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Abstract—In recent years, the importance of identifying ac-
tionable patterns has become increasingly recognized so that
decision-support actions can be inspired by the resultant patterns.
A typical shift is on identifying high utility rather than highly
frequent patterns as frequent patterns are usually not actionable.
Accordingly, High Utility Itemset (HUI) Mining methods have
become quite popular as well as faster and more reliable than
before. However, the current research focus has been on improv-
ing the algorithm efficiency while treating items and itemsets
independently. It is important to study item and itemset coupling
relationships inbuilt in the data. For example, the utility of
one itemset A might be lower than the user-specified threshold;
when an additional itemset B takes part in, the utility of AB
may be higher than the threshold. Instead, an item’s utility
might be high, while the joint utility of an itemset combining
another items may be low. Although some absolutely high utility
itemsets can be discovered, sometimes it is often to find out
that quite a lot of redundant itemsets sharing the same item
are mined (e.g., if the utility of a diamond is high enough,
all its supersets are proved to be HUIs). Such individual high
utility itemsets are not actionable, and sellers cannot make
higher profit if marketing strategies are created on top of such
findings. To this end, here we introduce a new framework for
mining actionable high utility association rules, called Combined
Utility-Association Rules (CUAR), which aims to find high utility
and strong association of itemset combinations, which consist of
multiple itemsets connected in terms of item/itemset relations. The
algorithm is proved to be efficient per experimental outcomes on
both real and synthetic datasets.

Keywords - high utility itemset mining, actionable combined
pattern mining, association rule, pattern relation analysis

I. INTRODUCTION

Typical data mining applications such as basket analysis
rely on mining interesting patterns, in which two major ob-
jectives are addressed progressively: (1) identifying frequently
associated items for commercial purpose such as cross-selling,
and (2) discovering high utility itemsets [22] towards profitable
selling. By using these methods, retailers can discover the
most frequent or profitable products or product combinations.
For example, a helmet is recommended when someone wants
to buy a bicycle by mining associations between purchasing
helmets and bicycles. Moreover, the outcomes delivered by
high utility itemset mining [15] make it possible to discover
the most profitable brand of products or product combinations,
and help retailers and shopkeepers build marketing strategies
to sell highly profitable goods.

While the utility-based framework greatly enhances the
actionability [6] of resultant patterns, compared to frequent

TABLE I. AN EXAMPLE DATABASE

TID Transaction TU

T1 (A, 1) (C, 1) (D, 1) 8

T2 (A, 1) (B, 6) (C, 2) (F, 5) 24

T3 (A, 2) (B, 2) (C, 6) (D, 5) (E, 1) 60

T4 (B, 4) (C, 3) (D, 2) (F, 3) 18

T5 (B, 2) (C, 2) (F, 3) 9

TABLE II. PROFIT TABLE

Item A B C D E F

Profit 5 2 1 2 30 1

pattern mining, it alone is still defective in some circumstances.
As in utility mining, the unit profit of each item is given,
while the quantity of an item depends on the transaction.
Mining the utility of an itemset can be regarded as a statistic
way to discover the itemsets whose utility is larger than a
specific value [15]. However, the use of utility alone makes it
ineffective to discover strongly associated items. For instance,
selling a pedigree cat in a pet store happens maybe once a
month or even more rarely. Although the profit is extremely
high, it is probably not very wise for a manager to spend too
much on designing strategies to promote such kind of pedigree
pet with pet foods, because selling the pedigree pet could
be just a coincidence. Furthermore, if a customer happens to
purchase many other items at the same time, patterns like
“pedigree cat, cat food, cattery, troughs” or “pedigree cat,
necklace, cattery, cat litter” etc. could be selected as high utility
itemsets. Obviously, such itemsets are neither representative
nor actionable to the manager.

Such situations are described in Table I and Table II as an
example. All subsets belong to T3, containing {F} are finally
proved to be HUIs, while the given threshold is no less than 50.
All other itemsets are filtered as they fail to pass the thresh-
old. Obviously, such itemsets are neither representative nor
actionable to most of businessmen. However, if the threshold
is set too low, new problem would appear. Searching a large
number of itemsets on a large dataset may encounter a large
search space.

With the examples in the above tables, Table III lists the
utility, support and confidence of itemsets (here each rule is
also called an itemset). The support of an itemset reduces when
the itemset size (length) increases because of the Downward



TABLE III. A COMPARISON OF ITEMSET UTILITY, SUPPORT AND
CONFIDENCE

Itemset(Pattern) Utility Support Confidence

{A} 20 60% Nil

{A → E} 40 20% 33%

{C} 14 100% Nil

{C → B} 41 80% 80%

{BC → E} 40 20% 25%

Closure Property (DCP) [1]. However, some patterns still con-
tain more information than others. For example, the association
rule {C → B} is not only of a high confidence, but also
associated with a high utility increment from {C} (with utility
14) to {BC} (41), which should be more interesting than other
rules in this table.

