Scalable Image Annotation Using a Product
Compressive Sampling Approach

Anastasios Maronidis, Elisavet Chatzilari, Spiros Nikolopoulos and loannis Kompatsiaris
Information Technologies Institute
Centre for Research and Technology Hellas
Email: {amaronidis, ehatzi, nikolopo, ikom} @iti.gr

Abstract—The rise of big data, which need computationally
demanding manipulation has posed unprecedented challenges in
the machine learning community. In this context, a variety of
dimensionality reduction methods has been introduced in order
to deal with the large-scale aspect of the data. However, their
employment in very large scales often becomes impractical due
to memory and computation limitations. In parallel, Compressive
Sampling (CS) has recently emerged as a powerful mathematical
framework providing a suite of conditions and methods that allow
for an almost lossless and efficient compression of sparse data.
Given that the majority of big data problems entail the existence
of sparse datasets, our goal in this paper is to investigate the
potential of CS as a dimensionality reduction method in very
large scales. Towards this end, we propose a novel Product
Compressive Sampling (PCS) method that is used for scalable
image annotation. The new method displays robustness equal
to the typical CS method, while decreases the computational
complexity dramatically. Another novel characteristic of our work
consists in establishing a connection between the sparsity level
of the data and the effectiveness of PCS as a dimensionality
reduction method for image annotation. For this purpose, a
new metric for estimating the data sparsity is proposed. Finally,
in comparison with the state-of-the-art, we show that PCS
displays competitive classification performance, while at the same
moment proves to be orders of magnitude superior in terms of
computational efficiency.

I. INTRODUCTION

Nowadays, as enormous volumes of digital images are
accumulated, great interest has been placed on the theoretical
and practical aspects of extracting knowledge from massive
datasets [1]. In addition, there is a tendency to increase the
dimensionality of the image descriptors, since it leads to better
classification results [2], [3]. However, as the number of di-
mensions increases, it becomes more difficult for classification
schemes to handle the data. It is therefore clear that the need
to establish a fair compromise among classification accuracy,
computational efficiency and storage capacity proves of utmost
importance.

In order to deal with these new requirements, a set of
technological paradigms have recently been brought into the
forefront of interest, including: smart sampling, incremental
updating, distributed programming, indexing, etc. Among these
paradigms, of particular interest we consider the case of smart
sampling, where massive datasets are sampled and the analysis
algorithms are applied only on the sampled data. A couple
of questions though naturally arises: How many samples do
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we need and how do we ensure that the selected samples
are representative of the entire dataset. Towards this end, we
believe that the mathematical theory of Compressive Sampling
(CS) has the potential to answer some of these questions.

The theory of CS offers a reversible scheme for efficiently
compressing and reconstructing large pieces of digital data
[4], [5], [6], [7]. More specifically, the objective of CS is
firstly to design a projection matrix that can be used to
transform high-dimensional data to a new target space of a
much smaller dimensionality [8] and secondly to ensure all
those conditions that the projection matrix must obey so as
for the compressed data to be perfectly reconstructable in the
initial high-dimensional space [7].

Although, the use of CS has already proven beneficial
for a multitude of applications [9], an imperative assumption
that ensures its correct functionality is the sparsity of the
data involved [4], where by sparsity we mean the extend to
which the data contain zero values. It is worth mentioning,
that in real world problems, rarely the data are strictly sparse.
Instead, it is often the case that most of the data components
are close to zero, while only a small portion of them have
significantly larger values. Indeed, state-of-the-art methods
for feature extraction like the Fisher vectors [2] provide us
with this kind of data. In such cases, the data are referred
to as approximately sparse or more often as compressible.
Fortunately, there are theoretical guarantees that prove the
robustness of CS even when dealing with compressible data
[10] and it is this capacity that has triggered our interest about
the potential of CS to alleviate some of the problems related
to large-scale data.

Provided that the data-sparsity or the data-compressibility
assumption is satisfied, the great leap of CS is proving the
rather surprising finding that a random matrix, i.e. whose
values at each position have been generated, for instance,
by a Gaussian distribution, qualifies as an appropriate pro-
jection matrix [4]. The ability to use a random, rather than
a complicated and difficult to generate, projection matrix for
compressing the data, offers a huge advantage in the context
of large-scale data and specifically with respect to velocity-
and memory-related challenges, e.g. real-time processing, live-
streaming, etc.

Although CS is renown in the literature for its power
to compactly represent digital data [11], in this paper we
investigate the extent to which CS-based methods can be
used for discrimination purposes in a scalable manner. More
specifically, our aim is to identify potential ways for exploiting



the theory of CS in the large-scale image annotation domain.
The rationale of our work is based on the outcome of some
important works like [12], which claim that sparse represen-
tations have an inherent discriminant nature. Indeed, using a
small subset among a pool of features offers a compact way to
represent an image and therefore the selected features strongly
characterise this image. Based on the above claim, we envis-
age that combining sparse representation with discriminative
methods may lead to performance competitive to that of the
state-of-the-art in large-scale classification problems [13], [14].

