, i]◦J [h, :]≤M , hence V [i, :]≤
J [h, :]. We thus have U [:, i]◦V [i, :]≤M [:,h]◦J [h, :]. ut

4 By definition, this means that the columns of U are some
of the columns of M .

Boolean Matrix Decomposition 7

Intuitively, Theorem 2 implies that the search space
for an optimal decomposition of M under the column
use condition can be limited to {M [:, t] ◦ J [t, :] | t =
1, . . . ,n}. From this theorem, it is apparent that BMD is
also closely related to the set covering problem. In the
next section, we design heuristic algorithms for exact
BMD, based on Theorem 2.

4 Heuristic BMD Algorithms

4.1 Algorithm description

In this section, we propose new algorithms for finding
factor matrices U ∈ {0,1}m×k and V ∈ {0,1}k×n from
matrixM ∈{0,1}m×n. By Theorem 2, we want to find a
subset of {M [:, t]◦J [t, :] | t= 1, . . . ,n} that provides the
optimal tiling. Since an exhaustive search is obviously
impractical, we want to devise a heuristic algorithm
that yields a good suboptimal tiling.

Suppose there exists an l satisfying

U ◦V = ∨k
i=1,j 6=l{U [:, i]◦V [i, :]},

in other words,

∨k
i=1,j 6=l{U [:, i]◦V [i, :]} ≥ U [:, l]◦V [l, :]. (20)

Then we can safely eliminate the lth column U [:, l]
and the lth row V [l, :] from U and V , respectively, which
helps reduce the dimension k. The condition (20) is
equivalent to ||T ||= ||T −Tl||, where T = UJT (arith-
metic matrix product defined by (2)) with J given in
(19), and Tl = U [:, l] ◦V [:, l]. There may be several in-
dices l that satisfy (20). Therefore, we need to decide
in which order the eliminations should be carried out.
We thus define the selection index σi as follows:

σi = ||U [:, i]||× ||V [:, i]||,

where, as the reader recalls, ||V || represents the the
number of 1’s (l0 norm) in vector V . Clearly, σi is the
number of 1 entries in M that are covered by Gi. Given
the initial matrices U and V , satisfying M = U ◦V T ,
we generate the new matrix J by (19). There are at
least two approaches that appear reasonable, regarding
which attribute we should process first.

(a) Remove-Smallest: Remove attribute j such that σj

is the smallest, provided the removal does not affect
M .

(b) Pick-Largest: Retain attribute j such that σj is
the largest.
Our first algorithm adopts strategy (a). After delet-

ing one attribute, we update U and V , and repeat the
elimination process until there is no more attribute that
can be deleted.

Algorithm 1 Remove-Smallest
Input: Response matrix M ∈ {0,1}m×n.

1. Initialize U =M and k = n.
2. Compute

V T = J =M
T ◦M. (21)

3. Compute 5

T = UV.

4. For i = 1,2, . . . ,k compute the size of the maximal
tile for ith attribute (αi) by

σi = ||U [:, i]||× ||V [:, i]||,

and rename the attributes so that σ1 ≤ σ2 ≤ . . .≤ σk

holds.
5. For j = 1,2, . . . ,k, do

(a) Compute

Tj = U [:, j]◦V [j, :];

(b) If ||T || = ||T −Tj || then (i) remove column U [:
, j] from U and row V [j, :] from V ; and (ii) set
T = T −Tj ; k = k−1.

6. Output U and V T .

Our second algorithm adopts strategy (b).
Algorithm 2 Pick-Largest

Input: Response matrix M ∈ {0,1}m×n.
1. Initialize U =M and k = n.
2. Compute

V T = J =M
T ◦M. (22)

3. Initialize6 C = [0]m×n ∈ {0,1}m×n.
4. For i = 1,2, . . . ,k compute the size of the maximal

tile for the ith attribute (αi) by

σi = ||U [:, i]||× ||V [:, i]||.

5. For each i such that αi has not been picked or dis-
carded, compute (see (8))

δi = σi−U [:, i]TCV [:, i].

If δi = 0 then remove αi by deleting U [:, i] (resp.
V [i, :]) from U (resp. V).

6. Let δj = maxi{δi} and compute

Tj = U [:, j]◦V [j, :].

Update matrix C = C ∨Tj , and delete U [:, j] (resp.
V [j, :]) from U (resp. V). If there are still attributes
remaining, then go to Step 5.

7. Output U and V . ut
5 Intuitively, T [i, j] is the number of tiles in U ◦V that cover

M [i, j].
6 Matrix C keeps track of the 1 elements in M covered by

the products that have been picked so far.

