
The HIM glocal metric and kernel for
network comparison and classification

G. Jurman∗1, R. Visintainer1, M. Filosi1,2, S. Riccadonna3, C. Furlanello1

1 Fondazione Bruno Kessler, Trento, Italy
2 CIBIO, University of Trento, Italy

3 Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
{jurman,visintainer,filosi,furlan}@fbk.eu

samantha.riccadonna@fmach.it

Abstract

Due to the ever rising importance of the network paradigm across several areas of science, comparing
and classifying graphs represent essential steps in the networks analysis of complex systems. Both
tasks have been recently tackled via quite different strategies, even tailored ad-hoc for the investi-
gated problem. Here we deal with both operations by introducing the Hamming-Ipsen-Mikhailov
(HIM) distance, a novel metric to quantitatively measure the difference between two graphs sharing
the same vertices. The new measure combines the local Hamming distance and the global spectral
Ipsen-Mikhailov distance so to overcome the drawbacks affecting the two components separately.
Building then the HIM kernel function derived from the HIM distance it is possible to move from
network comparison to network classification via the Support Vector Machine (SVM) algorithm.
Applications of HIM distance and HIM kernel in computational biology and social networks science
demonstrate the effectiveness of the proposed functions as a general purpose solution.

1 Introduction

The arising prevalence of the network paradigm [1] as the elective model for complex systems analysis in different
workfields has strongly contributed in stimulating graph theoretical techniques in the recent scientific literature. Meth-
ods based on graph properties have spread through the static and dynamic analysis of different economical, chemical
and biological system, computer networking, social networks and neuroscience. As a relevant example, it is worthwhile
mentioning the rapid diffusion, in computational biology, of the differential network analysis [2, 3, 4, 5, 6, 7, 8, 9, 10].
In particular, two key tasks constitute the backbone of most of the aforementioned analysis techinques, namely network
comparison and network classification, and they both rely on the basic idea of measuring the similarity between two
graphs.

Network comparison consists in the quantification of the difference between two homogeneous objects in some net-
work space, while the aim of network classification is to predictively discriminate graphs belonging to different classes,
for instance by means of machine learning algorithms. Network comparison has its roots in the quantitative description
of main properties of a graph (e.g., degree distribution), which can be encoded into a feature vector [11], thus providing
a convenient representation for classification tasks (see for instance [12] for a very recent approach). As a major alter-
native strategy, one can adopt a direct comparison method stemming from the graph isomorphism problem, by defining
a suitable similarity measure on the topology of the underlying (possibly directed and/or weighted) graphs. This line
of study dates back to the 70s with the theory of graph distances, regarding both inter- and intra-graphs metrics [13].
Since then, a wide range of similarity measures has been defined, based on very different graph indicators. To mention
some of the most important metrics, we list the family of edit distances, evaluating the minimum cost of transforma-
tion of one graph into another by means of the usual edit operations (insertion and deletion of links), the family of
common network subgraphs, looking for shared structures between the graphs and the family of spectral measures,
relying on functions of the eigenvalues of one of the graph connectivity matrices. Similarly, graph classification can
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be tackled by a number of different techniques, for instance nearest neighbours on Euclidean distance of the features’
vectors of the graphs [14, 15, 16], or Support Vector Machine with the graph Laplacian as a regularization term [17],
or via different subgraph-based lerning algorithms [18]. However, in general the most efficient techniques use a kernel
machine, where the kernel itself corresponds to a scalar product (and hence a distance) in a suitable Hilbert space
[19, 20, 21, 22, 23, 24, 25, 26, 27]. For more recent advances, we cite the Weisfeiler-Lehman graph kernel [28], and its
use in neuroimaging classification for discriminating mild cognitive impairment from Alzheimer’s disease [29]. This
last citation stands as an example of the increasing interest for these techniques recently appearing in neurosciences
[30, 31].

In the present work we propose a novel solution to both the comparison and the classification tasks by introducing
the novel HIM metric for comparing graphs (even directed and weighted) and a graph kernel induced by the HIM
measure. The HIM distance is defined as the one-parameter family of product metrics linearly combining – by a
non-negative real factor ξ – the normalized Hamming distance H [32, 33, 34, 35] and the normalized Ipsen-Mikhailov
distance IM [36]; the product metric is normalized by the factor

√
1 + ξ to set its upper bound to 1. In absence of

a gold standard driving the search for the optimal weight ratio, we decided for an equal contribution from the two
components ξ = 1 as the most natural choice. The Hamming distance is the simplest member of the family of edit
distances, evaluating the occurrence of matching links in the compared networks: by definition, it is a local measure
of dissimilarity between graphs, because it only focusses on the links as independent entities, disregarding the overall
structure. On the other hand, the spectral distances are global measures, evaluating the differences between the whole
network structures: however, they cannot discriminate between isospectral non-identical graphs: for a recent spectral
approach, see [37]. In the comparative review [38], the properties of the existing graph spectral distances were studied,
and the Ipsen-Mikhailov metric emerged as the more reliable and stable. The combination of the two components
within a single metric allows overcoming their drawbacks and obtaining a measure which is simultaneously global
and local. Moreover, the imposed normalization limits the values of the HIM distance between zero (reached only
by comparing identical networks) and one (attained when comparing a clique and the empty graph), regardless of the
number of vertices. Finally, the HIM distance can also be applied to multilayer networks [39, 40], since a rigorous
definition of their Laplacian has just been proposed [41, 42]. By a Gaussian-like map [43], the HIM distance generates
the HIM kernel. Plugging the HIM kernel [44] into a Support Vector Machine gives us a classification algorithm based
on the HIM distance, to be used as is or together with other graph kernels in a Multi-Kernel Learning framework
to increase the classification performance and to enhance the interpretability of the results [45]. Note that, although
positive definiteness does not hold globally for the HIM kernel, this property can be guaranteed on the given training
data, thus leading to positive definite matrices suitable for the convergence of the SVM optimizer.

To conclude with, we present some applications of the HIM distance and the HIM kernel to some real datasets be-
longing to different areas of science. These examples support the positive impact of the HIM suite as general analysis
tool whenever it is required to extract information from the quantitative evaluation of the difference among diverse
instances of a complex system.

We also provide for analysis the R [46] package nettools including functions to compute the HIM distance. The pack-
age is provided as a working beta version and it is accessible on GitHub at https://github.com/filosi/
nettools.git. To reduce computing time, the software can be used on multicore workstations and on high perfor-
mance computing (HPC) clusters.

2 The HIM family of distances

2.1 Notations

LetN1 andN2 be two simple networks onN nodes, described by the corresponding adjacency matricesA(1) andA(2),
with a(1)

ij , a
(2)
ij ∈ F , where F = F2 = {0, 1} for unweighted graphs and F = [0, 1] for weighted networks. Let then

IN be the N × N identity matrix IN =

(
1 0 ··· 0
0 1 ··· 0
···

0 0 ··· 1

)
, let 1N be the N × N unitary matrix with all entries equal to

one and let 0N be the N × N null matrix with all entries equal to zero. Denote then by EN the empty network with
N nodes and no links (with adjacency matrix 0N ) and by FN the clique (undirected full network) with N nodes and
all possible N(N − 1) links, whose adjacency matrix is 1N − IN . For an undirected network, its adjacency matrix is
symmetric. For a directed networkN ↑, following the convention in [47], a link i→ j is represented by setting aji = 1
in the corresponding adjacency matrix AN↑ , which thus is, in general, not symmetric.

For instance, the matrix AN↑ = 1N − IN represents the full directed network F↑N , with all possible N2 −N directed
links i→ j.
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Figure 1: A five nodes network as a oscillatory system (a) and the corresponding adjacency matrix (b), with two differ-
ent edge weights 1 and 1

2 , represented by different springs. In panel (c), the product metric HIMξ = 1√
1+ξ

√
H2 + ξIM2

as a function of ξ ∈ [0,∞).

2.2 The Hamming distance

The Hamming distance is one of the most common dissimilarity measures in coding and string theory, recently used
also for (biological) network comparison [32, 33, 35, 34]. Since the Hamming measure basically evaluates the pres-
ence/absence of matching links on the two networks being compared, it has a simple expression in terms of the neworks’
adjacency matrices. This is not the case for many other members of the edit distance family, whose computation is
known to be a NP-hard task. The definition of the normalized Hamming distance H is in fact the following:

H(N1,N2) =
Hamming(N1,N2)

Hamming(EN ,FN )
=

Hamming(N1,N2)

N(N − 1)
=

1

N(N − 1)

∑
1≤i 6=j≤N

|A(1)
ij −A

(2)
ij | , (1)

where the normalization factor N(N − 1) bound the range of the function H in the interval [0, 1]. The lower bound 0
is attained only for identical networks A(1) = A(2), while the upper bound 1 is reached whenever the two networks are

complementary A(1) + A(2) = 1N − IN =

(
0 1 ··· 1
1 0 ··· 1
···

1 1 ··· 0

)
. When N1 and N2 are unweighted networks, H(N1,N2) is

just the fraction of different matching links over the total number N(N − 1) of possible links between the two graphs.