To overcome the above issues, a new framework is required
to discover the really actionable patterns: they are not only
succinct in terms of presentation (for a given item, only the
most profitable itemset instead of many should be chosen)
but also actionable (both utility-contrasted and strongly as-
sociated). Even though this seems to be very promising and
interesting to users, it is critically challenging to build such a
framework. The major challenges are below.

• The downward closure property [1] cannot be applied
in the utility-based framework. The utility of one
itemset is neither monotonic nor anti-monotonic while
the length of the itemset changes, which means the
utility of the itemset might be either higher or lower
compared with its superset or subset. In addition, for
a tree-structured algorithm, it is hard to assert which
branch is with the highest utility until all the branches
are calculated. Thus, fast algorithms such as in [7]
could not be applied to mining HUI.

• In high utility itemsets mining, a large number of
candidates would be generated if a lower threshold
is given. On the contrary, if the threshold is set too
high, only the absolutely high utility itemsets can be
discovered, and it is then hard to identify the most
profitable itemsets for a given item. Subsequently,
when utility is considered as the only metric to select
patterns, high utility pattern mining may result in
findings that are not typical and do not consider the
couplings between items.

• While the combination of utility mining with frequent
pattern mining is promising, the question is how to
combine the utility framework with association rule
mining. Association rule mining cares about the co-
occurrence relationship between items based on the
supports of items, while it is not clear how to measure
the itemset associations for high utility items. An
item’s utility depends on not only the quantity of an
item in a transaction, but also its item utility.

Fig. 1 illustrates the utility dynamics of utility-based item-
sets when itemset grows.

Since there are significant gaps existing in objectives and
definitions of utility-based itemsets and association rules, it
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Fig. 1. Example of utility dynamics in terms of itemset growth

TABLE IV. PATTERN EXPRESSION

Utility-Association Traditional Association Structure of Pattern Relation

X0 → Xa X0 → ∆X1 X0 + ∆X1 = Xa

X0 → Xb X0 → ∆X2 X0 + ∆X2 = Xb

is hard to simply merge them. We introduce the concept
combined mining [3], [5], [6] to combine the utility-based
framework and basket analysis. In combined mining, taking
Fig. 1 and Table IV as an example, Derivative Itemset (DI)
(e.g. Xa, Xb), also called combined itemset, is an itemset
consisting of two parts. One part is called Underlying Itemset
(UI), which is the same part X0 shared in both Xa and Xb

in Equation 1. The other part is called Additional Itemset
(AI), which is different in (a) and (b), marked as ∆X1 and
∆X2. The combined patterns are called ‘Utility-Association
Combined Patterns’ shown in Table IV.{

X0 → Xa (a)
X0 → Xb (b)

(1)

With a single underlying itemset, a cluster of DIs might
be discovered with respect to different AIs. Here we define
actionable high utility itemsets as a pair of DIs. Furthermore,
we define that one of the pairs has the highest utility among
all the DIs with the same UI, whereas the other DIs have the
lowest utility. This type of combined high utility patterns is
informative for decision-making. For instance, in marketing,
it may suggest a manager that some products should be sold
with the others for high profit, whereas the same products sold
with something else may result in a loss. Obviously, such kind
of combined patterns incorporate item and itemset relationship
and utility, is thus more actionable for decision making.

The contributions of the work are listed below.

• A novel pattern structure, called Actionable Com-
bined Utility-Association Rule (CUAR), is proposed.
It enables the generation of patterns that are of both
high utility and are strongly associated, by considering
the relationships between items, which provides users
with actionable knowledge.



• A new interestingness for selecting patterns, called
Associated-Utility Growth (AUG), which integrates the
relationship (association) and the utility, is proposed.
To our knowledge, it is the first method for select-
ing patterns that have high utility without losing the
representativeness (namely strong association).

• Intensive experiments on synthetic and real datasets
are conducted to evaluate the proposed methods.

The rest of the paper is organized as follows. In Section 2,
the background is introduced. The problem is stated in Section
3. In Section 4, we propose the UG-Tree, a baseline approach
before introducing the CUARM algorithm. Section 5 presents
the experimental results, and Section 6 concludes this work.

II. RELATED WORK

A. Frequent Itemset and Association Rule Mining

Mining frequent itemsets [1] is a primary research topic
and has been fully extended into diversified directions [8] for
a score of years since it was first introduced in 1994 by Rakesh
Agrawal et al. It is intended to identify strong rules discovered
in databases using different measures of interestingness. Based
on the concept of strong rules, Rakesh Agrawal et al. [1] in-
troduced association rules for discovering regularities between
products in large-scale transaction data recorded by point-of-
sale (POS) systems in supermarkets. After that, a variety of
algorithms were proposed to tackle the efficiency issue. Among
them, FP-Growth [7] is one of the most efficient algorithms.