8 Yuan Sun, et al.

4.2 Simple example

Example 2 Let us consider the following matrix M , and
carry out Steps 2) and 4), which are common to both
algorithms.

M =

0 0 0 0 0 0 0
1 0 1 1 0 1 1
0 1 1 0 1 0 1
0 0 0 1 0 0 0
0 1 1 0 1 0 1
0 1 1 0 1 0 1
1 0 1 1 0 1 1
1 1 1 1 1 1 1

V T =M
T ◦M =

1 0 0 0 0 1 0
0 1 0 0 1 0 0
1 1 1 0 1 1 1
1 0 0 1 0 1 0
0 1 0 0 1 0 0
1 0 0 0 0 1 0
1 1 1 0 1 1 1

i 1 2 3 4 5 6 7
||U [:, i]|| 3 4 6 4 4 3 6
||V [i, :]|| 5 4 2 1 4 5 2
σi 15 16 12 4 16 15 12

Table 1 Computing σi.

Step 3 of Remove-Smallest computes

T = UV =

0 0 0 0 0 0 0
2 0 4 3 0 2 4
0 2 4 0 2 0 4
0 0 0 1 0 0 0
0 2 4 0 2 0 4
0 2 4 0 2 0 4
2 0 4 3 0 2 4
2 2 6 3 2 2 4

(23)

If we order the columns of U from the smallest to the
largest according to the value of σi, we get 4,3,7,1,6,2,5.
Thus, Remove-Smallest processes the columns of U in
this order.
Step 5(a): Compute T4.

T4 = U [:,4]◦V [4, :] =

0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 1 0 0 0

Step 5(b): ||T ||> ||T −T4|| ⇒ Cannot remove attribute
4.
Step 5(a): Now try the next smallest attribute 3, and
compute T3.

T3 = U [:,3]◦V [3, :] =

0 0 0 0 0 0 0
0 0 1 0 0 0 1
0 0 1 0 0 0 1
0 0 0 0 0 0 0
0 0 1 0 0 0 1
0 0 1 0 0 0 1
0 0 1 0 0 0 1
0 0 1 0 0 0 1

Step 5(b): ||T ||= ||T −T3|| ⇒ Remove attribute 3, and
update T .

T = T −T3 =

0 0 0 0 0 0 0
2 0 3 3 0 2 3
0 2 3 0 2 0 3
0 0 0 1 0 0 0
0 2 3 0 2 0 3
0 2 3 0 2 0 3
2 0 3 3 0 2 3
2 2 5 3 2 2 3

Similarly, attributes (columns of M) 7, 1 and 5 are re-
moved.

Step 6: generates

U =

0 0 0
1 1 0
0 0 1
1 0 0
0 0 1
0 0 1
1 1 0
1 1 1

; V =

 0 0 0 1 0 0 0
1 0 1 1 0 1 1
0 1 1 0 1 0 1

 (24)

The columns of U are columns 4, 6, and 2 of M , and
M = U ◦V .

Let us now apply Algorithm Pick-Largest to ma-
trixM . We already illustrated the first four steps above.
From Table 1 we see that δ5 = σ5 = 16 is the largest
(tied with δ2 = σ2 = 16). Since δi = 0 holds for no i, we
proceed to Step 6.

T5 = U [:,5]◦V [5, :] =

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 1 1 0 1 0 1
0 0 0 1 0 0 0
0 1 1 0 1 0 1
0 1 1 0 1 0 1
0 0 0 0 0 0 0
0 1 1 0 1 0 1

Boolean Matrix Decomposition 9

We set C = C ∨T5 to remember the 1’s that are now
covered by the picked product term. Although this al-
gorithm does not use T in (23), it is instructive to in-
terpret Steps 5 and 6 of Pick-Largest in terms of T .
We have

T = T −T5 =

0 0 0 0 0 0 0
2 0 4 3 0 2 4
0 1 3 0 1 0 3
0 0 0 0 0 0 0
0 1 3 0 1 0 3
0 1 3 0 1 0 3
2 0 4 3 0 2 4
2 1 5 3 1 2 3

In Step 5, we update {δi}. For example, let us compute
CV [i, :]T for i= 2. We get

CV [2, :]T = [0 0 4 0 4 4 0 4] and U [:,2]TCV [:,2] = 16.

Therefore, δ2 = σ2− 16 = 0. This implies that T2 ≤ C.
We can simply remove attribute 2 (i.e, U [:,2] and V [2, :
]). Updating C by C = C ∨T2 does not change C.