2.3 The Ipsen-Mikhailov distance

Originally introduced in [36] as a tool for network reconstruction from its Laplacian spectrum, the definition of the
Ipsen-Mikhailov IM metric follows the dynamical interpretation of an N nodes network as an N molecules system
connected by identical elastic strings as in Fig. 1(a-b), where the pattern of connections is defined by the adjacency
matrix A of the corresponding network. The dynamical system is described by the set of N differential equations

ẍi +

N∑
j=1

Aij(xi − xj) = 0 for i = 0, · · · , N − 1 . (2)

We recall that the Laplacian matrix L of an undirected network is defined as the difference between the degree D and
the adjacency A matrices L = D − A, where D is the diagonal matrix with vertex degrees as entries. L is positive
semidefinite and singular [48, 49, 50, 51], so its eigenvalues are 0 = λ0 ≤ λ1 ≤ · · · ≤ λN−1. The vibrational
frequencies ωi for the network model in Eq. 2 are given by the square root of the eigenvalues of the Laplacian matrix
of the network: λi = ω2

i , with λ0 = ω0 = 0. In [48], the Laplacian spectrum is called the vibrational spectrum.
Estimates (actual and asymptotic) of the eigenvalues distribution are available for complex networks [52], while the
relations between the spectral properties and the structure and the dynamics of a network are discussed in [53, 54, 55].
The spectral density for a graph as the sum of Lorentz distributions is defined as

ρ(ω, γ) = K

N−1∑
i=1

γ

(ω − ωi)2 + γ2
,

3
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Figure 2: Representation of the HIM distance in the Ipsen-Mikhailov (IM axis) and Hamming (H axis) distance space
between networks A versus B, E and F, where E is the empty network and F is the clique.

where γ is the common width and K is the normalization constant defined by the condition
∫ ∞

0

ρ(ω, γ)dω = 1, and

thus
K =

1

γ

N−1∑
i=1

∫ ∞
0

dω
(ω − ωi)2 + γ2

.

The scale parameter γ specifies the half-width at half-maximum, which is equal to half the interquartile range. An
example of Lorentz distribution for two networks is shown In Fig. 5. Then the spectral distance εγ between two graphs
N1 and N2 on N nodes with densities ρN1

(ω, γ) and ρN2
(ω, γ) can then be defined as

εγ(N1,N2) =

√∫ ∞
0

[ρN1
(ω, γ)− ρN2

(ω, γ)]
2 dω .

The highest value of εγ is reached, for each N , when evaluating the distance between EN and FN . Denoting by γ the
unique solution of

εγ(EN ,FN ) = 1 , (3)
the normalized Ipsen-Mikahilov distance between two undirected (possibly weighted) networks can be defined as

IM(N1,N2) = εγ(N1,N2) =

√∫ ∞
0

[ρN1
(ω, γ)− ρN2

(ω, γ)]
2 dω , (4)

so that IM is bounded between 0 and 1, with upper bound attained only for {N1,N2} = {EN ,FN}. A detailed
description of the uniqueness of the solution of Eq. 3 is described in Appendix A. Isospectral networks (and thus
also isomorphic networks) cannot be distinguished by this class of measures, so this is a distance between classes of
isospectral graphs. Although the number of isospectral networks is negligible for large number of nodes [56], their
fraction is relevant for smaller networks. The case of directed networks is discussed in a later paragraph.

2.4 The HIM distance

Consider now two copies of the spaceNNN(N) of all simple undirected networks on N nodes, and endow the first copy
with the Hamming metric H and the second copy with the Ipsen-Mikhailov distance IM. Then the two obtained pairs
(NNN(N),H) and (NNN(N), IM) are metric spaces. Define now on their Cartesian product the one-parameter HIM function
as the L2 (Euclidean) product metric [57] combining H and

√
ξ· IM, normalized by the factor 1√

1+ξ
, for ξ ∈ [0,+∞).

Via the natural correspondence of the same network in the two spaces, the HIM function becomes a distance onNNN(N):

HIMξ(N1,N2) =
1√

1 + ξ
||(H(N1,N2),

√
ξ · IM(N1,N2))||2 =

1√
1 + ξ

√
H2(N1,N2) + ξ · IM2(N1,N2) , (5)

4
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Figure 3: A directed network D↑ on three nodes and the equivalent undirected network D̂↑ on six nodes, together with
their adjacency matrices.

where in what follows we will omit the subscript ξ when it is equal to one. Obviously, HIM0 = H and
lim

ξ→+∞
HIMξ = IM (see Fig. 1(c)); apart from values of ξ close to the bounds {0,+∞} where the prevalence of one

of the factors becomes dominant, the qualitative impact of ξ is minimal in practice when using HIMξ as a distance. In
what follows, when no a priori hypothesis supports unbalancing the metric towards one of the two components, ξ = 1
will be assumed. However, the impact of ξ is definitely more relevant when HIMξ is used to generate a kernel function
to be used for classification purposes, as we will show in a later section. The metric HIMξ(N1,N2) is bounded in the
interval [0, 1], with lower bound attained for every couple of identical networks, and upper bound attained only on the
pair (EN ,FN ). Moreover, all distances HIMξ will be nonzero for non-identical isomorphic/isospectral graphs.

Consider now the [0, 1] × [0, 1] Hamming/Ipsen-Mikhailov (H/IM) space, where a point P has coordinates
(H(N1,N2), IM(N1,N2)), and the distance of P from the origin is

√
2 · HIM(N1,N2). If we (roughly) split the

Hamming/Ipsen-Mikhailov space into four main zones I,II,III,IV as in Fig. 2, two networks whose distances corre-
spond to a point in zone I are quite close both in terms of matching links and of structure, while those falling in the
zone III are very different with respect to both measures. Networks corresponding to a point in zone II have many com-
mon links, but their structure is rather different (for instance, they have a different number of connected components),
while a point in zone IV indicates two networks with few common links, but with similar structure (e.g., isospectral
non-identical graphs). In Fig. 2 we show some examples of points in the Hamming/Ipsen-Mikhailov space.

2.5 The directed network case

In this situation, the connectivity matrices are not symmetric, thus the Laplacian spectrum lies in C. Hence, computing
the Ipsen-Mikhailov distance would require extending the Lorentzian distribution to the complex plane. A simpler
solution can be obtained by transforming the directed network D↑ into an undirected (bipartite) one D̂↑, as in [47].
For each node xi in D↑, the graph D̂↑ has two nodes xIi and xOi (where I and O stand for In and Out respectively)
and for each directed link xi −→ xj in D↑ there is a link xOi − xIj in D̂↑. If the adjacency matrix for D↑ is AD↑ , the

corresponding matrix for D̂↑ isAD̂↑ =
(

0 AT
D↑

A
D↑ 0

)
, with respect to the node ordering xO1 , x

O
2 , . . . x

O
n , x

I
1, . . . , x

I
n. An

example of the above transformation is shown in Fig. 3. Thus it is possible to define HIM(N ↑1 ,N
↑
2 ) as HIM(N̂ ↑1 , N̂

↑
2 )

after substituing the normalizing factors η and γ with the corresponding η↑ and γ↑ derived by imposing the conditions
Hamming(ÊN , F̂N )/η↑ = 1 and εγ↑(ÊN , F̂N ) = 1, so that HIM(ÊN , F̂N ) = 1 by using Eq. (5). It is immediate to
compute η̄↑ = 2N(N − 1), while γ̄↑ can be numerically computed as for γ̄: details are given in Appendix B.

3 The HIM kernel

Following [43], a kernel can be naturally derived from a distance by means of a Gaussian (Radial Basis Function) map
(see also [58]). Thus, given two graphs x and y on the same n nodes and a positive real number γ, the HIM kernel can
be defined as

K(x, y) = e−γ·HIM2
ξ(x,y) .

Whenever a novel kernel is introduced, one has to check whether it is positively defined.

5
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Figure 4: Adjacency matrix and graphical representation of I1 and I2.

A function Ψ: X ×X → R is a kernel of condionally negative type if

1. Ψ(x, x) = 0 ∀x ∈ X;
2. Ψ(x, y) = Ψ(y, x) ∀x, y ∈ X;

3.
n∑

i,j=1

cicjΨ(xi, xj) ≤ 0 ∀n ∈ N,∀x1, . . . , xn ∈ X,∀c1, . . . , cn ∈ R such as
n∑
i=1

ci = 0.