In this paper, we rely on the principles of CS to propose a
novel scalable Product Compressive Sampling (PCS) method
for dimensionality reduction in the image annotation domain.
PCS decomposes a high-dimensional vector into a number of
smaller vector segments performing an equal number of CS
projections and concatenating the results. Through both a the-
oretical analysis and an experimental comparison with typical
CS, we show that PCS exponentially reduces the computational
load of the dimensionality reduction process, while at the same
moment displays performance equivalent to CS. We further
establish a connection between the performance of PCS and
the level of the data sparsity. Finally, a comparison with the
state-of-the-art, shows that our method displays competitive
performance in terms of classification performance, while at
the same time outperforms the state-of-the-art methods in
terms of computational efficiency.

The remainder of this paper is organized as follows. A
number of related works on dimensionality reduction as well
as a variety of methods employing the notion of sparsity
are presented in Section II. The proposed methodology for
efficiently reducing the dimensionality of big data in the
large-scale image annotation problem is analytically presented
in Section III. Experimental results proving the potential of
the proposed approach are provided in Section IV. Finally,
conclusions are drawn in Section V.

II. RELATED WORK

In this section, a brief review of the bibliography related
to our work is presented. The review is divided into two
subsections. In the first subsection we present a set of indica-
tive dimensionality reduction methods, while in the second
subsection we review the role of sparsity and compressibility
in the development of new or in the improvement of existing
methods.

A. Dimensionality Reduction

A plethora of methodologies have recently been proposed
for reducing the dimensionality of large-scale data. In [15],
dimensionality reduction methods have been classified into
three main categories, which are briefly described hereunder.

The first category consists of methods based on statistics
and information theory and among others includes Vector
Quantisation (VQ) [16] and Principal Component Analysis
(PCA) [17]. In addition, due to the advent of large-scale data,
new scalable techniques such as the Product Quantisation (PQ)
[18] have also been developed. PQ decomposes a vector space
into a Cartesian product of quantised subspaces for construct-
ing short codes representing high-dimensional vectors. In this
vein, in [3] using the so-called Vector of Locally Aggregated

Descriptors (VLAD), the authors employ PQ for performing
nearest neighbour search during the indexing process of very
large databases for retrieving the most similar images to a
query image. Moreover, within the vector quantization context,
effort has recently been allocated on the optimization of the
kernel K-Means. For instance, a clustering algorithm, which
models multiple information sources as kernel matrices is
proposed in [19].

The second category includes methods based on Dictio-
naries, where a vector is represented as a linear combination
of the dictionary atoms. For instance, sparse representations
with over-complete dictionaries have been applied on image
de-noising [20]. Utilizing the K-SVD technique, the authors
train dictionaries based on a set of high-quality image patches
or based on the patches of the noisy image itself. The image is
iteratively de-noised through a sparse coding and a dictionary
update stage. Based on a similar approach, K-SVD has been
utilized for the restoration of images and video [21], where the
sparse representations are obtained via a multi-scale dictionary
learned using an example based approach. The above de-
noising algorithm has also been extended for color image
restoration, de-mosaicing and in-painting [22]. In addition, an
over-complete dictionary design method that combines both
the representation and the class discrimination power has been
proposed in [23] for face recognition. The presented method is
an extension of the above K-SVD algorithm [8] and is referred
to as the D-KSVD, since a discriminative term is added into
the main objective function of the regular K-SVD.

The third category consists of methods that seek for “in-
teresting” projections leading to learning projection matrices.
For instance, Linear Discriminant Projections (LDP) has been
proposed as a useful tool for large-scale image recognition
and retrieval [24]. Moreover, in this category, Hashing has
also been proven a computationally attractive technique, which
allows one to efficiently approximate kernels for very high-
dimensional settings by means of a sparse projection into a
lower dimensional space. For instance, in [25] hashing has
been implemented for handling thousands of classes on large
amounts of data and features. In the same fashion, specialized
hash functions with unbiased inner-products that are directly
applicable to a large variety of kernel methods have also been
introduced. Exponential tail bounds that help explain why
hash feature vectors have repeatedly led to strong empirical
results are provided in [26]. The authors demonstrate that the
interference between independently hashed subspaces is negli-
gible with high probability, which allows large-scale multi-task
learning in a very compressed space. Finally, advances have
been made in manifold learning through the development of
adaptive techniques that address the selection of the neigh-
borhood size as well as the local geometric structure of the
manifold [27].

Our method along with the core CS actually belong to
the third category. The main differentiation of PCS and gen-
erally of CS-like methods from the rest methods presented
above is that the projection matrices involved are randomly
learned via e.g. a Gaussian distribution, while the other
methods require intensive calculations in the training phase.
For instance, PCA requires eigen-analysis of large covariance
matrices, and PQ performs multiple times k-means clustering.
In addition, although both PQ and PCS follow a similar vector-



decomposition scheme, in PCS the classification is performed
in the reduced space, while on the contrary, in PQ the reduced
data need to be firstly decompressed [28] adding an extra
computational burden. The advantage of PCS in terms of
computational complexity is absolutely suited for handling
large-scale data, as it provides tremendous speed in real-time
processes.