However, the frequency-based FIM framework often leads
to many patterns which are not actionable at all [4]. To
enhance pattern actionability, one recent effort is the high
utility pattern mining which considers the utilities of unit
items and itemsets in addition to their statistical significance.
The existing FIM and association rule mining algorithms are
incapable of capturing such high utility patterns, because they
ignore the business interest [4] of each item and itemset which
is essential for decision-making.

B. High Utility Itemset Mining

High Utility Itemset (HUI) Mining emerges as a recent
solution for enhancing pattern actionability [6], since it was
first introduced in 2004 [20]. Then a series of approaches
have been proposed based on Transaction-Weighted Utilization
(TWU) and Transaction-Weighted Downward Closure (TWDC)
Property, for example Two-Phase [13], IHUP [2], UP-Growth
[15], CHUD [18], TKU [19], d2HUP [11], and HUIM [12].
In addition, mining high utility sequential itemsets becomes
popular, such as USpan [22] and UP-Span [17].

The UP-Growth algorithm is one of algorithms for utility
itemset mining. UP-Growth is a tree-based mining algorithm
with four strategies to prune candidate itemsets. Two strategies
for constructing a global UP-Tree (a structure for containing
the items) called Discarding Global Unpromising (DGU) Items
and Decreasing Global Node (DGU) Utilities, and two strate-
gies for constructing a local UP-Tree called Discarding Local
Unpromising (DLU) Items and Decreasing Local Node (DLN)
Utilities are proposed for mining HUIs.

Even though mining algorithms such as UP-Growth extract
high utility itemset efficiently, some HUIs may take place just
as coincidences and are not representative and reliable for
action taking. This is caused by the fact that utility is the only
interestingness in the HUI mining algorithms, while utility is
a subjective matter.

C. Combined Pattern Mining

The concept of “Combined Association Rules” was in-
troduced in [25], and then extended in [23]. Combined rule
mining provides a new way of merging knowledge typically
for such scenarios that two features are not in the same dataset
and it is not feasible to merge two datasets. For example,
different features from two sets cannot be merged into one set
as one is with customer IDs, age, address, gender, living region,
nationality and such details, while the other contains gender,
annually incomes, debt, debt repaying method, and repaying
period. In this way, rather than integrating two datasets into
one, a more feasible way is to build patterns consisting of
constituents from respective data sets.

Further, the high impact combined pattern mining was pro-
posed in [3]. These patterns are either frequent or infrequent,
but show important business impact that is crucial for solving
business problems. These patterns are exceptional because
they won’t be detected by traditional frequent pattern mining
methods which can only find patterns with high frequency.
The resultant combined patterns are represented in Equation 2.
For each equation in Equation 2, A is a feature, an itemset, a
sequence, or a sub-pattern, B is another, and C is the impact
associated with the pattern consisting of A and B. C may refer
to different risk levels, fraud or not, outlier or not. Yet, this
approach is only used in the frequency-based framework.

A1 +B1 → C1

A1 +B2 → C2

A1 +B3 → C3

...

(2)

More comprehensive discussions about combined mining and
pattern relation analysis are in [5], [6], which address new
perspectives of analyzing pattern relations and mining hetero-
geneous sources.

D. Frequency-Utility Mining Model

Seeking for both high profit and effective itemset combi-
nations, Yeh et al. proposed a novel utility-frequent mining
model BU-UFM [21]. A new definition of support called
QSupport was proposed to measure the interestingness of the
combination of both utility and frequency. Years after that,
algorithm called S-UFPM [10] with a shared tree structure
was proposed and proved to be faster. Several other algorithms
such as WUARM7 [9], FUFM [14] with small missing rate and
less running time compared with UMining (Foundational) [20]
and MWIT [16] were proposed to reduce the execution time
compared to traditional HUI mining method.

However, none of the above methods are applicable for
solving our proposed problem due to the following reasons: 1)
although it is also called “utility” in [21], but the definition
is different [15], and 2) the measurements and proposed
algorithms perform as just filters for selecting patterns, they do
not combine patterns considering their utilities and frequencies.



III. PROBLEM STATEMENT

Here, we define Associated-Utility Growth (AUG) Pattern,
which introduces both association and utility growth into
combined mining and mining actionable combined pattern
pairs.