T = T −T2 =

0 0 0 0 0 0 0
2 0 4 3 0 2 4
0 0 2 0 0 0 2
0 0 0 1 0 0 0
0 0 2 0 0 0 2
0 0 2 0 0 0 2
2 0 4 3 0 2 4
2 0 4 3 0 2 2

This computation can be done by matrix operation,

although it is not the most efficient, since it computes
elements that are of no use to us. Construct a column
vector Us whose ith element is ||U [:, i]||, and a row vec-
tor Vs whose ith element is ||V [:, i]||. Compute matrix
P = Us ◦V s.

P =

15 12 6 3 12 15 6
20 16 8 4 16 20 8
30 24 12 6 24 30 12
20 16 8 4 16 20 8
20 16 8 4 16 20 8
15 12 6 3 12 15 6
30 24 12 6 24 30 12

Thus the diagonal elements of P are ||U [:, i]||×||V [:, i]||,
which are listed in Table 1. Note that the ith diagonal
element of UT ◦C ◦V T is the number of 1’s in U [:, i]◦V [:

, i] that are already covered by C.

UT ◦C ◦V =

2 4 2 0 4 2 2
8 16 8 0 16 8 8
8 16 8 0 16 8 8
2 4 2 0 4 2 2
8 16 8 0 16 8 8
2 4 2 0 4 2 2
8 16 8 0 16 8 8

Thus the amounts {δi} can be found on the diagonal
of P −UT ◦C ◦V , and they are 13, 0, 4, 4, 0, 13, 4. So
δ2 = 13 and δ6 = 13 are the largest. Let us pick attribute
6,7 update C = C ∨T6, and recompute P −UT ◦C ◦V .
Since updated δ1 = 0, we discard attribute 1. (Step 5.)
We then get δ7 = 4, so pick attribute 7. Since δ3 = 0, we
discard attribute 3. Finally, we need to pick attribute
4. For this particular example, Pick-Largest generates
the same decomposition as Remove-Smallest given in
(24). ut

Comment 3 Although computing UT ◦C ◦V is a con-
ceptually neat way of finding {δi}, the time to compute
the off-main diagonal elements is wasted. Thus, we do
not use it in Pick-Largest. ut

5 Performance

5.1 Complexity analysis

The time complexity of both algorithms is dominated
by the time to compute matrix V of (21) and (22),
respectively, in their Step 2. By Proposition 3, it can
be expanded into n (column vector, row vector) pairs
of sizes m and n, respectively. Then evaluating MT ◦M
takes time proportional to

m∑
i=1
||MT [:, i]||× ||M [i, :]|| ≤ n

m∑
i=1
||M [i, :]||= n||M ||.

This implies that (21) and (22) can be evaluated in
O(n||M ||) time. Note that in terms of T defined in Step
3 of Algorithm Remove-Smallest, we have

||T ||l1 =
n∑

i=1
||U [:, i]||×||V [:, i]|| ≤m

n∑
i=1
||U [:, i]||=m||M ||,

where ||T ||l1 (l1 norm) represents the sum of the ele-
ments of T .

7 When there is a tie in the sizes δi, as in this example, there
are choices as to which one we remove or pick first. A particular
choice may affect the coverage performance. We randomly select
one.

10 Yuan Sun, et al.

Theorem 4 Both Algorithms Remove-Smallest and
Pick-Largest run in O(m||M ||) time.

Proof We can consider that every operation in Algo-
rithm Remove-Smallest essentially accesses/modifies
some element of T and the (i, j) element is accessed
T [i, j] times. Therefore, the total time is given byO(||T ||l1)
=O(m||M ||).

As for Algorithm Pick-Largest, although T is not
used in it, imagine that it was defined. We use U [:
, i]TCV [:, i] to describe Step 5, but it is used for only for
the purpose of a concise description, and this step can
be implemented more efficiently without matrix multi-
plication. All we need is a way to keep track of which
1 elements of M has already been covered. Therefore,
the total time is still given by O(||T ||l1) = O(m||M ||),
as reasoned above. ut

The above theorems imply that our algorithms run
faster if the given matrix M is sparse. If we use a sophis-
ticated algorithm, matrix multiplication can be done in
O(m2.373) time, assuming m≥ n [20,44].

We should mention that another important perfor-
mance measure for heuristic algorithms of the approx-
imation ratio relative to the optimum. We have not
looked into this performance measure yet.