B. Sparsity

As we have already seen, a necessary pre-condition that
guarantees the correct operation of our method is the spar-
sity or compressibility of the data involved. Apart from our
method, the notion of sparsity and compressibility seems to
play a key role in recent advances in the computer science
community. For instance, in [29], the authors learn an over-
complete dictionary using the K-SVD algorithm along with
a set of predefined image patches. Using this dictionary they
compress facial images by representing them as sparse linear
combinations of the dictionary atoms. On the other hand,
the potential of fusing index compression with binary bag
of features representation has been investigated in [30]. The
proposed method is based on an inverted file structure, which is
merely concerned with the distances of the non-zero positions
of sparse vectors. A “sparsified” version of PCA has also
been proposed in [31]. Using elastic net methods, the principal
components are represented as sparse linear combinations of
the original variables, as opposed to the typical PCA algorithm.

In the same vein, recently, considerable effort has been
allocated in assigning semantic information to sparse rep-
resentations, in the fields of computer vision and pattern
recognition [32]. It has been shown through a variety of exper-
imental settings that sparse representations convey important
semantic information. This assertion has been corroborated
within diverse challenging application domains such as face
recognition, image reconstruction, image classification, etc.
In this context, semantic issues have been tackled using a
sparse image reconstruction based approach in the challenging
object recognition problem [33]. The images are encoded as
super-vectors consisting of patch-specific Mixture Gaussian
Models and reconstructed as linear combinations of a number
of training images containing the objects in question. The
reconstruction coefficients are inherited by the corresponding
labels providing annotation to the query image.

Towards the same direction, the problem of accelerat-
ing sparse coding based scalable image annotation has been
addressed in [34]. The pursuit of an accurate solution is
based on an iterative bilevel method, which achieves re-
ducing the large-scale sparse coding problem to a series
of smaller sub-problems. Finally, the discriminative nature
of sparse representations to perform classification has been
experimentally proven in [12]. Solving a dedicated linear
programming sparsity-encoding problem, the authors propose
a face recognition algorithm robust to expressions, illumination
and occlusions.

C. Measures for sparsity

From the above discussion, sparsity seems to be well-suited
for large-scale problems. Similarly to the works presented
above, our method proves also strongly dependent to the spar-
sity of the data. In the core CS theory, the sparsity is calculated

using the lg-norm, which counts the non-zero values of a
vector [35]. However, [g-norm is sensitive to small distortions
of the vector values, since even a small perturbation of the
zero coefficients may lead to considerably different estimation
of sparsity. Furthermore, changing the non-zero values does
not affect sparsity. For the above reasons, the [p-norm may
prove unsuitable for estimating the compressibility of vectors
without zero values. Instead, the ,-norm, also denoted as |- || .
which uses the p-th power of the vector coefficients, is often
used for this purpose [35]. However, the latter totally defies the
relativity among the vector values, which may lead to peculiar
results. For instance, let p = 1 and consider the following
vectors: x; = [4,4,4,4,4]7 and x5 = [0,0,0,0,20]7. Then
apparently ||x1|[1 = [|x2]/1 = 20, though we would expect that
Xo is pretty much sparser than x;. Interestingly, notice that in
this particular example, the [y-norm returns more reasonable
results.

Motivated by the above analysis, in our work, in order
to overcome the previous disadvantages, we envisage that the
relative difference among the values is more crucial than the
values per se in estimating the compressibility of a vector.
Based on this claim, we propose a new approach for estimating
data sparsity, which makes use of the first order differences
of a vector. As we will see in the following sections, the
experimental results obtained are quite interesting advocating
the potential application of our methodology to other domains
as well.

1II. METHODOLOGY

Based on the outcomes of the CS theory, we propose the
use of random projections for reducing the dimensionality of
large-scale datasets in order to perform image classification.
In this case study, a number of images annotated with a
predefined set of p high-level concepts ¢;, for j =1,2,...,p
is used as the training set. Towards this end, for each image a
set of visual features are extracted providing a corresponding
feature vector. The resulting feature vectors are subsequently
subject to dimensionality reduction yielding their compressed
versions, which are finally used for training a Support Vector
Machine (SVM) model in an one-vs-all fashion. The steps of
the above pipeline approach are described in more detail in the
following subsections. A notation table is also provided (see
Table I) in order to help the reader follow the presentation
more easily.

A. Feature Extraction

A variety of techniques has been proposed for extracting a
representative set of features from data, including SIFT [36],
SUREF [37] and MPEG?7 [38]. Among these techniques, for the
purpose of our study we choose SIFT, which has been proven
quite robust in classification problems [36]. Given a raw image,
128-dimensional gray SIFT features are extracted at densely
selected key-points at four scales, using the vl-feat library [39].
PCA is then applied on the SIFT features, decreasing their
dimensionality from 128 to 80. The parameters of a Gaussian
Mixture model with K = 256 components are learned by
Expectation Maximization from a set of descriptors, which are
randomly selected from the entire set of descriptors extracted
by an independent set of images. The descriptors are encoded
in a single feature vector using the Fisher vector encoding [2].