A. Definitions

Taking Table I and II as an example, let D =
{T1, T2, ..., Tm} be a transaction database, and I =
{i1, i2, ..., in} be a set of finite and discriminative items. Each
transaction Tc ∈ D (1 < c < m) is a subset of I with a
distinct identifier called TID. In a given transaction Tc, each
item ik appears with a positive integer, q(ik, Tc) is called ik’s
quantity utility in Tc. Also, each item in I is associated with
a positive number p(ik, I), which is called ik’s profit utility in
I.

Definition 1: The frequency of an itemset X counts the
times it appears in all transactions and is denoted as SC(X).
The support of X is SC(X), divided by the number of
transactions in D, and is denoted as supp(X).

Based on Table I, SC(A) is 3, SC(AB) is 2, and Supp(AB)
= 40%.

Definition 2: The utility of item ik in a transaction Tc is
the profit utility of the item times its quantity utility in a
transaction, defined as

u(ik, Tc) = p(ik, I) ∗ q(ik, Tc) (3)

An item ik with its utility in a transaction Tc is denoted
as u(ik, Tc) (ik ∈ Tc).

Definition 3: The utility of an itemset X in a transaction
Tc is the utility sum of all items belonging to the itemset,
defined as

u(X,Tc) =
∑
ik∈X

u(ik, Tc) (4)

An itemset contains l discriminative items is called an l-
length itemset, where X ⊆ I. The utility of the same item
in different transactions might be different considering the
quantity of each item purchased.

Definition 4: The utility of an itemset X in the whole
database D is the sum of the utility of this itemset in all
transactions. It is denoted as U(X), and defined as

U(X) =
∑

X⊆Tc∧Tc∈D

u(X,Tc) (5)

In addition, one item can be regarded as an 1-length
itemset.

Definition 5: The minimum utility threshold is denoted as
min util, and a set of all itemsets whose utilities are higher
than min util is denoted as fH(D,min util). The goal of
HUI mining is to find such itemset, fH(D,min util).

Definition 6: The transaction utility of the transaction Tc

is denoted as TU(Tc) and defined as

TU(Tc) =
∑
ik∈Tc

u(ik, Tc) (6)

Definition 7: The transaction-weighted utility of the item-
set X is the sum of the transaction utilities of all the transac-
tions that X belongs to. It is denoted as TWU(X) and defined
as

TWU(X) =
∑

X⊆Tc∧Tc∈D

TU(Tc) (7)

Definition 8: The high transaction-weighted utility itemset
(HTWUI) consists of those itemsets whose TWU is no less
than min util.

Property 1: The transaction-weighted downward closure
property holds for HUI, says that if an itemset X is not
an HTWUI, all its supersets are not HUIs because U(X) ≤
TWU(X).

B. Mining Combined Utility-Association Rules

HUI Mining is to discover itemsets with high utility whose
utilities are higher than the minimum threshold, in which
their frequencies are not concerned. HUI could be regarded
as an extension of FIM towards addressing business interest
[4] represented by utility. Large number of itemsets would
come out if the threshold is not proper. As shown in Fig. 1
of the utilities in a cluster of incremental itemsets, we can
see the utility is changing dynamically and irregularly. As the
basic rule in social marketing is to gain profit, businessmen
might only care about products that can make profit for them,
and are also interested in converting those less popular goods
to be more preferred. It is helpful for business purposes to
figure out those itemsets which 1) are low utility itemsets, but
become high utility after one additional item (or itemset) is
added; 2) are high utility, but become low utility after one
item (or itemset) added. An itemset whose length increases
with adding new items is called Incremental Itemset, which
means the number of items it contains would grow but never
reduce.

Even though the utility metric provides reasonable ev-
idence for selecting patterns of business interest, it does
not provide sound insurance about how sound a high utility
pattern could be, which can be complemented by frequency-
based filters. Therefore, we propose a new strategy which
combines both utility and frequency, named as Associated-
Utility Growth (AUG) Pattern Mining, to identify Association-
Maximum Incremental Itemsets (AMII) and Utility-Increasing
Incremental Itemsets (UIII). The utility of an incremental
itemset is dynamic, meaning that the utility evolves when
additional items are added to the underlying items, which
forms a utility curve. A UIII structure is necessary to discover
those utility increment-oriented itemsets. Also, it is no doubt
that the frequency of an incremental itemset monotonically
decreases. Here maximum association does not refer to those
itemsets with the highest frequency, but those itemsets where
items share a reasonable relationship with each other. In some
way, it also means that the frequency would not change too
much after adding one or several items. Subsequently, the
measurement of AUG is considered for candidate pruning to



TABLE V. REORGANIZED TRANSACTIONS WITH THEIR
REORGANIZED-TUS

TID Transaction RTU

T ′
1 (C, 1) (A, 1) (D, 1) 8

T ′
2 (C, 2) (B, 6) (A, 1) (F, 5) 24

T ′
3 (C, 6) (B, 2) (A, 2) (D, 5) (E, 1) 60

T ′
4 (C, 3) (B, 4) (D, 2) (F, 3) 18

T ′
5 (C, 2) (B, 2) (F, 3) 9

TABLE VI. ITEMS WITH THEIR TWUS

Item A B C D E F

Profit 92 111 119 77 60 51

find out those having both high utility growth and highly
associated items. In this way, only one significant combined
pattern is selected for each UI.