5.2 Experiments on real datasets

To evaluate the performance of our heuristic algorithms,
Pick-Largest and Remove-Smallest, we have tested
them on several real datasets, which have been used by
other authors as benchmarks. They are Mushroom [23],
DBLP8, DNA [33], Chess [23], and Paleo9. Table II in
the next page lists the results of our experiments and
compares them with Tiling [11], Asso [30], Hyper [45],
and GreConD [4], and GreEss [4]. All but the last two
columns of Table II are from [3]. The common dimen-
sion k of the factor matrices, generated by the exact
BMD heuristics mentioned above are listed. The num-
bers in bold face indicate the best value in each row.
The rows labeled 100% shows the data for exact decom-
position. Asso is not meant for exact BMD, as com-
mented earlier.

Among the datasets we used, Mushroom consists of
8,124 objects and 23 “nominal” attributes. If a “nomi-
nal” attribute y takes k > 2 values, {v1, ...,vk}, we ex-
panded y, replacing it by k Boolean attributes {yv1 , . . . ,yvk

}
in such a way that in each row i the value of the column
corresponding to yvj is 1 if the value of the attribute y
in row i in the original dataset is equal to vj .

8 http://www.informatik.uni-trier.de/˜ley/db/
9 http://www.helsinki.fi/science/now/

Note that only our algorithms impose the column
use condition. In spite of this restriction, Pick-Largest
achieves the smallest tiling size (or dimension k) for ex-
act coverage for four out of the five datasets in Table II,
which was somewhat unexpected. Incidentally, we have
found a decomposition without the column use condi-
tion with k = 101 by some other means, so none of the
algorithms in Table II can find the optimal decomposi-
tion for the Mushroom dataset. As can be seen from Ta-
ble II, Pick-Largest and Remove-Smallest performed
equally well in finding the exact decomposition.

Although our original intention was to design al-
gorithms for exact BMD, our algorithms can also be
used for “from-below” approximation [4]. In the “from-
below” approximation, an important performance cri-
terion is the coverage defined as the number of 1’s cov-
ered by the product U ◦V over the total number of 1’s
in the given M [11]. The coverage is given in the sec-
ond column of Table II. Each entry in the table is the
number of tiles used, which is the same as the common
dimension k of U and V . Fig. 1 plots the coverage of
Algorithm Pick-Largest as a function of the number
of attributes contained in U and V . The attributes are
arranged in the order they were picked.

Fig. 1 Coverage of Algorithm Pick-Largest for Mushroom.

In most applications, high coverage, say, more than
90%, would be of interest, and we have collected cov-
erage data in Table III in this range for Pick-Largest
and Remove-Smallest, but unfortunately not for the
others, since we haven’t had the time to program the
other algorithms. We have some evidence to suggest
that our algorithms perform better than others espe-
cially at higher coverages.

Another important aspect of performance is the ef-
ficiency of the algorithm in terms of speed and mem-
ory use. Table IV shows the time it took for them to
decompose M (of Mushroom) into U and V and the
amount of memory used. Belohlavek, et al. [4] car-
ried out extensive tests of their algorithms GreConD
and GreEss, which can be used for exact BMD, on

Boolean Matrix Decomposition 11

Coverage Tiling Asso Hyper GreConD GreEss Remove-Smallest Pick-Largest
Mushroom [23] 50% 7 6 19 7 8 37 10
(8,124×119) 75% 24 36 37 24 26 59 27

100% 119 N/A 122 120 105 109 109
DBLP 50% 5 5 5 5 5 6 6
(6,980×19) 75% 10 10 10 11 10 11 11

100% 21 19 19 20 19 19 19
DNA [33] 50% 32 27 67 33 41 67 58
(4,590×392) 75% 94 80 155 96 105 155 123

100% 489 N/A 392 496 408 368 368
Chess [23] 50% 5 2 26 4 6 26 12
(3,196×75) 75% 16 15 39 15 17 44 26

100% 124 N/A 90 124 113 72 72
Paleo 50% 39 40 38 39 38 39 39
(501×139) 75% 75 76 73 76 73 75 74

100% 151 N/A 139 152 145 139 139

Table 2 Coverage comparison of BMD algorithms for five datasets.

Coverage Mushroom DBLP DNA Paleo
90% 76 15 243 107

Rem.-Smallest 95% 85 17 292 112
98% 100 19 332 132
90% 47 15 197 107

Pick-Largest 95% 62 17 242 112
98% 81 19 285 132

Table 3 Comparison of Remove-Smallest and Pick-Largest
at high coverage ratios

GreConD [3] GreEss [3] Remove-S. Pick-L.
Time 18min 5.7s 12.47s 7.39s 10.71s

Memory 97MB 2MB 2.25MB 1.72MB

Table 4 Performance comparison

Mushroom, and measured the time and memory require-
ment. Their data for exact BMD are given in Tables IV.
We should mention that the platforms we used to pro-
duce our results are different from theirs, as shown in
Table V. Probably it is safe to say that there is not a
huge difference between the two. Unfortunately, we do
not have similar data for other algorithms, since they
are not published.