A variant of Schoenberg’s theorem [59] (proved in [60, 61]) states that

Theorem 3.1 For a function Ψ: X ×X → R, the following are equivalent:

1. Ψ is of conditionally negative type;

2. K(x, y) = e−γΨ(x,y) is a positive semidefinite kernel for all γ ∈ R+
0 .

The above theorem describes the correspondence between negative-type distances and positive definite kernel, which
is also equivalent to `22 embeddability [62]. Hence, K(x, y) is a positive semidefinite kernel if and only if HIM2

ξ(x, y)
is a symmetric function of conditionally negative type. Although the square of many distances are condionally negative
type functions, HIM2

ξ(x, y) cannot be proven to be of conditionally negative type (actually, it is probably not of negative
type, as it is the case for many edit distances [43, 63, 64, 65, 66], the HIM kernel K is not positively defined in general
for all γ ∈ R+

0 . Nevertheless, this problem can be overcomed by using Prop. 1.3.4 in [67] (see also [58, 65]):

Theorem 3.2 Suppose the data x1, . . . , xl and the kernel k(·, ·) are such that the matrix
Kij = k(xi, xj)

is positive. Then it is possible to construct a map Φ into a feature space F such that
k(xi, xj) = 〈Φ(xi),Φ(xj)〉 .

Conversely, for a map Φ into some feature space F , the matrix Kiij = 〈Φ(xi),Φ(xj)〉 is positive.

Note that Th. 3.2 does not even require x1, . . . , xl to belong to a vector space. This theorem implies that, even though
the kernel is not positive definite, it is still possible to use it in Support Vector Machines or other algorithms requiring
k to correspond to a dot product in some space if the kernel matrix K is positive for the given training data. This
condition can be obtained by choosing a suitable value of γ: in the experiments shown hereafter, the HIM kernel is
always positively defined on the given training data, leading to positive definite matrices, and thus posing no difficulties
for the SVM optimizer, as in [68].

4 Applications

4.1 A minimal example

Consider the two networks I1, I2 ∈ NNN(8) with corresponding adjacency matrices AI1 , AI2 shown in Fig. 4. The
Hamming distance between I1 and I2 is

H(I1, I2) =
1

N(N − 1)

∑
1≤i 6=j≤N

|AI1ij −A
I2
ij | =

1

56

∑
1≤i 6=j≤8


0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 0 1 1 0
0 0 0 0 1 1 1 1
1 1 0 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 0 1 0 0 0 0

 =
28

56
= 0.5 .
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Figure 5: Lorentzian distribution of the Laplacian spectra for I1 (left) and I2 (center) with vertical lines indicating
eigenvalues, and HIM(I1, I2) in the Hamming/Ipsen-Mikhailov space (right).

From the spectral point of view, the corresponding Laplacian matrices and eigenvalues are

LI1 =


3 −1 0 0 −1 0 0 −1
−1 3 0 0 0 0 −1 −1
0 0 2 0 0 −1 −1 0
0 0 0 2 −1 −1 0 0
−1 0 0 −1 2 0 0 0
0 0 −1 −1 0 2 0 0
0 −1 −1 0 0 0 3 −1
−1 −1 0 0 0 0 −1 3

 spec(LI1) = [0, 0.657077, 1, 2.529317, 3, 4, 4, 4.813607]

LI2 =


3 −1 0 0 0 −1 −1 0
−1 3 0 0 −1 −1 0 0
0 0 0 0 0 0 0 0
0 0 0 2 0 0 −1 −1
0 −1 0 0 1 0 0 0
−1 −1 0 0 0 2 0 0
−1 0 0 −1 0 0 3 −1
0 0 0 −1 0 0 −1 2

 spec(LI2) = [0, 0, 0.340321, 1.145088, 3, 3, 3.854912, 4.659679] .

From the above spectra, we can compute the corresponding Lorentz distributions ρI{1,2}(ω, γ), where γ = 0.4450034:
their plots are shown in Fig. 5.

The resulting Ipsen-Mikhailov distance is

IM(I1, I2) =

√∫ ∞
0

[ρI1(ω, γ)− ρI2(ω, γ)]
2 dω = 0.1004144 ,

so that the HIM distance results

HIM(I1, I2) =

√
2

2
||(H(I1, I2), IM(I1, I2))||2 ≈ 0.707168

√
0.52 + 0.10041442 ≈ 0.3606127 .

The situation can be graphically represented as in Fig. 5: the two networks are quite different in terms of matching
links, but their structures are not so diverse.

4.2 Small networks

Fixed the number of nodes N , there are exactly 2
N(N−1)

2 different simple undirected unweighted networks, which
can be grouped into isomorphism classes. As anticipated before, isomorphic graphs cannot be distiguished by spectral
metrics, while their mutual Hamming distances are non zero, since their links are in different positions. As an example,
for N = 3 there are 8 networks grouped in 4 isomorphism classes, for N = 4 there are 11 isomorphism classes
including a total of 64 graphs and for N = 5 34 classes with 1024 networks (for N = 6, 7, the number of classes is
respectively 156 e 1044).

To give an overview of a broader situation, we compute a number of mutual distances between networks with a given
number of nodes (all possible couples for N = 3, 4, 5 and a subset of them for N = 15) and we display the results in
Fig. 6. To select a good range of variability for the networks with 15 nodes, we select the empty graph, the full graph
(with 105 nodes) and 10 different graphs with i edges each, for 1 ≤ i ≤ 104.

As shown by the plots, all possible situations can occur, apart from points in the northwest corner of zone II which
are the rarest. For instance, the point P (1, 0) in Fig. 6(b) corresponds to 6 different pairs (O1, O2) of networks with 4

7



(a) (b) (c) (d)

Figure 6: Mutual distances between (a) all 28 couples of networks with 3 nodes, (b) all 2016 couples of networks with
4 nodes, (c) all 523776 couples of networks with 5 nodes and (d) the 542361 mutual distances between a set of 1042
networks with 15 nodes.

nodes with maximal Hamming distance and minimal spectral distance: as an example, we show one of these pairs in
Fig. 7.

4.3 Comparison with Matthews Correlation Coefficient

When assessing performances in a link prediction task (for instance, in the series of DREAM challenges [69, 70, 71]),
the standard strategy following the machine learning approach, is to rely on functions of the confusion matrix, i.e., the
table collecting the number of correct and wrong predictions with respect to the ground truth. Classical measures of
this kind are the pairs Sensitivity/Specificity and Precision/Recall, and the derived Area Under the Curve.

A reliable alternative is the Matthews Correlation Coefficient (MCC for short) [72], summarizing into a single value the
confusion matrix of a binary classification task. This is a measure of common use in the machine learning community
[73], recently accepted as an effective metric also for network comparison [74, 75]. Also known as the φ-coefficient,
for a 2× 2 contingency table MCC corresponds to the square root of the average χ2 statistic

MCC =
√
χ2/N ,

where N is the total number of observations. In the binary case of two classes positive P and negative N, for the
confusion matrix ( TP FN

FP TN ), where T and F stand for true and false respectively, the Matthews Correlation Coefficient
has the following shape:

MCC =
TP · TN− FP · FN√

(TP + FP) (TP + FN) (TN + FP) (TN + FN)
.

MCC lives in the range [−1, 1], where 1 is perfect classification, −1 is reached in the complete misclassification case
while 0 corresponds to coin tossing classification, and it is invariant for scalar multiplication of the whole confusion
matrix.

Here we want to provide a quick comparison of MCC and HIM distances in a few cases. First of all, some considera-
tions on the extreme cases:

• HIM(G,H) = 1 only for {G,H} = {EN ,FN}, which has MCC = 0.
• HIM(G,H) = 0 only for G = H; in this case, MCC(G,H) = 0 for G = H ∈ {EN ,FN}, and

MCC(G,H) = 1 in all other cases.
• MCC(G,H) = 1 only for G = H 6∈ {EN ,FN}, and thus HIM=0.
• The two values MCC = 0 or MCC = −1 can correspond to a landscape of quite different pairs of networks,

for which the HIM distance can assume very diverse values.

To investigate the last case in the above list, we randomly generated 250,000 pairs of networks of different size, and we
compared the MCC with the H, IM and HIM distances: the corresponding scatterplots are shown in Fig. 8. Since MCC
is a similarity measure, for a direct comparison we displayed it as the [0, 1]-normalized dissimilarity measure 1−MCC

2 .

As predictable, since the confusion matrix is unaware of the network structure but it takes into account only matching
and mismatching links, the MCC is well correlated with the Hamming distance (Pearson Coefficient PC=0.92) and
poorly correlated with the Ipsen-Mikhailov distance (PC=0.01), resulting in an good global correlation with the HIM
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Figure 7: The six pairs of networks on four nodes with Hamming distance one and Ipsen-Mikhailov distance zero.

distance (PC=0.79). Nonetheless, the plots in Fig. 8 show that the relevant variability of one measure for a given value
of the other one supports the claim of a strong independency between MCC and HIM. Finally, as an example giving a
quantitative basis to the last claim of the above list, for all the pairs with MCC = 0 we obtain values of HIM ranging
in [0.11, 1], with median 0.37 and mean 0.39, while when MCC = −1 the range of the HIM values is [0.71, 0.86], with
mean and median equal to 0.74.