C. An Abstract Model: 2-length Combined Utility-Association
Pattern Pair

Here we illustrate the application of actionable Combined
Utility-Association Rules through identifying 2-length Com-
bined Utility-Association Pattern Pair. Take Fig. 1 as an
example (here we suppose they hold the minimum confidence
threshold, or Xa and Xb share the same relation with X0), the
1-length itemset X0 is firstly treated as a UI, then two items
added separately form two 2-length itemsets: ∆X1 is added
and forms one new itemset Xa with higher utility, ∆X2 is
added and forms the other new itemset Xb with lower utility.
Xa and Xb are two supersets of X0. The pattern pair is shown
in Equation 8.

{
X0 → Xa ⇒ U − Increase (a)
X0 → Xb ⇒ U −Decrease (b)

(8)

Definition 9: Positive/Negative Impact Rule (PIR/NIR): re-
ferring to rules structured as Equation 8(a)/(b) which is called
positive/negative impact rules, whose right-hand side is asso-
ciated with utility higher/lower than X0 on the left-hand side.

If such rules are used for marketing purposes, a retailer
should know what promotion mixtures make more profit and
what would lead to low profit if they are put together, based
on the positive and negative rules.

IV. THE CUARM APPROACH

We aim to provide patterns to retailers for promotion
strategies include increasing high utility product combinations
which are highly associated with each other. We name them
as Utility-Association Rules, which cannot be discovered by
traditional association rule methods or utility mining algo-
rithms alone. The algorithm for identifying interesting utility-
association rules is called Combined Utility-Association Rules
Mining (CUARM). To this end, two factors, Contribution and
Weight, are proposed to select combined patterns of both high
utility growth and strong association.
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Fig. 2. Header Table and A UP-Tree When min util = 0

TABLE VII. COMPOSITION IN EACH NODE

Formation Explanation

N.na the item name of this node

N.sc the support count of this node

N.u the node utility of this node

N.p the parent node of this node

N.nl the node link which points to a node whose name is same as N.na

A. The Baseline Approach

As stated above, the purpose of HUI mining is to find the
set of all high utility itemsets fH(D,min util) efficiently.
One way to obtain the target patterns is to obtain fH(D, 0)
first, which can be achieved by using UP-Growth with min util
= 0, and then extract the UARs from it. In essence, the baseline
approach is a strategy to maintain all itemsets with their
utilities. Readers can refer to [15] for the detailed structure
and examples about UP-Growth and UP-Tree. In addition, the
UG-Tree we proposed is built with min util = 0 based on
Table V and Table VI.

B. The Proposed Approach

1) UG-Tree: Our algorithm is based on utility growth
and association rule mining, thus all branches whose utilities
decreasing should be pruned from the UP-Tree. Since the
utility growth of each node in a given branch could be either
positive or negative, we prune branches from its external nodes
until the first node whose utility growth becomes positive.
Such re-organized tree structure is called UG-Tree, as shown
in Fig. 3.

The composition of each node N is listed in Table VII. The
Rebuilt Table is displayed to demonstrate the traversal of a UG-
Tree. In the downward table, each row is composed of an item
name, a transaction-weighted utilization value and a link. Each
link points to the node having the same item name as shown
in the UG-Tree. The nodes with the same item names can be
traversed efficiently by following the links between downward
table and the nodes in UG-Tree.
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Fig. 3. Downward Table and A UG-Tree When min util = 0

2) UG-Tree Construction: A UG-Tree can be constructed
by only scanning the original database twice. During the first
database scan, items and their TWUs are captured via the
calculation of the TU of each transaction and TWU of each
item. The downward table is then formed by items inserted in
the TWU-decreasing order. In the second scan, the reorganized
transactions as well as their utilities are inserted into the UG-
Tree, as shown in Table V. In addition, all utility-decrement
branches are pruned and shown in Fig. 3. Finally, a UG-Tree
is created with root R. The composition of each node is listed
in Table VII.

Definition 10: A transaction after the process of the above
reorganization is called Rebuilt Transaction and its TU is called
rebuilt transaction utility (RTU), denoted as RTU(Tc).

The construction of UG-Tree will be completed after all
RTs are inserted with their RTUs. Fig. 3 presents a UG-Tree
when the minimum utility threshold is set to zero.