Moreover, each image is divided in 1 x 1, 3 x 1 and 2 x
2 regions, resulting in 8 total regions, also known as spatial
pyramids. A feature vector is extracted for each pyramid by the
Fisher vector encoding and the feature vector corresponding
to the whole image (1 x 1) is calculated using sum pooling
[40]. Finally, the feature vectors of all 8 spatial pyramids are
concatenated to a single feature vector of 327680 components,
which comprise the overall data dimensionality that is to be
reduced in the experiments.

B. Dimensionality Reduction

As we have seen in the previous subsection, the feature
extraction phase provides us with data lying in a very high-
dimensional space. In an attempt to make these data more
tractable we perform dimensionality reduction, while retaining
the most important information by exploiting the theoretical
findings of CS. Towards this end, we need to know the least
number m of reduced dimensions required in order to guaran-
tee the correct functioning of the compression-reconstruction
scheme of CS. It has been theoretically proven that this
number is strongly associated with the data sparsity [41]. More
specifically, it has been shown that if k£ is the number of non-
zero features of a vector, then m must be at least on the order
of O(k -log(%)), where n is the initial vector dimensionality.
Moreover, based on [10], compressible data can be treated
as approximately sparse and therefore, to a great extent, the
aforementioned theoretical bounds are expected to apply on
compressible data, as well.

Apparently, from the above discussion, in order to find the
minimum allowed number of reduced dimensions, we need
to calculate k. Clearly, for sparse data, this calculation is
straightforward. However, since often the data are not strictly
sparse, but rather compressible, we actually need to estimate
an approximation of k. Towards this direction, in the following
subsection we propose a differential approach to estimate % for
compressible data.

1) An approach to estimate data compressibility: In this
subsection, given a data matrix:

i1 -+ TIN
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consisting of N n-dimensional feature vectors, we propose
a methodology to estimate on average an approximation of
the number £ of comparably large non-zero values of these
vectors. For each feature vector x;, we sort its absolute values
in ascending order obtaining a new set of sorted vectors. For
the sake of simplicity, let us assume that X contains the above
sorted vectors. From X, we calculate the mean vector X =
[Z1,...,%,]7 consisting of the average values

1
;= m Zl“ji )
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per each feature component j € {1,2,...,n} along the N
rows of the data matrix. Since there is no guarantee that X
is sorted as well, we sort it once again in ascending order
obtaining X, = [Ts,,...,Ts,]7 with:

|§31| < |f32| << |Tsn|a (3)

where s; are the indices of the sorted values. We finally
calculate the first order differences d,, for j € {2,...,n} and
we find the index s; with the maximum first order difference:

s = argmax{ds, }. 4)
J

This index, essentially conveys information about the data
compressibility, since it indicates a large step of the “average”
features from smaller to larger absolute values. Hence, the
features with indices s; > s/ have significantly larger absolute
values than the remaining features. Therefore, they could be
considered as non-zero’s providing a reasonable estimation of
k:

k=mn—s. 5

2) Dimensionality Reduction using Compressive Sampling:
Given a set of data lying in a very high-dimensional space, the
objective of CS is to design a projection matrix that can be used
to transform these data to a new target space of a much smaller
dimensionality. In this target space, the new data representa-
tions will eventually be used for classification. Using more
strict formulation, let x € R™ be an n-dimensional vector, as
this has been formed by the approach presented in Section
III-A. Based on the capability of using random projections, an
m X n (m < n) projection matrix D, whose entries contain
random values generated by a Gaussian distribution with mean
zero and variance 1/n is built. The vector x is then transformed
into y € R™, through y = Dx.

In practice, the rows of the above projection matrix are or-
thonormalized through a Singular Value Decomposition (SVD)
step, so that DD?7 = I. Working with orthonormal bases
provide practical benefits to the whole process. Indeed, there
have been presented some interesting works in the literature,
e.g., [42], [43], proving that the use of SVD offers robustness
to the recovery of a compressed signal under the presence of
noise. We anticipate that this property of SVD is also important
for the classification task that we address in this paper.

Despite its power, in some practical cases, when the
number of dimensions is too high, CS proves inefficient in
handling big data, since due to insufficient memory resources
it fails to perform SVD and big matrix multiplications. In this
paper, in order to alleviate this shortcoming, we propose a
novel method, which uses an implementation of CS based on
a vector decomposition scheme as described in detail in the
following subsection.