Ours Belohlavek et al.’s [4]
CPU AMD Athlon

X2 350 Dual
Core Processor
(3.5GHz)

INTEL Xcon 4 (3.2GHz)

Memory 4GB (1.6GHz) 1GB
OS Windows 7 Profes-

sional
Not mentioned in [4]

Program Matlab Version
R2012b

Matlab (partially hand-
coded in C)

Table 5 Running platforms

6 Application to Educational Data Mining

Educational data mining has been attracting increasing
interest in recent years. It aims to discover students’
mastery of knowledge, or skills which are itemized as
attributes. In the widely studied Rule Space Model [41]
in cognitive assessment in education, a Boolean matrix,
named the Q-matrix, is used to represent hypothetical
sets of attributes which would be needed to answer the
test items correctly. To explain the relevance of exact
BMD to the educational Q-matrix theory developed by
Tatsuoka [40], let us introduce new symbols for matri-
ces.

Attribute or skill set: We assume that the stu-
dents’ knowledge can be represented by the knowledge
state matrix A= [aij] ∈ {0,1}m×k, where aij = 1 (resp.
aij = 0) indicates that the ith student possesses (resp.
does not possess) knowledge represented by the jth at-
tribute. For i = 1,2, . . . ,m, the knowledge state of stu-
dent i is represented by a row vector

ai = [ai1,ai2, . . . ,aik].

Q-matrix: It is denoted by Q = [qij] ∈ {0,1}n×k,
where qij = 1 (resp. qij = 0) indicates that answering
test item i correctly requires (resp. does not require)
knowing or understanding attribute (=concept) j. De-
fine a row vector by

qi = [qi1, qi2, . . . , qik].

Response matrix: Given m students and n test
items, the test results can be represented by a ma-
trix R ∈ {0,1}m×n, where R[i, j] = 1 (resp. R[i, j] =
0) indicates that the ith student solved the jth test
item correctly (resp. incorrectly). Theoretically, student
i should be able to answer question j if ai ≥ qj or

12 Yuan Sun, et al.

ai◦qj = 0. We thus define the ideal item response R[i, j]
by

R[i, j] =
{

1 ai ≥ qj

0 otherwise
(25)

If both Q and A were known, then the students’ test
performance, called the ideal item response pattern [41],
could be theoretically predicted. The following result
was announced in [39] without proof. Here we provide
a simple but formal proof.

Theorem 5 The ideal item response matrix R, the knowl-
edge state matrix A and the Q-matrix Q are related as
follows:

R=A◦QT . (26)

Proof The fact that student i has enough knowledge
to answer question j can be represented by ai ≥ qj ,
which is equivalent to ai ◦qT

j = 0 hence ai ◦qT
j = 1 by

Proposition 5. If he/she doesn’t, i.e., ai 6≥ qj , on the
other hand, then ai ◦qT

j = 1, and ai ◦qT
j = 0.

If R is given but the underlying matrices Q and
A are unknown, we want to mine Q and A out of
R. Thanks to Theorem 5, by finding decomposition
R=A◦QT , we can learn students’ knowledge state ma-
trix A and the Q-matrix Q from the test responses in R.
We simply set M =R, U =A, and V =QT , and decom-
pose M . Thus the Q-matrix learning problem can be
transformed into exact (i.e., not approximate) Boolean
matrix decomposition problem. Here we assume that R
has no “noise,” namely it correctly represents the stu-
dents’ knowledge, and mine Q and A from it. Clearly,
the set of collected test responses, R, is likely to be
“noisy,” because students may be able to guess cor-
rect answers by luck, or may make silly mistakes (called
“slips” [41]). Therefore, the discovered factors A′ and
Q′ of R are just approximations to the true A and Q.
This problem is a main issue in Rule space model [24,
39,41,40,46], but is beyond the scope of this paper.

Example 3 Here we use the dataset of Example 3.9 in
[41]. Table VI shows the ideal item response pattern
matrix R for m = 12 students and n = 11 test items,
while Table VII shows the matrices A and Q (each with
k = 4 attributes). In [41], they constructed R from the
given A and Q. Here, taking R as the input, Algorithms
Remove-Smallest and Pick-Largest were able to re-
cover A and Q.