4.4 Dynamical networks

In what follows we show the evolution of the Hamming, the Ipsen-Mikhailov and the HIM distance during the evolution
of the following dynamical processes P(i) moving through consecutive steps:

• Random Addition PRA(i+ 1) is obtained from PRA(i) by randomly adding a not already present link.

• Random Removal PRR(i+ 1) is obtained from PRR(i) by randomly removing an existing link.

• Sequential Addition PSA(i+ 1) is obtained from PSA(i) by adding a new link in the same row and in the next
available column of the last added link, if possible, or in the following row, starting from the first available
column. The whole process starts from the first available row with the smallest index. As an example,
if PSA(0) = E5, then the process evolves inserting ones in the adjacency matrix following the sequence

1→ 2→ 3→ · · · 10 in
(

1 2 3 4
5 6 7

8 9
10

)
.

• Sequential Removal PSR: as in PSA, but removing one link at each step.

• Highest Degree Addition PHDA(i + 1) is obtained from PHDA(i) by adding a previously not existing link
connecting the node with the highest degree.

• Highest Degree Removal PHDR(i + 1) is obtained from PHDR(i) by removing an existing link connecting the
node with the highest degree.

As a first example, consider the processes PRA and PSA with the empty graph as starting network PRA(0) = PSA(0) =

EN . They both end at the N-nodes clique after Nmax = N(N−1)
2 steps: PRA(Nmax) = PSA(Nmax) = FN .

The corresponding inverse processes PRR and PSR evolve in the opposite direction: PRR(0) = PSR(0) = FN and
PRR(Nmax) = PSR(Nmax) = EN . In Fig. 9 we show the curves of d(P◦(i),P◦(0)) for d=H, IM and HIM in the cases
N =10, 25 and 100 nodes.

For the representation of the curves, we use two different spaces: the already introduced Hamming/Ipsen-Mikhailov
space, with the metric H on the x axis and the metric IM on the y axis, and the Fraction-of-nodes/HIM space,
with the ratio between the number of newly added or removed links over the total number Nmax of links on the
x axis and the HIM distance on the y axis; in this representation, the i-th step P◦(i) of a process has coordinates(

2i
N(N−1) ,HIM (P◦(i),P◦(0))

)
. In all cases, since one edge is removed or added at each step, in both spaces the

evolution of the processes proceeds from left to right in both graphs, and the trend of the curves representing the dis-
tances of the same process in the Hamming/Ipsen-Mikhailov space and in the Fraction-of-nodes/HIM space are similar,
varying only for a scaling factor.

For the random processes PRA and PRR we show the means of the distances computed on 100 runs; no standard deviation
or confidence intervals are plotted, because they are negligible at the scale of the plot. For instance, in the case N =25,
the order of magnitude of the standard deviation for HIM at each step is 10−3, and the span of the 95% boostrap
confidence intervals is in the range of 10−4. As a first observation, all curves are monotonically increasing and the
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Figure 8: Scatterplot of 1−MCC
2 versus Hamming (a), Ipsen-Mikhailov (b) and HIM (c) distances when comparing

250,000 random pairs of networks of different size 3-100.

bigger the graph, the larger the distances, but in the empty-to-clique case, where, in the second half of the process,
PSA induces distances which are smaller than PRA and which are smaller for larger graphs. The most interesting
observation is the different shape of the curves between the empty-to-clique process and the clique-to-empty: for the
same Hamming distance (or fraction of links), the corresponding Ipsen-Mikhailov (or HIM, respectively) distance
is larger when the nodes are added rather than removed, because adding links quickly generates degree correlation.
Furthermore, in the empty-to-clique case, not much difference occurs between the random and the sequential process,
while this difference is much wider (with the random one inducing larger distances) for the clique-to-empty case.
An analogous experiment was carried out within the family of Poissonian graphs, with Erdös-Rényi model [76, 77]
G(N, p). In particular, for N =10, 25 and 100, let SN be a sparse network G(N, p = 0.05), with 2, 11 and 230 edges
respectively and let DN be a dense network G(N, p = 0.9), with 39, 275 and 4462 edges respectively. Consider the
following four processes, of which we represent the initial bNmax√

2
c = b

√
2

2 ·
N(N−1)

2 c+ 1 steps in Fig. 10:

• PRA(i), for i = 0, . . . , b
√

2
2
N(N−1)

2 c, with PRA(0) = SN , for N=10, 25, 100.

• PRR(i), for i = 0, . . . , b
√

2
2
N(N−1)

2 c, with PRR(0) = DN , for N=10, 25, 100.

• PHDA(i), for i = 0, . . . , b
√

2
2
N(N−1)

2 c, with PHDA(0) = SN , for N=10, 25, 100.

• PHDR(i), for i = 0, . . . , b
√

2
2
N(N−1)

2 c, with PHDR(0) = DN , for N=10, 25, 100.

In this case, too, results on the random processes are averaged over 100 runs, with negligible confidence intervals.
To better highlight the differences of the resulting distances in the various processes, in Fig. 10 (c) and (d) we show
the ratio of some pairs of HIM distances as a function of the removed/added links. In particular, in subfigure (c), for

Hamming distance

Ip
se

n−
M

ik
ha

ilo
v 

di
st

an
ce

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

10, RA
25, RA
100, RA

10, SA
25, SA
100, SA

% of total links

H
IM

 d
is

ta
nc

e

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

10, RA
25, RA
100, RA

10, SA
25, SA
100, SA

Hamming distance

Ip
se

n−
M

ik
ha

ilo
v 

di
st

an
ce

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

10, RR
25, RR
100, RR

10, SR
25, SR
100, SR

% of total links

H
IM

 d
is

ta
nc

e

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

10, RR
25, RR
100, RR

10, SR
25, SR
100, SR

(a) (b) (c) (d)

Figure 9: Distances between P◦(i) and P◦(0) for the processes evolving from the empty network to the clique (a and
b) or vice versa (c and d), in the Hamming/Ipsen-Mikhailov space (a and c) or plot of the HIM distance as a function
of the ratio of added/removed links (b and d), for N = 10 (black), 25 (blue), 100 (red) nodes. Solid lines denote the
average of distances for 100 runs of random evolution, while dashed lines denote the sequential processes PSA and PSR.
In all cases, the process evolves from the left-bottom corner to the right-top corner.
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Figure 10: Plot of H, IM and HIM distances between P◦(i) and P◦(0) for ◦ = RA, HDA (a) and ◦ = RR, HDR (b), for
N = 10 (black), 25 (blue), 100 (red) nodes. Solid lines denote the average of distances for 100 runs of PRA and PRR,
while dashed lines identify PHDA and PHDR. In all cases, the process evolves from the left-bottom corner to the right-top
corner. In panel (c), plot of HIM(PRA(i),PRA(0))

HIM(PHDA(i),PHDA(0)) as a function of i
Nmax

and, in panel (d), plot of HIM(PRA(i),PRA(0))
HIM(PRR(i),PRR(0)) as a

function of i
Nmax

.

each step i, we show the quotient of HIM distances for PRA over PHDA, in the three cases N =10, 25 and 100. The
three curves show that HIM distances for PRA are larger than the HIM distances for PHDA for N=25 and 100, and their
difference is higher in the first steps of the process i < 0.3Nmax, while they tend to get closer as far as the processes
evolve. In the other cases PRR and PHDR (not shown here), the differences are smaller and they converge faster to one,
but in this case the process PHDR accounts for the smaller values of HIM distances. In the plot (c) of Fig. 10, we
show the curves for HIM(PRA(i),PRA(0))

HIM(PRR(i),PRR(0)) as a function of i
Nmax

. All the three curves are monotonically decreasing and
converging to one after the first stages of the processes, yielding that, for all values of N , adding links produces higher
values of HIM distance. In the case of the evolution targeting higher degree nodes first (not shown here), the trend is
the same, only scaled down to smaller ratios.

The final examples consider processes having scale free networks as starting graphs. For N=10, 25 and 100, let SSN
be a scale free sparse network generated following the Albert-Barabasi model [78], with power law exponent 2.3 and
with 9, 24 and 99 edges rispectively, and SDN a dense network with the same exponent 2.3 but with 35, 300 and 4150
edges respectively. The same four processes of the previous case were tested for the initial bNmax√

2
c = b

√
2

2 ·
N(N−1)

2 c+1
steps:

• PRA(i), for i = 0, . . . , b
√

2
2
N(N−1)

2 c, with PRA(0) = SSN , for N=10, 25, 100.

• PRR(i), for i = 0, . . . , b
√

2
2
N(N−1)

2 c, with PRR(0) = SDN , for N=10, 25, 100.

• PHDA(i), for i = 0, . . . , b
√

2
2
N(N−1)

2 c, with PHDA(0) = SSN , for N=10, 25, 100.

• PHDR(i), for i = 0, . . . , b
√

2
2
N(N−1)

2 c, with PHDR(0) = SDN , for N=10, 25, 100.