3) Product Compressive Sampling: An innovative scalable
method to apply CS with computational efficiency, called
Product Compressive Sampling (PCS) is proposed. PCS de-
composes a high-dimensional vector into a number of smaller
segments and applies CS reducing the dimensionality of each
segment. The resulting reduced segments are then concatenated
providing the final low-dimensional vector. More specifically,
let

17, (©6)

be an n-dimensional vector and m the desired reduced di-
mensionality. At the first stage, the components z;, j €
{1,2,...,n} are sorted in ascending mode. To keep the
notation as simple as possible, let us consider the above x

x=[z1,...,Zn



as the sorted vector. Subsequently, x is subdivided into a set
{x;}?_, of b vector-blocks of size ¢ = % each, with

T g-1ypti] @)
for ¢ = 1,2,...,b. Having obtained the blocks, PCS reduces

the dimensionality ¢ of each block to %4+ and subsequently

concatenates the resulting vectors to form a b X 7 = m-

dimensional final vector.

X; = [Iz', Lbo4is L2b4iy -«

In the above approach, it is clear that 7 and %* must be
integers, since the former expresses the length of each block
constructed from the initial vector, while the latter is the length
of each block after the reduction. Provided that the above
limitation is satisfied, a random projection matrix D of size
4 x ¢ is firstly orthonormalized through an SVD step and then
used for reducing the data of each block x; to % dimensions,
producing y;, for i = 1,2,...,b, through

yi: = Dx;. (8)

The finally reduced vector is built by concatenating the ob-
tained blocks:

s Vo), €))

which consists of m dimensions. At this point, it is worth
noting that in the extreme case where b = 1, PCS collapses to
the typical CS method, since in this case the whole vector is
considered as one block.

y= [Yh}’z;---

The functionality of PCS relies upon the assumption of
the data sparsity. In fact, when subdividing a sparse vector we
expect that, on average, the vector segments are also supposed
to commensurately inherit the sparsity of the main vector,
therefore permitting the use of random projections per each
segment. As a matter of fact, let us consider a feature vector
containing k non-zero values. Then, as already mentioned, the
lower bound mj, of the reduced dimensionality for the initial
high-dimensional vector must be on the order of O(k-log(%)).
Assume now that the initial vector is decomposed into b equal
length blocks employing the proposed approach. From the way
the several blocks are constructed (see e(i. 7), the sparsity of
each block is expected to be on average 7, since actually the
above block decomposition procedure comprises a uniform
subsampling of the initial sorted vector. Consequently, the
corresponding lower bound m/;, for each block becomes:

n

) = 5Ok-log(3) = ymz,  (10)

ml, = O(Flog(L)) = 5
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which after the concatenation phase is aggregated to b- %m L=
my,. This result in a few words means that PCS maintains
on average the dimensionality bounds of CS in the reduction
process.

Concluding this subsection, it is worth noting that, in a
classification scheme, the same block indices must be used
across all training and test samples. In this case, in order to
keep the dimensionality bounds as loose as possible, the block
indices can be determined and fixed through the application of
eq. 7 to the mean vector among the training samples.

In the following subsection, we analytically show that
the computational complexity of PCS is orders of magnitude
smaller than the one of CS offering PCS credibility as a
scalable dimensionality reduction method.

TABLE 1. NOTATION TABLE

A feature vector
Dimensionality of x
i-th component of x
s;-th component of x after sorting in ascending order
Number of non-zeros in a vector
First order difference of x at ¢-th position
Projected vector through y = Dx
Dimensionality of y
m X n projection matrix
Number of blocks x is decomposed into
Block length
Lower bound of reduced dimensions using CS
k-th concept used for annotation
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4) Computational Analysis: From the above discussion, the
computational load using CS consists of performing SVD on
a random matrix along with a number of matrix multiplica-
tions during the projection phase. The number of calculations
involved in the above process is exponentially associated with
the number of dimensions. Based on this, PCS earns its
advantage by splitting the initial CS problem to a number of
smaller CS sub-problems by decomposing a vector into an
equal number of blocks. In this way, PCS achieves to alleviate
the computational load of CS in the way explicitly described
in the following analysis.

The computational complexity of performing SVD on an
m X n matrix is on the order of 4m?n+8mn?+9n3. Similarly,
the computational complexity of multiplying an m X n matrix
by an n x 1 vector is on the order of O(mn). In order to com-
pare PCS with CS, for the sake of simplicity, let us investigate
the case where the number of dimensions in the reduced space
is 5. Under these circumstances, using CS requires SVD on a
n x 2 random matrix with computational complexity O(5n?),

2

and a multiplication between the transpose of the resulting
2

matrix by the initial n x 1 vector, which is O(’5-). On the
other hand, using PCS with b blocks, requires SVD calculation
of a matrix of size % x 2, which is O(355n?), that is O(b3)
times less than using CS. Subsequently, the resulting projection
matrix is multiplied by the b vector-blocks, which is O(% %2)

that is O(b?) times less than using CS.

The previous analysis, clearly shows that the computational
benefit using PCS is exponentially associated with the number
of blocks used. However, this might come at the cost of a
loss of information, since by significantly shrinking the length
of the blocks might cause the loss of vector-structure. This
uncertainty led us to investigate the performance of PCS as a
function of the number of blocks used, through an experiment
presented in Section IV. As we will see, the results show
that the performance of PCS proves to be independent of the
number of blocks used.