Comment 6 In the above example, note that Q[:,1]
dominates column Q[:,2]. This means that any test item
that tests concept 2 automatically tests concept 1, in
other words, attribute 1 is a prerequisite for concept

1 2 3 4 5 6 7 8 9 10 11

1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 0 1 0 1 0 0 0 0
3 1 1 0 1 0 1 0 1 0 0 0
4 1 1 0 0 0 0 0 0 0 0 0
5 1 0 1 1 1 1 0 0 1 1 0
6 1 0 1 0 1 0 0 0 0 0 0
7 1 0 0 1 0 1 0 0 0 0 0
8 1 0 0 0 0 0 0 0 0 0 0
9 0 0 1 1 0 0 0 0 1 0 0
10 0 0 1 0 0 0 0 0 0 0 0
11 0 0 1 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0

Table 6 The ideal item response matrix R12×11 [41].

A=

1 1 1 1
1 1 1 0
1 1 0 1
1 1 0 0
1 0 1 1
1 0 1 0
1 0 0 1
1 0 0 0
0 0∗ 1 1
0 0∗ 1 0
0 0∗ 1 0
0 0∗ 0 0

; Q=

1 0 0 0
1 1 0 0
0 0 1 0
0 0 0 1
1 0 1 0
1 0 0 1
1 1 1 0
1 1 0 1
0 0 1 1
1 0 1 1
1 1 1 1

Table 7 Knowledge state matrix A12×4 and Q-matrix Q11×4.

2 [41]. Students 9 to 12 have not mastered concept 1,
which are tested in test items 1,2, 5∼8, and 10∼11.
Thus R[s,1] = 0 (they cannot answer test items testing
concept 1) for s= 9∼12. As for any test items that has a
0 in both columns 1 and 2 of Q, i.e., Q[3, :], Q[4, :], and
Q[9, :], students 9∼12 (who haven’t mastered concept
1) cannot pass test items testing concept 2. Therefore,
A[s,2] = 0 for s= 9∼12. However, mathematically, set-
ting A[s,2] = 1 for s= 9∼12 still satisfies R=A◦QT .
See the entries 0∗ in matrix A in Table VII. ut

In general, we can prove the following.

Lemma 7 Suppose that Q[:, i] dominates column Q[:
, j]. Then [A[s, i] = 0]⇒ [A[s,j] = 0]. ut

The input to our algorithms is just R, and the com-
plemented knowledge state matrix A is an output. Algo-
rithm Pick-Largest computes the values of δi in each
round, whose maxima are shown in Table VIII.

Round 1 2 3 4 5
maxi{δi} 32 30 19 9 0

argmaxi{δi} 1 4 3 2 5∼ 11

Table 8 The attribute picked in each round of Pick-Largest.

Boolean Matrix Decomposition 13

Algorithm Remove-Smallest removes attributes in
the increasing order of σi, provided the product remains
the same, i.e., R. For this example, both algorithms
decompose R into factor matrices with the common di-
mension (k= 4), which equals the dimension of the orig-
inal factors [41]. ut

7 Conclusions and Discussions

Given any Boolean matrix M , we first proved that J =
M

T ◦M ∈ {0,1}n×n is the “maximal” matrix satisfy-
ing M = M ◦JT , in the sense that if any 0 element in
J is changed to a 1 then this equality no longer holds.
Based on this formula, we then presented two heuristic
algorithms to find an exact decomposition M = U ◦V
such that U consists of a “small” subset of the columns
of M . Exact BMD is aesthetically pleasing and intellec-
tually satisfying, and we believe that it will find useful
applications in the future. In the present day data min-
ing applications, however, it may not be necessary or
very important.

So we also showed that our algorithms can be used
for approximate BMD, namely to find a product U ◦V
that covers most of the 1’s and no 0’s in M . This is
sometimes called “from-below” approximation [3]. We
ran our algorithms on several real examples, which are
often used as benchmarks. On these particular datasets,
our algorithms perform rather well, compared with the
known algorithms proposed in [3,4,45,11], despite the
column use condition that we impose, but the others
do not. Clearly, more extensive tests are called for to
arrive at any definite conclusions.

Although we have concentrated on the elimination
of column dominance, it is possible that a given matrix
M has more row dominance than column dominance.
In any case, it would be worthwhile to apply our algo-
rithms to both M and MT , and pick the result with the
smaller factor matrix dimensions. There may be situ-
ations where a decomposition of M = A ◦B is already
known, but it is desired to reduce the number of at-
tributes (columns) in A. In such a case, we can apply
our algorithms to decompose A as A= U ◦V . We then
have M = U ◦ (V ◦B) such that U consists of a subset
of the columns of A.