By using the UG-Tree, which contains enough information,
we can generate the utility-association rules. While the UG-
Tree is retrieved, the utility of each itemset can be discovered
and prepared for the calculation of Factor C. At the same time,
the support count of each item can also be found through
item.nl and used for Factor W. These two factors will be
discussed in the next subsections.

C. Impact Factor of Utility Growth across Combined Itemsets

Both PIRs and NIRs are not difficult to be acquired, since
just scanning the database one more time with a comparison
added will help. However, this belongs to post-processing
approach which is less efficient, and ignores item relation
analysis during the mining process. For these, a measurement
called contribution is proposed below to discuss the relation-
ship among these three itemsets (UI, AI and DI), on top of
PIRs and NIRs.

Definition 11: The contribution of Additional Itemset
(∆X) to make utility change (increase or decrease) from the
Underlying Itemset (X0) to Derivative Itemset (X), denoted

as C(∆X|X0), is defined as:

C(∆X|X0) =

{
2

1+e−R − 1 , U(X) > U(X0)
R , U(X) ≤ U(X0)

(9)

In Equation (9),

R =
U(X)

U(X0)
(10)

This equation is proposed to measure whether itemset
∆X , as an additional part of X0, plays an important role
in transforming itemset X0 to X in the utility perspective.
Here, U(X) is the utility of X in the whole database. The first
equation is associated with utility increase, corresponding to
PIR, while the second corresponds to NIR. In the first function,
a logistic function is used to converge the contribution to the
range of [0,1], which will be discussed later in the next section.

As demonstrated in Fig. 1, the function of utility and item-
length is neither monotonic nor anti-monotonic, meaning the
utility of an itemset is dynamic with its length increasing.
The utility of each item is taken into consideration to analyze
the contribution. Furthermore, the contribution of additional
itemset provides influence within the itemset sharing the same
support counts, which is not suitable for the operation of con-
tribution. However, even though the contribution is presented
to measure whether ∆X plays a significant role to promote
the utility from X0 to X , it is still measured by the rate R
because ∆X might appear in other itemsets, and the utility
should be calculated in another way.

Two conditions might appear: 1) The contribution of this
∆X is high enough to make X(DI) a significant PIR, which
also means itemset X0 has a strong utility-association with
itemset X; 2) The contribution of this ∆X is so low that this
{X0 → X} is proved to be a significant NIR thus itemset X0

is rarely utility-associated with itemset X .

D. Co-occurrence Association between Underlying and Addi-
tional Itemsets

Definition 12: The weight of additional itemset to measure
the co-occurrence frequency of underlying itemset and addi-
tional itemset, denoted as W (∆X|X0), is defined as:

W (∆X|X0) =
Supp(X)

Supp(X0 ∪∆X)
(11)

It is a reduction of the Jaccard similarity coefficient 1:

J(X0,∆X) =
|X0 ∩∆X|
|X0 ∪∆X|

(12)

This equation is to examine whether itemset ∆X has
a high or low association by measuring their co-occurring
frequency with itemset X0.

In Equation (11), Supp(X) is the support of X0 and ∆X
appearing together, and Supp(X0∪∆X) is the support of either
X0 or ∆X appearing:

1http://en.wikipedia.org/wiki/Jaccard index



Supp(X0∪∆X) = Supp(X0)+Supp(∆X)−Supp(X) (13)

E. Impacted Coefficient of the Additional Itemset

Definition 13: The impacted coefficient of an additional
itemset is to describe how effective this itemset is to manufac-
ture the derivative itemset from underlying itemset, denoted as
AUG(∆X|X0), defined as:

AUG(∆X|X0) =

√
C2(∆X|X0) +W 2(∆X|X0)

2
(14)

This equation averages the value of C(∆X) in Equation 9
and W (∆X) in Equation 11. Here we use the Quadratic
Mean (QM) (also known as Root-Mean Square) to measure
the significance of the itemset ∆X in terms of both utility
and relationship perspectives because it represents the sample
standard deviation of the difference between W and C, thus
the result cannot be affected heavily by the smaller value. It
is easy to prove:

QM2(X) = (X)2 + σ2(X) (15)

Here, X and σ(X) stand for the arithmetic mean and the stan-
dard deviation of W and C. We also tried another measurement
by Harmonic Mean (HM) as a baseline, which is proven to be
less effective in our experiments.

For a specific X0, for each itemset ∆X to be considered,
the higher AUG means this itemset is likely to impel the
underlying itemset into higher utility itemset. On the contrary,
the lower the AUG is, the lower utility that derivative itemset
might be. As all the AUG would be calculated, only the largest
AUG value itemset will be chosen.