C. Classification

The vectors obtained after the dimensionality reduction
methodology described in Subsection III-B are used in the
classification phase. For classifying the data, we use Support
Vector Machines (SVM) [44]. For each concept ci, k =
1,2,...,p, a binary linear SVM classifier (wy, by), where wy,
is the normal vector to the hyperplane and by, the bias term, is



trained using the labelled training set. The images labelled with
c, are chosen as positive examples, while all the rest are used
as negative examples in an one-versus-all fashion. For each
test image x;, the distance from the hyperplane V(x;,ck) is
extracted by applying the SVM classifier (see Eq. 11).

V(Xi,ck) =< Wi, X; > +by. (11)

The values V(x;, c) obtained from Eq. 11 are used as predic-
tion scores indicating the likelihood that a sample x; depicts
the concept cy.

IV. EXPERIMENTS

We conducted a series of experiments in order to investigate
the potential of PCS as a dimensionality reduction technique
in the problem of image annotation in large-scale datasets. For
training the SVM classification models, the implementation of
LibSVM was used [45]. The mean Average Precision (mAP)
served as the evaluation metric. All the experiments were run
on a 12 core Intel ® Xeon (R) CPU ES-2620 v2 @ 2.10 GHz
with 128 GB memory.

For the experiments we have used the benchmarking
dataset of the PASCAL VOC 2012 competition [46]. The
dataset consists of 5717 training and 5823 test images col-
lected from flickr. The images are annotated with 20 concepts
(person, dog, airplane, car, chair, etc.) in a multi-label manner.
Applying the feature extraction procedure (cf. Section III-A)
on the above training and test datasets, we came up with
a set of 11540 feature vectors each of 327680 dimensions,
which require approximately 14 GB of memory using single
floating format. Such excessive memory requirements are
clearly intractable for many practical reasons.

A. Compressibility estimation and minimum dimensionality
investigation

For calculating the compressibility of the data, we applied
the methodology described in Section III-B1 on the dataset.
In this way, we estimated the average number k£ of non-zero
features for the samples. The sorted absolute values of the
mean vector X as this has been produced using the approach
proposed in Section III-B1 are plotted in Fig. 1. From this
figure, it is clear that the majority of the values are close to
zero, while only a small portion of them considerably differs.
The first order differences of these distances are illustrated
in Fig. 2. The maximum value (peak) of the latter figure is
realized at 324480. According to the proposed methodology,
the number £ of non-zero features of this particular sample can
be approximated by counting the number of feature indices
lying on the right side of this peak, which in this case is 3200.
As a consequence, on average, only around 1% of the vector
features have values, which are significantly larger than zero,
hence the data could be considered compressible and eligible
for the application of PCS. In addition, recalling from Section
III-B that the number m of reduced dimensions must be on
the order of k-log(7), in our case this value is approximately
6464, which means that theoretically, at least approximately
6464 dimensions are required in order to guarantee the almost
perfect reconstruction of the compressed data.
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Fig. 1. Feature distances of mean vector from zero sorted in ascending order.
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B. Investigating the robustness of PCS as a function of the
number of blocks

From the presentation of Subsection III-B3, although it
has been theoretically shown that increasing b benefits the
computational complexity of PCS process, the question how
can b affect the classification performance using PCS is still
open. In an attempt to answer this question, we set the
number of reduced dimensions to 163840, i.e., half the initial
dimensionality of the data and we varied the number of blocks
b in the range 1,2,2% ...,2%. For each setting, we counted
the time elapsed during the dimensionality reduction process
and we calculated the classification performance using PCS.
The results are collectively illustrated in Fig. 3. The horizontal
axis depicts the number of blocks used. The left vertical axis
depicts the m AP, while the right vertical axis depicts the com-
putational time required for reducing the dimensionality of the
training data using PCS. The latter includes the time required
for both the SVD calculation and the matrix multiplication
processes.

Observing the “PCS computational time” curve in Fig. 3,
it is clear that as the number of blocks increases, the com-
putational complexity decreases exponentially. This result can
be associated with the theoretical findings, verifying the com-
putational analysis presented in Section III-B4. Furthermore,
interestingly, the robustness of PCS using different numbers of
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blocks is evident (see Fig. 3, “Mean average precision” curve).
This finding allows for using the maximum possible number of
blocks, since it offers the minimum computational load, while
it does not deteriorate the classification performance. Closing
this subsection, it is worth recalling that PCS for b = 1, i.e.,
using one block, collapses to CS (cf. Section III-B3).