We are working on a promising BMD algorithm
without column use condition, which is founded on some
mathematical formulae proved in this paper. For dataset
Mushroom, it achieves 100% coverage for k= 101, which
is better than any algorithm in Table II, as for as exact
BMD is concerned.

As a final remark, from Proposition 3 there is a lot
of parallelism in matrix product computation. This im-

plies that if the given matrix M is very large, our algo-
rithms are amenable to the map-reduce technique [36].

Finally, as mentioned before, we have not examined
the approximation ratio of our heuristic algorithms rel-
ative to the optimum. We leave it as future work.

Acknowledgement

We thank Martin Trnecka of Palacký University, Czech
Republic, for providing us with the testbed datasets
tailored as inputs to Matlab.

References

1. Amilhastre, J., Vilarem, M., Janssen, P.: Complexity of
minimum biclique cover and minimum biclique decompo-
sition for bipartite domino-free graphs. Discrete Applied
Math. 86, 125–144 (1998)

2. Barnes, T.: Novel derivation and application of skill ma-
trices: The q-matrix method. In: Romero, C., Ventura, S.,
Pechenizkiy, M., Baker, R. (eds.) Chap. 11, Handbook on
Educational Data Mining, pp. 159–172. CRC Press, Florida
(2010)

3. Belohlavek, R., Trnecka, M.: From-below approximations
in boolean matrix factorization: geometry, heuristics, and
new BMF algorithm. arXiv:1306.4905v1 [cs.NA] pp. 1–38
(June 2013)

4. Belohlavek, R., Vychodil, V.: Discovery of optimal factors
in binary data via a novel method of matrix decomposition.
J. of Computer and System Sciences 76(1), 3–20 (Feb 2010)

5. Berry, M., Browne, M., Langville, A., Pauca, V., Plem-
mons, R.: Algorithms and applications for approximate
nonnegative matrix factorization. Computational Statistics
& Data Analysis 52(1), 155–173 (2007)

6. Doherty, F., Lundgren, J., Siewert, D.: Biclique covers and
partitions of bipartite graphs and digraphs and related
matrix ranks of 0, 1-matrices. Congressus Numerantium
136(2), 73–96 (1999)

7. Drineas, P., Kannan, R., Mahoney, M.: Fast monte carlo al-
gorithms for matrices iii: computing a compressed approx-
imate matrix decomposition. SIAM J. Computing 36(1),
184–206 (2006)

8. Drineas, P., Mahoney, M., Muthukrishnan, S.: Relative-
error CUR matrix decompositions. SIAM J. Matrix Anal-
ysis and Applications 30(2), 844–881 (2008)

9. Feige, U.: A threshold of ln n for approximating set cover.
J. ACM 45(4), 634–652 (1998)

10. Franzblau, D., Kleitman, D.: An algorithm for covering
polygons with rectangles. Inform. Control 63, 164–189
(1984)

11. Geerts, F., Goethals, B., Mielikäinen, T.: Tiling
databases. In: Discovery Science. pp. 278–289.
No. 3245 in LNCS, Springer-Verlag (2004),
http://www.springerlink.com/content/31ahky75yecgtwlu

12. Golub, G., Van Loan, C.: Matrix Computations. Johns
Hopkins Univ. Press, Baltimore (1996)

13. Gregory, D., Pullman, N.: Semiring rank: Boolean rank and
nonnegative rank factorizations. J. Combin. Inform. Sys-
tem Sci. 8, 223–233 (1983)

14. Hochbaum, D.: Approximating clique and biclique prob-
lems. J. of Algorithms 29(1), 174–200 (1998)

14 Yuan Sun, et al.

15. Hyvönen, S., Miettinen, P., Terzi, E.: Interpretable non-
negative matrix decompositions. In: Proc. 14th ACM Int’l
Conf. on Knowl. Discovery & Data Mining (KDD). pp. 345–
353 (2008)

16. Kim, K.: Boolean Matrix Theory and Applications. New
York: M. Dekker (1982)

17. Koedinger, K., McLaughlin, E., Stamper, J.: Automated
student model improvement. In: Proc. 5th Int’l Conf. on
Educational Data Mining (2012)

18. Kushilevitz, E., Nisan, N.: Communication Complexity.
Cambridge University Press, New York (1996)

19. Lan, G., DePuy, G., Whitehouse, G.: An effective and sim-
ple heuristic for the set covering problem. Euro. J. of Oper.
Res. 176, 1387–1403 (2007)

20. Le Gall, F.: Powers of tensors and fast matrix multiplica-
tion. In: Proc. 39th Int’l Symp. on Symbolic and Algebraic
Computation (ISSAC) (2014)