The corresponding curves are plotted in Fig. 11 (a) and (b). We recall here that scalefree networks are not invariant for
percolation, i.e., they do not remain scalefree when links are randomly removed or added. However, the evolution of
the processes is not very different from the Erdös-Rényi case, especially for the processes removing links as shown in
Fig. 11, panel (b). Some differences emerge for the processes adding links, and a few peculiarities that are also present
in the Poissonian case here become more evident. In particular, for all N and for both PRA and PHDA the derivative of
the curves are larger than those in panel (b), and it is not true anymore that the larger the number of nodes, the larger
the distances. For instance, in the case N = 100, both the processes quickly modify the network structure, resulting
in a fast increment of the Ipsen-Mikhailov distance for i < 0.2Nmax, while later the curves grow at a much smaller
rate. To better study this behaviour, a larger starting network SB200 was generated following the scale free model in
[79], with 200 nodes and 1000 edges, power law exponent 2.001 and degree distribution as in the histogram of Fig. 11,
panel (c). The following processes were started from SB200, and they were carried on until they reach either the empty
network or the clique:

• PRA(i), with PRA(0) = SB200 and PRA(18900) = F200.
• PHDA(i), with PHDA(0) = SB200 and PHDA(18900) = F200.
• PRR(i), with PRR(0) = SB200 and PRR(1000) = E200.
• PHDR(i), with PHDR(0) = SB200 and PHDR(1000) = E200.
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Figure 11: Plot of Hamming versus Ipsen-Mikhailov distance for P◦(i) and P◦(0) = SB200 for ◦ = RA, HDA (a) and
◦ = RR, HDR (b), for N = 10 (black), 25 (blue), 100 (red) nodes. Solid lines denote the average of distances for 100
runs of PRA and PRR, while dashed lines identify PHDA and PHDR. In all cases, the process evolves from the left-bottom
corner to the right-top corner. (c) Histogram of the node degrees of the network SB200. (d) Hamming distances versus
percentage of processes steps for PRA, PHDA, PRR and PHDR.

The curves corresponding to HIM distances from SB200 in the four aforementioned processes are plotted in Fig. 11,
panel (d), versus the percentage of progress of the process, i.e., 100 · i

N◦
, with 0 ≤ i ≤ N◦ and NRA = NHDA = 18900,

NRR = NHDR = 1000. The HIM distance for the processes PRR and PHDR are monotonically and similarly increasing
when evolving from SB200 to E200, slower at the beginning and much faster in the last steps of the process. The
two other processes instead show the same effect previously noted: HIM(PRA(i), SB200) and HIM(PHDAA(i), SB200)
change rapidly in the initial 10% of the processes, yielding a fast increase in the Ipsen-Mikhailov distance, due to the
quick modification in the network structure. After this initial period, the growth of both curves proceed with a smaller
derivatives until they reach their maximum at the end of the process.

4.5 Graph families

In this section we investigate the distribution of the distances from the empty network of a set of graphs randomly
extracted from five families. In particular, for each N= 10, 20, 50, 100 and 1000 we extracted 1000 networks on N
nodes from each of the following class of graphs:

• BA Barabasi-Albert model [78], with power of preferential attachment extracted from the uniform distribution
between 0.1 and 10.

• ER Erdös-Rényi model [76, 77], with link probability extracted from the uniform distribution between 0.1
and 0.9.

• WS Watts-Strogatz model [80], with neighborhood within which the vertices of the lattice will be connected
uniformly sampled in {1, . . . , 10} and rewiring probability extracted from the uniform distribution between
0.1 and 0.9.

• PL Scale-free random graphs from vertex fitness scores [79], with number of edges uniformly sampled be-
tween 1 and N(N−1)

2 and power law exponent of the degree distribution extracted from the uniform distribution
between 2.005 and 3.

• KR Random regular graphs, with all possible values of node degree.

In Tab. 2 we list mean µ and standard deviation σ of HIM(◦, EN ) for all combinations of node size and network
type: note that we do not report the corresponding median, because its distance from the mean µ is always smaller
than 0.02 nor the bootstrap confidence intervals, whose range is always smaller than 0.02 from either side of the
mean. In Fig. 12 we also show the corresponding boxplots, while in Fig. 13(a) we display the scatterplot in the
Hamming/Ipsen-Mikhailov space of all the aforementioned distances. In the Hamming/Ipsen-Mikhailov space all the
BA nets are confined in the narrow rectangle [0, 0.2]× [0.6, 9.75], while all other classes of graphs span a much wider
area. In particular, the points corresponding to distances of the PL nets occupy densely all the upper left triangle of
the H/IM plane, and the same happens, with H > 0.1, also for the ER networks, while WS and KR points lie in
the upper rectangle [0, 1] × [0.6, 1]. Thus, different PL networks show very different stucture, while the BA nets are
very homogeneous. Notably, no point occurs in the lower right corner of the H/IM space. Moreover, in average, the
standard deviation decreases inversely with the network size, showing larger homogeneity in bigger networks. Finally,
to better highlight the difference among the diverse families, we randomly extracted 100 networks with 100 nodes
for the four families BA, ER, WS and PL and we computed the mutual distances between all possible pairs of these
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Figure 12: Boxplots of the HIM(◦, EN ) for all combinations of node size and network type.

400 graphs. A few statistics of these HIM distances are reported in Tab. 1, while the planar multidimensional scaling
plot [81] is displayed in Fig. 13(b). Apart from the PL networks, the three families BA, ER and WS can be mutually
well separated as shown in the multidimensional plot; moreover, the graphs in the BA and in the WS families are
mutually quite similar, as supported by the small interclass mean HIM distance. On the other side, the PL networks
have essentially the same distance from all other groups, so they cannot be easily distiguished.

4.6 The D. melanogaster development dataset

In [82], the authors used the Keller algorithm to infer the gene regulatory networks of Drosophila melanogaster from
a time series of gene expression data measured during its full life cycle, originally published in [83]. They followed
the dynamics of 588 development genes along 66 time points spanning through four different stages (Embryonic –
time points 1-30, Larval – t.p. 31-40, Pupal – t.p. 41-58, Adult – t.p. 59-66), constructing a time series of inferred
networks Ni, publicly available at http://cogito-b.ml.cmu.edu/keller/downloads.html. Hereafter
we evaluate the structural differences between Ni and the initial network N1, as measured by the HIM distance: the
resulting plot is displayed in Fig. 14. The largest variations, both between consecutive terms and with respect to the

13



Hamming distance

Ip
se

n−
M

ik
ha

ilo
v 

di
st

an
ce

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

10
20
50
100
1000

BA
ER
WS
PL
KR

−0.2

−0.1

0.0

0.1

0.2

0.3

−0.2 0.0 0.2 0.4

BA
ER
WS
PL

(a) (b)

Figure 13: (a) Scatterplot in the Hamming/Ipsen-Mikhailov space of the HIM(◦, EN ) for all combinations of node size
and network type; (b) Multidimensional Scaling of the mutual HIM distances of 400 networks with 100 nodes in the
BA, ER, WS and PL families.

initial network N1, occur in the embrional stage (E): in particular, the HIM distance grows until time points 23, then
the following networks start getting closer again to N1, showing that the interactions of the selected 588 genes in the
adult stage are more similar to the corresponding net of interaction in the embrional stage, rather than in the other two
stages. Moreover, while Hamming distance ranges between 0 and 0.0223, the Ipsen-Mikhailov distance has 0.0851 as
its maximum, indicating an higher variability of the networks in terms of structure rather than matching links. Finally,
using a Support Vector Machine with HIM kernel built in the kernlab package in R, a 5-fold Cross Validation with
γ = 103 and C = 1 reached accuracy 0.97 in discriminating Embryonic and Adult networks from Larval and Pupal,
while, in the same setup, we reach perfect separation between Embryonic and Adult stages for all values of γ larger
than 1000.

Table 1: Mean µ and standard deviation (σ) of the HIM distances between the 100-nodes graphs in the four families
BA, ER, WS and PL; each family includes 100 networks.

BA ER WS PL

BA 0.05 (0.06) 0.69 (0.10) 0.47 (0.13) 0.65 (0.17)
ER 0.50 (0.13) 0.56 (0.15) 0.51 (0.14)
WS 0.29 (0.12) 0.56 (0.18)
PL 0.50 (0.17)

Table 2: Mean µ and standard deviation σ of HIM distances HIM(◦, EN ) from the empty network for all combinations
of network type T and network size N, and cumulatively across node sizes and graph classes.