C. Investigating the classification performance of PCS com-
pared to CS

Our next concern was to investigate the classification
performance of PCS, as a function of the number m of the
reduced dimensions, compared to that of CS. For this purpose,
a series of consecutive experiments was carried out, where at
each iteration we set m = 10 - 2P and we varied the exponent
p in the range from 1 (m = 20) to 11 (m = 20480), while
maintaining the remaining settings unchanged. In this context,
using different integers for m, we employed both CS and
PCS and we projected the initial high-dimensional data into
the corresponding m-dimensional space. The above projected
data where subsequently fed into SVM for classification. The
classification performance results are illustrated in Fig. 4 for
both CS (green rectangles) and PCS (blue circles). The reduced
number of dimensions is depicted in the horizontal axis, while
the mAP is depicted in the vertical axis. For comparison
reasons, the baseline m AP using SVM on the initial data, with
no dimensionality reduction is also depicted with the solid red
line.

A couple of important remarks could be drawn from Fig. 4.
First, it is strongly evident that the two curves corresponding
to CS and PCS are almost identical, proving the equal classi-
fication performance of PCS compared to CS. This finding
combined with the computational complexity advantage of
PCS (cf. Section III-B4) proves its superiority over CS. In the
same vein, notice that although the initial dimensionality of
the data is 327680, the maximum reduced dimensionality was
set to 20480. The reason is that for larger dimensions CS was
infeasible due to the orthonormalisation of a very big matrix,
which reinforces the advantage of PCS versus CS. Second, it is
clear that the mAP for both CS and PCS is ever increasing as
a function of the number of the reduced dimensions. Moreover,
a closer inspection of Fig. 4, interestingly shows that the m AP
starts to converge satisfactorily to the baseline in the vicinity
of the theoretically required number of dimensions, i.e., 6464,
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Fig. 4. Mean Average Precision using PCS in a range of different dimensions.

which can be associated with the lower boundary analysis
presented in Section III-B.

D. PCS vs random feature selection and dependance of PCS
on data sparsity

A reasonable question that might arise so far is why not use
a random feature selection (RFS) approach instead of calculat-
ing random linear combinations of the initial features and how
does the data sparsity — and consequently compressibility —
affect the performance of random projections. In an attempt
to answer these questions, we propose a methodology for
comparing the performance of PCS with RFS as a function
of the sparsity level of the data. The methodology is based on
“sparsifying” the original dataset using six different threshold
values and investigating the robustness of the two above
methods in the resulting artificial datasets. From a practical
point of view, sparsifying the data is supposed to deteriorate
the classification performance of both methods, since it leads to
considerable loss of information. However, from this artificial
experiment, we expect that a number of important findings
regarding the effect of the data sparsity on random projections
can be derived.

For each sparsity level and dimensionality we calculated
the difference between the mAP’s obtained by using PCS and
RFS and we estimated the percentage gain in classification
performance obtained by PCS over RFS. The results are
illustrated in Fig. 5. The x-axis depicts the number of reduced
dimensions. The y-axis depicts the percentage of mAP gain
using PCS versus RFS. Each curve corresponds to a different
sparsity level, as this is expressed by the percentage of zeros
contained in the sparsified data. From Fig. 5, it is evident
that the gain in performance using PCS instead of RFS
increases as the sparsity level increases too and as the number
of dimensions decreases. This improvement of performance
reaches the percentage of ~ 80% in 1280 dimensions with
97.72% sparsity, highlighting the robustness of PCS versus
RFS in low dimensions on sparse data.

Intuitively, at a first glance, there is seemingly nothing
special about random projections (e.g., PCS) against RFS, due
to the random nature of both. However, random projections
clearly take into account all the initial data features, while
in contrast, selecting a number of specific features inevitably
avoids the rest leading to considerable loss of information. This
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advantage provides credibility to PCS as a smart dimensional-
ity reduction method over other naive random feature selection
schemes under the data sparsity assumption.

E. Comparison with the state-of-the-art

In this section, we compare the performance of PCS with
PQ [18] and PCA [17]. Regarding PQ, the experiments were
carried out using the initial 327680 dimensional data. However,
since the application of PCA on the 327680 dimensional data
was infeasible (cf. Section IV-E2), the experiments involving
PCA were conducted using only one out of the eight spatial
pyramids of the data. That is, the dimensionality of the data for
this particular set of experiments was 40960. For this purpose,
the results are separately presented for PQ and PCA.

1) PCS vs PQ: In this subsection, PCS is compared to
PQ. As for the latter, we have used the k-means implemen-
tation presented in [18]. The theoretical complexity of this
implementation is O(IkNn), where k is the number of the
prototype centroids trained by k-means, I is the number of
iterations, n is the initial dimensionality (327680 in our case)
and N is the number of training samples (5717 in our case).
The dependance of the above complexity on I, k and N
does not allow a direct comparison with the corresponding of
PCS. However, since in the literature it has been shown that
a considerably large number of all these three parameters is
needed [18], it is clear that PQ might face severe computational
difficulties during its application. In our experiment, we set
I = 100 and k£ = 256, as proposed in [18]. Using these
settings, in the following we provide a comparison between
PCS and PQ from both a classification performance and a
computational complexity point of view, where the latter has
been based on the cpu times during the experiment.