21. Lee, D., Seung, H.: Learning the parts of objects by non-
negative matrix factorization. Nature 401, 788–791 (1999)

22. Lee, D., Seung, H.: Algorithms for non-negative matrix fac-
torization. Advances in Neural Information Processing Sys-
tems 13, 556–562 (2001)

23. Lichman, M.: UCI Machine Learning Repository. Tech.
rep., School of Info. and CS, University of California, Irvine,
CA (2013), url= http://www.ics.uci.edu/ml

24. Liu, J., Xu, G., Ying, Z.: Data-driven learning of q-matrix.
Applied Psychological Measurement 36(7), 548–564 (2012)

25. Lubiw, A.: The boolean basis problem and how to cover
some polygons by rectangles. SIAM J. Discrete Math. 3(1),
98–115 (1990)

26. Lubiw, A.: A weighted min-max relation for intervals. J.
Combin. Theory 53(2), 151–172 (1991)

27. Miettinen, P.: The boolean column and column-row matrix
decompositions. Data Mining and Knowledge Discovery 17,
39–56 (2008)

28. Miettinen, P.: Matrix Decomposition Methods for Data
Mining: Computational Complexity and Algorithms. Ph.D.
thesis, University of Helsinki, Helsinki (2009)

29. Miettinen, P.: On finding joint subspace boolean matrix
factorizations. In: Proc. 12th SIAM Int’l Conf. on Data
Mining (SDM). pp. 954–965 (2012)

30. Miettinen, P., Mielikäinen, T., Gionis, A., Das, G., Man-
nila, H.: The discrete basis problem. IEEE Trans. on
Knowl. and Data Eng. 20(10), 1348–1362 (2008)

31. Monson, S., Pullman, S., Rees, R.: A survey of clique and
biclique coverings and factorizations of (0,1)-matrices. Bul-
letin of Inst. Combinatorics and Its Applications 14, 17–86
(1995)

32. Müller, H.: On edge perfectness and classes of bipartite
graphs. Discrete Math. 149, 159–187 (1996)

33. Myllykangas, S., Himberg, J., Böhling, T., Nagy, B.,
Hollmén, J., Knuutila, S.: DNA copy number amplification
profiling of human neoplasms. Oncogene 25(55), 7324–7332
(2006)

34. Nau, D., Markowsky, G., Woodbury, M., Amos, D.: A
mathematical analysis of human leukocyte antigen serol-
ogy. Math. Bioscience 40, 243–270 (1978)

35. Orlin, J.: Contentment in graph theory: covering graphs
with cliques. Indagationes Mathematicae 80(5), 406–424
(1977)

36. Rajaraman, A., Leskovec, J., Ullman, J.: Mining of Massive
Datasets, 2nd Ed. Cambridge University Press, New York
(2014)

37. Schmidt, G.: Relational Mathematics. Cambridge Univer-
sity Press, New York (2011)

38. Streich, A., Frank, M., Basin, D., Buhmann, J.: Multi-
assignment clustering for boolean data. In: Proc. Int’l Conf.
on Machine Learning (ICML). pp. 969–976 (2009)

39. Sun, Y., Ye, S., Inoue, S., Sun, Y.: Alternating recursive
method for Q-matrix learning. In: Proc. 7th Int’l Conf. on
Educational Data Mining (EDM). pp. 14–20 (2014)

40. Tatsuoka, C.: Data-analytic methods for latent partially
ordered classification models. Applied Statistics (JRSS-C)
51, 337–350 (2002)

41. Tatsuoka, K.: Cognitive Assessment: An Introduction to
the rule space method. Routledge, New York (2009)

42. Umetani, S., Yagiura, M.: Relaxation heuristic for the set
covering problem. J. Oper. Res. Soc. of Japan 50(4), 350–
375 (2007)

43. Vavasis, S.: On the complexity of nonnegative matrix fac-
torization. SIAM J. Optimization 20, 1364–1377 (2010)

44. Williams, V.: Multiplying matrices faster than
Coppersmith-Winograd. In: Proc. 44-th ACM Symp.
Theory of Computing. pp. 887–898 (2012)

45. Xiang, Y., Jin, R., Fuhry, D., Dragan, F.: Summarizing
transactional databases with overlapped hyperrectangles.
Data Mining and Knowledge Discovery 23, 215–251 (2011)

46. Zhang, S., DeCarlo, L., Ying, Z.: Non-identifiability,
equivalence classes, and attribute-specific classification in
Q-matrix based cognitive diagnosis models. Tech. rep.,
Columbia University (2013)