→N 10 20 50 100 1000 All
↓ T µ σ µ σ µ σ µ σ µ σ µ σ
BA 0.53 0.01 0.51 0.01 0.50 0.02 0.49 0.02 0.50 0.02 0.51 0.02
ER 0.69 0.18 0.73 0.12 0.77 0.09 0.77 0.08 0.76 0.08 0.74 0.12
WS 0.91 0.14 0.76 0.15 0.64 0.08 0.62 0.06 0.62 0.05 0.71 0.16
PL 0.72 0.19 0.72 0.19 0.75 0.15 0.74 0.14 0.72 0.11 0.73 0.16
KR 0.60 0.11 0.54 0.10 0.50 0.05 0.49 0.00 0.48 0.00 0.52 0.08
All 0.69 0.19 0.65 0.17 0.63 0.15 0.62 0.14 0.62 0.13 0.64 0.16
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Figure 14: (a) Evolution of distances of the D. melanogaster development gene network time series in the
Hamming/Ipsen-Mikhailov space with zoom (b) on the final timepoints and (c) evolution of same HIM distances
along 66 time points in the 4 stages Embryonic (E), Larval (L), Pupal (P) and Adult (A).

4.7 The HCC dataset

Publicly available at the Gene Expression Omnibus (GEO) http://www.ncbi.nlm.nih.gov/geo, at the Ac-
cession Number GSE6857, the HepatoCellular Carcinoma (HCC) dataset [84, 85] collects 482 tissue samples from 241
patients affected by HCC, a well-studied pathology [86, 87] where the impact of microRNA (miRNA) is notably rele-
vant [88, 89]. For each patient, a sample from cancerous hepatic tissue and a sample from surrounding non-cancerous
hepatic tissue are available, hybridized on the Ohio State University CCC MicroRNA Microarray Version 2.0 platform
collecting the signals of 11,520 probes of 250 non-redundant human and 200 mouse miRNA. After a preprocessing
phase including imputation of missing values [90] and discarding probes corresponding to non-human (mouse and
controls) miRNA, we consider the dataset HCC of 240+240 paired samples described by 210 human miRNA, with
the cohort consisting of 210 male and 30 female patients. We thus parted the whole dataset HCC into four subsets
combining the sex and disease status phenotypes, collecting respectively the cancer tissue for the male patients (MT),
the cancer tissue for the female patients (FT) and the corresponding two datasets including the non cancer tissues
(MnT, FnT). Then we first generated the four co-expression networks on the 210 miRNA as vertices, inferred via ab-
solute Pearson’s correlation and corresponding to the combinations of the two binary phenotypes, and we computed
all mutual HIM distances. In particular, to show the possible effects due to the different sample size, we computed 30
instances of the MT and MnT networks, inferred using only 30 matching samples and then averaging all the mutual
HIM distances. One instance of MT and MnT is displayed as an hairball in Fruchterman-Reingold layout [91] together
with the nets FT and FnT. The corresponding two-dimensional scaling plot [81] in the right panel of the Figure 15.
The four networks are widely separated, with orthogonal separations for the two phenotypes, but the values of the HIM
distances between the network support the known different development of HCC in male and female: for instance, the
FT network is closer to the MnT net (HIM=0.08), rather than to the MT and FnT (HIM=0.13 and 0.16, respectively).
Note that the largest distance (HIM=0.23) is detected between the two non-tumoral networks MnT, FnT. An expanded
version of the example is shown in [92, 93], where more networks are generated from the same dataset using different
inference algorithms and a stability analysis is performed.

4.8 The Gulf Dataset

Part of the Kansas Event Data System, available at http://vlado.fmf.uni-lj.si/pub/networks/data/
KEDS/, the Gulf Dataset collects, on a monthly bases, political events between pairs of countries focusing on the Gulf
region and the Arabian peninsula for the period 15 April 1979 to 31 March 1999, for a total of 240 months. Political
events belong to 66 classes (including for instance ”pessimist comment”, ”meet”, ”formal protest”, ”military engage-
ment”, etc.) and involve 202 countries. This dataset formally translates into a time series of 240 unweighted and
undirected graphs with 202 nodes, for which we computed all the mutual 240·239

2 HIM distances. These distances are
then used to project the 240 networks on a plane through a multidimensional scaling [81]: the resulting plot is displayed
in Fig. 16. The months corresponding to the First Gulf War months (July 1990 - April 1991) are close together and
confined in the lower left corner of the plane, showing both a mutual high degree of homogeneity and, at the same time,
a relevant difference to the graphs of all other months. This shows that, at the onset of the conflict, the diplomatic rela-
tions worldwide changed consistently and their structure remained very similar throughout the whole event. Note that
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Figure 15: (left) Fruchterman-Reingold layout of the networks MT, MnT, FT, FnT where the male networks are inferred
by one random extraction of 30 samples out of the whole cohort of 210 patients. Node size is proportional to node
degree. (right) Multidimensional scaling plot, with mutual HIM distances, of the networks FT, FnT, MT, MnT.

the blue point (closer to the war-like period) corresponds to February 1998, the time of Iraq disarmament crisis: Iraqi
President Saddam Hussein negotiates a deal with U.N. Secretary General Kofi Annan, allowing weapons inspectors to
return to Baghdad, preventing military action by the United States and Britain.

4.9 The International Trade Network data

As an application of the HIM distance on directed and weighted networks, we show four examples based on the
International Trade Network (ITN) data, version 4.1, by Gledisch [94] available at http://privatewww.essex.
ac.uk/ksg/exptradegdp.html, collecting estimates of trade flows between independent states (1948-2000)
and GDP per capita of independent states (1950-2000). As noted by [95], due to differences in reporting procedures
between countries, incongruences occur between exports from i to j and imports from i to j: to avoid this issues, in
our analysis we only use the figures reported as export in the dataset.

In what follows, we extract four sets of countries, and we study the evolution of their trade subnetworks during the
aforementioned period. In each example, chosen the set of N countries C1, . . . CN , we construct, for every year, the
weighted directed network having C1, . . . CN as nodes. A link between country Ci and country Cj represents the
export from Ci to Cj , and its weight wij corresponds to the volume of the export flow. Then we compute all mutual
HIM distances among these networks, first rescaling link weights in the unit interval. Finally, using these N(N−1)

2
HIM distances we construct a planar classical Multidimensional Scaling plot, transforming the networks in a set of
points such that the distances between the points are approximately equal to the mutual HIM dissimilarities, using the
methods in [96, 97, 98, 81] as implemented in R. The aim here is to connect the structural changes in yearly trade
networks with time periods and events having a role in explaing such changes. Note that in [95], the authors show
that bilateral trade fulfills fluctuation-response theorem [99], stating that the average relative change in import (export)
between two countries is a sum of relative changes in their GDPs. This result yields that directed connections, i.e.,
bilateral trade volumes, are only characterized by the product of the trading countries GDPs.

As a first example we present the BRICS countries case. Introduced in 2001, the acronym BRICS collects the five
nations Brazil, Russia, India, China and South Africa (Fig. 17(a)) which, although developing or newly industrialized
countries, are distinguished by their large and fast-growing economies and by their significant influence on regional
and global affairs. To such aim, in Fig. 17 we show the bidimensional scaling of their trade networks for the years
1950–2000, with the HIM matrix as the distance constraint. As shown by the plot, three groups of years can be clearly
divided, thus yielding that the corresponding networks are similar within each group, but diverse across different
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groups: the early years recovering after WWII (until about 1963), the seventies and eighties, where the economies of
the involved countries started to develop, and the nineties, where their growth begun to accelerate.

A very similar situation occurs in the regional trade network among the South American countries (Fig. 18), where
the global behaviour is essentially controlled by the two local giants Brazil and Argentina, and for which the larger
differences between the nets can be appreciated between the economic growth of the 90s and the suffering economies
in the late 70s / early 80s due to the struggling political situations.

Not much different is the case of the larger trade subnetworks of the top 20 world economies ranked by Gross Domestic
Product 2012 (PPP) (Top20 for short) as listed by the World Bank http://data.worldbank.org and shown in
Fig. 19, with the notable difference that the networks for the 60s are more homogeneous to those of the 70s and
80s, supporting a faster recovery of these economies after WWII than the BRICS or the South American countries.
Again, the 90s are remarkably separated by the previous periods, as a consequence of the fact that economic growth
for high-income countries such as the United States, Japan, Singapore, Hong Kong, Taiwan, South Korea and Western
Europe was steady and coupled with ”an unprecedented extension and intensification of globalization in terms of the
international integration of capital and product markets” [100], thus causing a structural evolution of the trade networks
for these countries, whose economies account for approximately 85% of the gross world product (GWP), 80 percent
of world trade (including EU intra-trade), and two-thirds of the world population.

We conclude with a more local example: between 1975 and 1990, the civil war heavily damaged Lebanon’s economic
infrastructure, reducing the role of the country as the major West Asian banking hub. The following period of relative
peace stimulated economic recovery also through an increasing flow of manufactured and farm exports. In this last
example we consider the trading network W between Lebanon and its three major economic partners, Saudi Arabia,
Kuwait and United Arab Emirates. In Fig. 20 we show 4 examples of the trade networks with the Lebanon export
figures. In the bidimensional scaling plot of Fig. 21 the trajectory emerges of the evolution of the W graphs across the
different decades 50s, 60s, 70s, 80 and 90s, even more clearly than in the previous cases. Here the rightmost points
in the plot, corresponding to the years 1977–1990, in the middle of the civil war in Lebanon, where a contraction of
the trading flow was recorded. Finally, in the plot of Fig. 22, we show the relation between the volume of export
flow of Lebanon and the curve representing the HIM distance of Wi from W1950 for i ∈ {1951, . . . , 2000}. Pearson
correlation between the two curves is 0.71, and their shape shows that the trade network is following the trend of the
other curve with a temporal shift of about a decade.