F. The CUARM Algorithm

In this section, an algorithm named Combined Utility-
Association Rule Mining (CUARM) is proposed to discover
all the actionable combined utility-association rules. At the
beginning of the algorithm, it picks all UIs as candidates. For
each UI, all the combined patterns are discovered with their
AUGs which form a combined pattern cluster as in Equation 2,
and only the most effective pattern would be selected. In
addition, if two patterns are coupled with utility increment
and decrement, a combined pattern pair forms.

The input is the transaction database, including all trans-
actions with the utility of each item, and the output is the
combined pattern pairs, their underlying itemset and the cor-
responding utilities. In line 1, we prepare all the itemsets with
their utilities in the alphabetical order and the length of longest
itemset. In lines 2-5, we start with each of the UIs named
itemset0 with its utility U0. In lines 6-11, the DIs are ready
and we calculate their AUGs. In line 12-13, we select the
pattern with max AUG values as CUAR.

Algorithm 1: CUARM
Input: Transaction database D, including the utility

U(X) of each item in D
Output: All actionable combined utility-association

rules
1 Get all itemsets’ utilities via UG-Tree ;
2 Get the length of longest itemset: lmax ;
3 for len = 1, len < lmax, len++ do
4 for Itemset whose length is equal to len do
5 Get itemset0 with U0(itemset-utility);
6 for itemset.length > len do
7 Check inclusive and utility changes;
8 Get itemset1 with U1;
9 Calculate C;

10 Scan the database, get W;
11 Calculate AUG;
12 Selected max one;
13 Present this utility-association rule;

TABLE VIII. CHARACTERISTICS OF DATASETS

Dataset Number of Transactions Number of Items Average Length

Retail2 88162 16470 10.3

Chainstore3 1112949 46086 7.3

t20i6d100k 100000 658 13.7

c20d10k 10000 187 13

V. EXPERIMENTS

In this section, we conduct intensive experiments to eval-
uate the proposed methods. Our experiments were run on
a PC with a 2.30 GHz Intel Core, 16 gigabyte memory.
CUARM is implemented in Java. Two real datasets and two
synthetic datasets are used for the experiments. The real
datasets are Retail2 and Chainstore3, and the synthetic datasets
are t20i6d100k and c20d10k. The parameters of the datasets
are listed in Table VIII.

A. Comparison of Two Functions for Calculating Impacted
Coefficient

Here we propose two functions for calculating the impacted
coefficient. One is the quadratic mean (QM), which is adopted
in this paper, the other function is the harmonic mean (HM),
which is proved to be less accurate in the experiments. Those
itemsets with a good coefficient measurement should be asso-
ciated with both high frequency and high utility growth, we
thus can separate the database randomly. If the output itemsets
discovered in each sub-database are stable, we can assume that
this measurement is suitable.

The experiments are conducted on the Retail dataset for
the sake of simply examining the QM function. The top 100
experimental results are selected and shown in Fig. 4. The
figure on the left shows the comparison between UP-Growth
and QM, while the figure on the right shows the result of QM

2http://www.philippe-fournier-viger.com/spmf/index.php?link=datasets.php
3http://cucis.ece.northwestern.edu/projects/DMS/MineBench.html
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Fig. 4. The Comparison of HM, QM and UP-Growth

and HM on C(∆X) and W (∆X). The database is split into 10
parts randomly. The first part contains 10% transactions in the
database and each later part contains 10% more transactions
than the former part (such that the second part contains 20%
and the last part is 100%). The X axis is the kth (1 ≤ k ≤ 10)
part of the database, and the Y axis is the match ratio, which
means the ratio of the exact patterns found in the kth part
matching with the (k + 1)th part. As seen from the figures,
the QM method outperforms both HM and UP-Growth.

B. Experimental Evaluation of CUARM

Next, we present the experimental results of comparing
derivative itemsets with the traditional HUIs, FIs and UIs
(Underlying Itemsets) respectively. The statistic values of each
dataset are shown in Table VIII. The experiment is conducted
as follows. Firstly, we collect all the utility itemsets with their
utilities and frequencies in each dataset respectively. Secondly,
we also collect all the frequent itemsets with their frequency
and utility. Then we calculate the utilities of the frequent item-
sets, frequencies of the HUIs and both utilities and frequencies
of the derivative itemsets. At last, we plot the frequency of
itemsets discovered via UP-Growth and CUARM, the utility of
itemsets discovered by FP-Growth and CUARM and the utility
changes from each underlying itemset to derivative itemset as
shown in Fig. 5. Such exhibition is made for the comparison of
our algorithm with FIM and HUI to demonstrate the Utility-
Association Rules we discovered have both high utility and
high frequency.