The classification performance comparison between PCS
and PQ is illustrated in Fig. 6. The mAP is depicted in the
y-axis, while the number m of reduced dimensions is depicted
in the x-axis. Based on the result of Section IV-A on the
least required number of reduced dimensions, we allowed m
to take values in the range from 5120 to 163840 dimensions.
From Fig. 6, it is clear that although PQ outperforms PCS,
the difference between the two becomes negligible at high
dimensions. Fig. 7 jointly illustrates the percentage loss in
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Fig. 6. Comparison between PCS and PQ.

performance (left vertical axis) and the corresponding speed-
up (right vertical axis) using PCS versus PQ. Interestingly,
from Fig. 7, the loss in performance at 163840 dimensions
is only 1%, which is a difference of 0.69 units of mAP,
while PCS provides a 362 times speed-up over PQ. The above
loss in performance becomes approximately 11% at 5120
dimensions, while PCS is 23 times faster than PQ at the same
dimensions. Such differences in computational efficiency in
conjunction with the corresponding small compromise in terms
of classification performance, provide a huge potential of PCS
as an effective dimensionality reduction method in large-scale
classification problems.

2) PCS vs PCA: The mAP results from the comparison
between PCS and PCA are plotted in Fig. 8. Since in this
case the initial dimensionality of the data was 40960, the
number of reduced dimensions was allowed to take smaller
values down to 1280. Similarly to the comparison with PQ,
from Fig. 8, we observe that although in low dimensions, the
superiority of PCA over PCS is evident, by increasing the
number of dimensions, PCS exhibits classification performance
competitive to PCA.

The robustness of PCA in low dimensions, is well justified
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by the fact that PCA by definition attempts to encode the
data information into the least possible eigenvectors. However,
this advantage comes at the cost of excessive computational
and memory requirements. More specifically, regardless of the
number of reduced dimensions, PCA requires the computation
and eigen-analysis of the data covariance matrix, which is on
the order of n? N + N3, where n is the dimensionality and N
is the number of the samples. The above computational com-
plexity in conjunction with the excessive memory requirements
may render the application of PCA prohibitive. As a matter of
fact, it is worth mentioning that in this particular experiment,
it was infeasible to apply PCA on the data consisting of all
eight spatial pyramids (327680 dimensions), since 400 GB of
memory was required only for storing the covariance matrix.
This is the reason why, as stated previously, we used only one
out of the eight spatial pyramids.

On the other hand, CS requires the construction of an
m X n random matrix, where m is much smaller than n, and
the SVD of this matrix during the basis orthonormalization
step. Furthermore, using PCS, the SVD is decomposed into a
number of smaller SVD steps, leading to a computational load
orders of magnitude less than the corresponding of PCA. As a
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Fig. 9. Comparison between PCS and PCA.

matter of fact, a comparison analogous to Fig. 7 is illustrated
in Fig. 9. Although the loss in performance using PCS instead
of PCA reaches 18% at 1280 dimensions, PCS is more than
300000 times faster. Moreover, the above loss in performance
reduces to only around 2% at 20480 dimensions, while the
corresponding speed-up using PCS is around 24000.

Summarising the results of the comparison between PCS,
PQ and PCA, the deterioration in performance of PCS when
reducing the number of dimensions can be attributed to the
democratic nature of the reduced dimensions, which postulates
a representative number of dimensions in order to maintain
the important information. It must be emphasised though that
the profit in terms of computational complexity using PCS
compensates for the corresponding loss in performance, which
for many practical reasons can be proven negligible.

V. CONCLUSIONS

The main contribution of this paper is the novel Product
Compressive Sampling method for large-scale image clas-
sification. The proposed method dramatically decreases the
computational complexity of CS, while displays robustness
equivalent to the typical CS. Through a comparison with
baseline as well as state-of-the-art methods, it has been shown
that PCS displays performance competitive to PCA and PQ
provided that an appropriate number of dimensions is main-
tained. This fact in conjunction with the superiority of PCS in
terms of computational complexity, provide credibility to PCS
as an effective dimensionality reduction method in the domain
of large-scale image classification.

This paper comprises a preliminary experimental study in
smart sampling of big data using CS-like methods. The early
results obtained are very encouraging proving the potential of
the proposed method in the image annotation domain. Towards
corroborating this claim, in the near future, we intend to extend
this study in more datasets reinforcing our experimental results.
Moreover, since very high-dimensional feature representations
have recently achieved excellent results in other domains, like
for example in unconstrained face recognition, in the future we
intend to demonstrate our technical approach in those domains
as well.

Apart from the quantitative estimation of the data sparsity,
the investigation of the nature of sparsity and its impact on
the effectiveness of PCS is also encompassed in our future
plans. In this context, based on the interesting works presented
in [9] and [47], we envisage that the sparsity structure also
plays some crucial role and should be equally considered as a
factor affecting PCS in classification problems. For instance,
in the vector decomposition phase, there is plenty of space
for investigating more sophisticated ways to divide a vector,
based on sparsity patterns contained in the vector. Finally, there
might be a huge potential that dictionary learning methods,
which have been applied in CS could also be adapted to PCS
and benefit from the computational advantages stemming from
this framework.
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