−0.04

−0.02

0.00

0.02

−0.05 0.00 0.05 0.10

Other periods

First Gulf War

Iraq Disarmament Crisis

Figure 16: Planar HIM distance based multidimensional scaling plot of the monthly Gulf Dataset. Red dots corresponds
to the First Gulf War months (July 1990 - April 1991), while grey points correspond to months outside that temporal
window and the blue point corresponds to February 1998, the month of the Iraq disarmament crisis.
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Figure 17: (a) Maps and flags of the BRICS countries. (b) Multidimensional Scaling of the HIM distances among the
intertrade networks of the BRICS countries in the periods 1950–1963 (black), 1964–1990 (blue), 1991–2000 (red).
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Figure 18: Maps (left) and flags (bottom) of the Latin America countries. (right) Multidimensional Scaling of the
HIM distances among the intertrade networks of the countries in the Latin America in the periods 1948–1959 (black),
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4.10 The MEG Biomag 2010 competition 1 dataset

The challenge dataset for the 2010 Biomag competition was derived from [101] and consisted in monitoring 4 subjects
by a MEG in a set of trials where a fixation cross was presented to the subject and after that at regular intervals a
cue indicated which direction, either left or right, they had to covertly attend to during the next 2500ms. After this
period, a target in the indicated direction appeared. Brain activity was recorded from 500ms before cue offset to
2500ms after cue offset through 274 sensors at 300Hz; a total of 128 trials per condition were collected, 256 total trials
per subject. MEG data were first preprocessed as explained in [101]: the raw signals of each trial are independently
decomposed with a multitaper frequency transformation in the 5-40 Hz interval with 2 Hz bin width. The results of the
frequency transforms are used to construct a coherence network for each trial, which is successively rescaled such that
its eigenvalues are between +1 and -1. After rescaling, on a separated instance of the dataset, the eigenvalues of the
network are subjected to a network deconvolution procedure as explained in [102]. Finally, an Elastic Net [103] linear
regression using the Lasso [104] in two phases with the mixed `1`2 algorithm [105, 106], resulting in a final dataset of

1951 1974 1985 1996

Figure 20: The trade network between Lebanon, Saudi Arabia, Kuwait and United Arab Emirates in 1951, 1974, 1985
and 1996; red links indicate Lebanon export flow, with the corresponding volume figure. Edge width is proportional to
export flow volume.
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Figure 21: (left) Maps and flags of the countries in the Lebanon trade net . (top right) Multidimensional Scaling of
the HIM distances among the intertrade networks of the Lebanon trade net countries in the periods 1950–1961 (black),
1962–1971 (green), 1971–1981 (gray), 1982–1990 (blue), 1991–2000 (red).

Table 3: Average Classification Accuracies for Deconvolved and non Deconvolved 11 Hz Networks, standard errors
in brackets. As a baseline, authors in [109] reach 0.67 accuracy using the Elastic Net with summary statistics of
spatio-temporal activations and 0.73 using 2-D DCT basis.

Non-Deconvolved Deconvolved
L-SVM 0.65 (0.02) 0.72 (0.02)
HIM0-SVM 0.67 (0.03) 0.74 (0.03)
HIM+∞-SVM 0.56 (0.04) 0.48 (0.05)
HIM-SVM 0.61 (0.04) 0.63 (0.04)
RF 0.71 (0.01) 0.70 (0.02)
EN 0.71 (0.03) 0.74 (0.03)

252 covariance networks on 274 nodes, equally distributed between label ”right” and ”left”. A suite of Support Vector
Machines from mlpy http://mlpy.fbk.eu [107] with different HIMξ kernels were tested, together with the linear
kernel L-SVM, Random Forest RF [108] and Elastic-Net EN as a baseline, on a set of 100 MonteCarlo resampling of
stratified training (84+84 networks) and test (42+42) sets of both the deconvolved and the original dataset, yielding the
performance shonw in Tab. 3.
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Figure 22: Lebanon export flow in the years 1950–2000 (Million of USD, solid multicolor line left y axis) and curve
of HIM(Wi,W1950) (dashed orange line).

As a general consideration, the deconvolution procedure helps improving classification. The better accuracy is reached
by the kernel with only the Hamming component (HIM0), which performs better of baseline methods, while the Ipsen-
Mikhailov component (HIM+∞) performs very poorly, on both versions of the datasets. All intermediate values of
ξ (including ξ = 1 reported in the table) gives decreasing performance for increasing values of ξ, implying that the
topological features of the graph are not useful for classification in this task, maybe because of the symmetric nature
of the task.

The obtained results of this off-the-shelf method are comparable with the range of performances obtained by far more
complex and properly targeted approaches [110, 111, 109], representing a promising starting point for an effective use
of the HIM kernel, for instance coupled with other graph kernels or some feature selection techniques. An extended
version of this example can be found at [112].

5 Conclusions

We introduced HIMξ, a novel family of distances between graphs with same nodes, even directed and weighted,
aimed at combining the local and global aspects of the comparison between networks, i.e., the difference between
matching vertices and the difference between the spectral structure. After unveiling definitions and properties, we
provided a range of applications in several fields, from functional genomics to economics, to show the usefulness
of the proposed solution. In particular, we underlined the effectiveness of the HIM metrics when used as a kernel
functions for classification purposes, e.g., in Support Vector Machines, applied to heterogenous data in diverse areas.
A final comment on the computational feasibility: the costly part when computing the HIM distance is the extraction
of the spectrum from the Laplacian matrices of the two compared graph. This task is both CPU intensive and requiring
a fair amount of RAM, but allows for a wide parallelization: nonetheless, huge graphs should be dealt with HPC
facilities. As an example, the size of the largest graphs we compared (using a Python implementation making use of
the NumPy library) is about 40,000 nodes: on a workstation with 48 Intel Xeon CPU E5649 at 2.53GHz and powered
by 48Gb RAM we were able to run 4 parallel processes which took about 36 hours to compute the mutual distances
between a set of 45 networks, for a total of 990 comparisons.
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[5] P. Csermely, T. Korcsmáros, H.J.M. Kiss, G. London, and R. Nussinov. Structure and dynamics of biological
networks: a novel paradigm of drug discovery. A comprehensive review. Pharmacology and Therapeutics,
138:333–408, 2013.

[6] H.-Y. Chuang, E. Lee, Y.-T. Liu, D. Lee, and T. Ideker. Network-based classification of breast cancer metastasis.
Molecular Systems Biology, 3:140, 2007.

[7] B. Yang, J. Zhang, Y. Yin, and Y. Zhang. Network-Based Inference Framework for Identifying Cancer Genes
from Gene Expression Data. BioMed Research International, 2013:Article ID 401649, 2013.

[8] G. Pavlopoulos, M. Secrier, C. Moschopoulos, T. Soldatos, S. Kossida, J. Aerts, R. Schneider, and P. Bagos.
Using graph theory to analyze biological networks. BioData Mining, 4(1):10, 2011.

[9] A. Barla, G. Jurman, R. Visintainer, M. Squillario, M. Filosi, S. Riccadonna, and C. Furlanello. A Machine
Learning Pipeline for Discriminant Pathways Identification. In E. Biganzoli, A. Vellido, F. Ambrogi, and
R. Tagliaferri, editors, Computational Intelligence Methods for Bioinformatics and Biostatistics, volume 7548
of Lecture Notes in Computer Science, pages 36–48. Springer, 2012.

[10] A. Barla, G. Jurman, R. Visintainer, M. Squillario, M. Filosi, S. Riccadonna, and C. Furlanello. A Machine
Learning Pipeline for Discriminant Pathways Identification. In N.K. Kasabov, editor, Springer Handbook of
Bio-/Neuroinformatics, chapter 53, page 1200. Springer, Berlin, 2013.

[11] Y. Xiao, H. Dong, W. Wu, M. Xiong, W. Wang, and B. Shi. Structure-based Graph Distance Measures of High
Degree of Precision. Pattern Recognition, 41(12):3547–3561, 2008.

[12] M. Dehmer and A. Mowshowitz. The Discrimination Power of Structural SuperIndices. Plos ONE, 8(7):e70551,
2013.

[13] R.C. Entringer, D.E. Jackson, and D.A. Snyder. Distance in graphs. Czechoslovak Mathematical Journal,
26(2):283–296, 1976.