Here, all the frequent and utility itemsets we compare with
contain at least two items because the derivative itemsets our
algorithm discover contain no less than two items.

Experiments on Real Datasets

We first present the outputs of dataset Retail in Fig. 5(a)
and Fig. 5(b). Top 50 patterns of each algorithm are selected
for experiments. By analyzing the frequencies and utilities of
patterns, many of them are without much difference in both
two experiments, which means the association rules we found
via traditional AR algorithms are also high utility-association
rules via our method. In addition, such rules are also with high
utilities. This explains why some parts of the curves overlap.
In addition, customers prefer to buy a few products at one
time, that is, most of FIs and HUIs contain only one or two
items, which also explains the observations.

In datasets Chainstore, the differences are much clearer,
because customers usually prefer a variety of products in each

of transactions, and high utility itemsets are always low in
frequency, while highly frequent itemsets are with low utility.
For example, in Fig. 5(d), the CUARM performs much better
than that of FP-Growth, while in Fig. 5(e), even at some points,
the performance is not so good, the global performance is
much better. To sum up, we can assert that the performance
of our algorithm CUARM is much better than the others.

Experiments on Synthetic Datasets

Experimental results on synthetic datasets t20i6d100k and
c20d10k are shown in Fig. 5(g), Fig. 5(h), Fig. 5(j) and
Fig. 5(k). The results are much clearer than those from real
datasets because the items included are much neat and with
orderliness. For most of the patterns discovered via CUARM,
the frequencies are much higher than those traditional high
utility itemsets. At the same time, most Utility-associated rules
are also with much higher, i.e., twice the utility, than tradi-
tional association rules, especially in Fig. 5(h) from dataset
t20i6d100k.

C. Evaluation of the Utility Increment

We demonstrate the utility increment in a graphic way
to show how the utility increases from underlying itemset to
derivative itemset. The utility increment is valued based on
the same datasets as above. points are ordered by the utility of
derivative itemsets. The performance of our algorithm varies
from one dataset to another. The performance in chainstore is
much better than that in retail because the transaction time in
chainstore is 12 times more than that in retail while the item
types are only twice more. However, in the synthetic datasets,
the performance is better. In conclusion, for each dataset, the
performance is different but the utility actually increases.

D. Summary of Findings

Based on the above datasets and experimental results, a
table is used to demonstrate the conclusion that comes from our
experiments and shown as Table IX. This table describes the
number of itemsets whose utilities increase or decrease with a
given threshold. Also, two kinds of utility incremental forms
are listed. One is the utility of derivative itemset is higher than
both the utilities of underlying itemset and additional itemset,
which is denoted as FA; the other is that the utility of derivative
itemset is only higher than the utility of underlying itemset,
which is denoted as FB. As for each underlying itemset, only
one derivative itemset would be discovered, some FA and FB
might be ignored.

For the utility decrement itemsets whose utilities are only
lower than the underlying itemsets would not be considered
in this table because these itemsets can also be regarded as
FBs when the underlying itemsets and additional itemsets
exchange.

VI. CONCLUSIONS AND FUTURE WORK

Traditional high utility itemset mining methods face prob-
lems if the minimum utility threshold is set too high, the
itemsets discovered may contain unrepresentative items; while
if the threshold is set too low, too many redundant itemsets
will be found. On the other hand, traditional association rule
mining ignores the utility hidden among the items. This work
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TABLE IX. UTILITY VARIATION CONCLUSION

Dataset Minimum Support Number of Itemsets Utility Incremental Rate Number of FA Number of FB Number of Decremental Itemsets

Retail 0.01 89 20.3% - 50.4% 28 22 39

0.008 135 18.6% - 50.4% 37 46 52

0.002 1667 8.4% - 50.4% 473 769 425

Chainstore 0.002 79 4.6% - 207.2% 7 19 53

t20i6d100k 0.017 33 25.7% - 78.5% 8 11 14

0.015 79 22.8% - 78.5% 24 19 36

0.012 383 1.8% - 78.5% 112 137 134

c20d10k 0.05 120 19.7% - 150.9% 28 48 44

proposes a novel pattern selection method from two aspects.
One is the co-occurrence of two (underlying and additional)
itemsets; another is the utility increment from underlying
itemset to derivative itemset. It is an effective approach for
identifying actionable combined utility itemsets, in which, for
different items, only one itemset will be selected with the
highest association-utility growth, which caters for both high
association and high utility. Thus, only the most effectively
impacted itemsets will be presented. The results demonstrate
that our method can discover patterns that are composed of
different item combinations of both utility increment and high
representativeness.

For the future work, we may find some more interesting
pattern selection methods. For example, there exists a depen-
dent relationship between two itemsets A and B, which means
A might appear frequently alone or with other items, but for
most time B appears together with A.
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