[14] L. Zhu, W.K. Ng, and S. Han. Classifying graphs using theoretical metrics: A study of feasibility. In J. Xu,
G. Yu, S. Zhou, and R. Unland, editors, Database Systems for Adanced Applications, volume 6637 of Lecture
Notes in Computer Science, pages 53–64. Springer, 2011.

[15] S. Aliakbary, S. Motallebi, J. Habibi, and A. Movaghar. Learning an Integrated Distance Metric for Comparing
Structure of Complex Networks. arXiv:1307.3626v1 [cs.SI], 2013.

[16] Z. Chen. Discovery of Informative and Predictive Patterns in Dynamic Networks of Complex Systems. PhD
thesis, North Carolina State University, 2012.

[17] L. Chen, J. Xuan, R. Riggins, R. Clarke, and Y. Wang. Identifying cancer biomarkers by network-constrained
support vector machines. BMC Systems Biology, 5(1):161, 2011.

[18] D.R. Thorat and S.S. Sonawane. A survey of graph classification approaches. In Proceedings of International
Conference on Computer Science and Information Technology ICSIT 2013, pages 169–178. IRNet Explore,
2013.
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A Uniqueness of γγγ

Fix the number N of nodes, and consider the two extremal networks EN and FN , whose Laplacian spectrum is respec-
tively

spec(L(EN )) = (0, · · · , 0︸ ︷︷ ︸
N

) and spec(L(FN )) = (0, N, · · · , N︸ ︷︷ ︸
N−1

) ,

so that ωi = 0 for the empty network and ωi =
√
N for the fully connected network, for i = 1, . . . , N − 1.

The Lorentz distribution for the empty network is thus

ρEN (ω, γ) = K

N−1∑
i=1

γ

γ2 + (ω − ωi)2

=
Kγ(N − 1)

γ2 + ω2
,

where K can be computed as

K =
1∫ +∞

0

γ(N − 1)

γ2 + ω2
dω

=
1

(N − 1)
[
arctan

(
ω
γ

)]+∞
0

=
1

π

2
(N − 1)

=
2

(N − 1)π
,
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so that

ρEN (ω, γ) =
Kγ(N − 1)

γ2 + ω2

=
2γ

π(γ2 + ω2)
.

For the fully connected network we have

ρFN (ω, γ) = K

N−1∑
i=1

γ

γ2 + (ω − ωi)2

= K

N−1∑
i=1

γ

γ2 + (ω −
√
N)2

=
γK(N − 1)

γ2 + ω2 +N − 2ω
√
N
,

where K is

K =
1

γ(N − 1)

∫ +∞

0

dω
γ2 + ω2 +N − 2ω

√
N

=
1

γ(N−1)
γ

[
arctan

(
ω−
√
N

γ

)]+∞
0

=
1

(N − 1)
(
π
2 + arctan

(√
N
γ

)) ,
so that

ρFN (ω, γ) =
γK(N − 1)

γ2 + ω2 +N − 2ω
√
N

=
1

(N − 1)
(
π
2 + arctan

(√
N
γ

)) · γ(N − 1)

γ2 + ω2 +N − 2ω
√
N

=
γ(

π
2 + arctan

(√
N
γ

))(
γ2 + ω2 +N − 2ω

√
N
) .

Thus, we expand Eq. 3 as follows:

1 = εγ(EN ,FN )

=

√∫ ∞
0

(ρEN (ω, γ)− ρFN (ω, γ))
2 dω

=

√√√√√∫ ∞
0

 2γ

π(γ2 + ω2)
− γ(

π
2 + arctan

(√
N
γ

))(
γ2 + ω2 +N − 2ω

√
N
)
2

dω

=

√∫ ∞
0

A2dω +

∫ ∞
0

B2dω − 2

∫ ∞
0

ABdω ,

(6)

where

A =
2γ

π(γ2 + ω2)

B =
γ(

π
2 + arctan

(√
N
γ

))(
γ2 + ω2 +N − 2ω

√
N
) .
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The three terms in Eq. 6 can be expanded as follows:

∫ +∞

0

A2dω =

∫ +∞

0

(
2γ

π(γ2 + ω2)

)2

dω

=
4γ2

π2
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0

dω
(γ2 + ω2)2
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4γ2
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1

2γ3

[
γω

γ2 + ω2
+ arctan
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ω

γ
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0
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2

γπ2

[π
2

]
=

1

πγ
;

(7)

∫ +∞

0

B2dω =

∫ +∞

0

 γ(
π
2 + arctan

(√
N
γ
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N
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2
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N
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√
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(8)

−2

∫ +∞

0

ABdω = −2

∫ +∞

0

2γ

π(γ2 + ω2)

γ(
π
2 + arctan

(√
N
γ

))(
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)dω

=
−2 · γ · 2γ
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(
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N
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))∫ +∞
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(
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√
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=
−4γ(

π
2 + arctan

(√
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π(4γ2 +N)
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log
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√
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√
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+
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(9)
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Figure 23: (a) Behaviour of f(γ,N) for N=5, 10 and 10000, in the interval γ ∈ (0, 200] and (b) zoomed in the interval
γ ∈ [0.35, 0.5] with the solutions of Eq. 3.

Plugging Eqs. 7,8,9 into Eq. 6, we obtain:

1 = εγ(EN ,FN )

=
1

πγ
+

1

2γ
(
π
2 + arctan

(√
N
γ

))2

(
π

2
+

γ
√
N

γ2 +N
+ arctan

(√
N

γ

))
−

−4γ(
π
2 + arctan

(√
N
γ

))
π(4γ2 +N)

[
π − γ√

N
log

γ2

γ2 +N
+ arctan

(√
N

γ

)]
.

Consider now the function f(N, γ) = εγ(EN ,FN )−1: for a fixed value ofN , it is a monotonically decreasing function
of γ, so the equation Eq. 3 has an unique solution γ. In Fig. 23 (a) and (b) we display the situation for N= 5,10 and
100000.

B Uniqueness of γ↑γ↑γ↑

The spectra of the laplacian matrices of the two extremal graphs Ê↑N and F̂↑N are now

spec(L(Ê↑N )) = (0, · · · , 0︸ ︷︷ ︸
2N

) and spec(L(F̂↑N )) = (0, N − 2, · · · , N − 2︸ ︷︷ ︸
N−1

, N, · · · , N︸ ︷︷ ︸
N−1

, 2N − 2) .

It follows that
KÊ↑N

=
2

(2N − 1)π

and
KF̂↑N

=
1

(2N − 1)π2 + (N − 1)
(

arctan
√
N−2
γ + arctan

√
N
γ

)
+ arctan

√
2N−2
γ

.

Thus the equation
εγ(Ê↑, F̂↑) = 1

(whose solution is the normalizing factor γ↑) reads as follows:

1 =

√√√√√√∫ +∞

0

 2γ

γ2 + ω2
−

γ
(

N−1
γ2+(ω−

√
N−2)2

+ N−1
γ2+(ω−

√
N)2

+ 1
γ2+(ω−

√
2N−2)2

)
(2N − 1)π2 + (N − 1)

(
arctan

√
N−2
γ + arctan

√
N
γ

)
+ arctan

√
2N−2
γ

2

dω . (10)
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N γ γ↑

5 0.4272836 0.3866861
10 0.4517012 0.4300291
50 0.4752742 0.4704579

100 0.4777976 0.4753463
500 0.4787492 0.4782538

1000 0.4785596 0.4783119
10000 0.4779060 0.4778813 N
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Figure 24: Comparison of γ and γ↑ for different number of nodes N .

Introduce now a few shorthands: define, for T,U ∈ R, the following integral∫ +∞

0

dω
(γ2 + (ω −

√
T )2)(γ2 + (ω −

√
U)2)

=

{
M(T ) if T = U ,
L(T,U) if T 6= U .

Then,

M(T ) =

1
2

(
γ2 arctan

√
T
γ + T arctan

√
T
γ + γ

√
T
)

γ5 + Tγ3
+

π

4γ3
,

and

L(T,U) =
− log

(
γ2 + U

)
+ log

(
γ2 + T

)
(4 γ2 + T + 3U)

√
T − (4 γ2 + 3T + U)

√
U

+
π + arctan

(√
T
γ

)
+ arctan

(√
U
γ

)
4 γ3 + Tγ − 2

√
T
√
Uγ + Uγ

.

To shorten notations, define furthermore

Z =
2γ

π
W = γ(N − 1)KF̂↑N

W ′ =
W

N − 1
.

With the aforementioned positions, Eq. 10 becomes

1 = Z2M(0) +W 2M(N − 2) +W 2M(N) +W ′2M(2N − 2)

− 2ZWL(0, N − 2)− 2ZWL(0, N)− 2ZW ′L(0, 2N − 2)

+ 2W 2L(N − 2, N) + 2WW ′L(N − 2, 2N − 2) + 2WW ′L(N, 2N − 2) .

(11)

As in the undirected case, for each N Eq. 11 has an unique solution γ↑, whose value is quite close to γ, as shown in
Fig. 24.
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