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Abstract—In many application domains, such as education,
sequences of events occurring over time need to be studied
in order to understand the generative process behind these
sequences, and hence classify new examples. In this paper,
we propose a novel multi-granularity sequence classification
framework that generates features based on frequent patterns at
multiple levels of time granularity. Feature selection techniques
are applied to identify the most informative features that are
then used to construct the classification model. We show the
applicability and suitability of the proposed framework to the
area of educational data mining by experimenting on an educa-
tional dataset collected from an asynchronous communication
tool in which students interact to accomplish an underlying
group project. The experimental results showed that our model
can achieve competitive performance in detecting the students’
roles in their corresponding projects, compared to a baseline
similarity-based approach.

I. INTRODUCTION

With more and more data from various domains being
produced in the form of event sequences, sequence mining
has become an important and much-researched area [8].
Depending on the types of events they contain, sequences
can be discrete (e.g., symbolic sequences such as DNA,
proteins, or text) or continuous (e.g., time series, such as
sensor measurements, ECGs, or stocks). An important task
within the area of sequence mining is sequence classification.
For example, in health-informatics, an ECG can be viewed as
a multi-dimensional time series and can be used to classify
an individual as healthy or sick [28]. In finance, a chal-
lenging problem is to identify suspicious series of financial
transactions in a bank to detect money laundering or other
fraudulent activities [23]. In genomics, sequence classification
is employed to build models of known protein sequences in
order to detect the function of a new protein [7].

As a result, the need for developing efficient and flexible
techniques for sequence classification that can be applied in
different domains has become more in demand. One of the
key challenges of classification is how to identify and extract
appropriate features from the data in order to train and build
robust and effective classification models. This task becomes
even more challenging in the case of sequences, since there
are no explicit features at our disposal. Such features should
be captured in a way that both the temporal dimension and
the sequential order of the properties of the sequence are
maintained. In addition, the number of extracted features can,
in general, be rather large. Hence, the need for employing

appropriate feature selection methods arises. The latter is not
always trivial, due to the time dimension, which makes the
feature selection process more complicated.

Our target application area in this paper is educational data
mining, where to the best of our knowledge there have been
very limited studies on how temporal data features can be ex-
ploited for effective classification. Next, we provide a concrete
example from the target application domain demonstrating
how sequence classification can be employed for predictive
modeling of student roles in a project team based on their
communication patterns.

A. Example
Consider a set of students forming different groups, where

group members are assigned to work together on a project.
In each group, students may take three different roles: project
executive, project manager, and team member. Our task is to
build a model that can predict the role of a student within
the team by looking at the underlying communication patterns
between the team members. Hence, for each project, a student
corresponds to a sequence of communication events. Each
sequence is assigned a class label that defines the role of the
student in the project. Since the temporal order of various
communication patterns may play a major part in identifying
the correct role for each student, and common patterns may
emerge at different levels of granularity (e.g., days, weeks or
months) for different roles, we need to devise a framework for
identifying communication features at different levels of time
granularity.

B. Baseline
A baseline approach for classifying sequences of discrete

events is to apply a standard nearest-neighbour (NN) classifier
under a string similarity or distance function, such as Smith-
Waterman [27] or edit distance [24], respectively. Given a
training set, the classifier identifies for each new example
sequence the one with the highest similarity in the training
setting; the class of the closest sequence is assigned to the
example sequence. In the case of a k-NN classifier, the
majority class of the k most similar sequences is assigned
to the new example, while ties are broken at random.

C. Contributions
In this paper, we focus on the problem of sequence clas-

sification and show its applicability to the area of education.



More particularly, we formulate a multi-granularity framework
for classifying sequences of discrete events. The framework
consists of three phases: feature generation, feature selection,
and model construction. The proposed feature generation tech-
nique can effectively capture the inherent temporal structure
of the sequences by mining frequent sequential patterns at
different window sizes. The extracted features capture not only
the temporal aspects of the underlying sequences, but also their
variability at multiple levels of time granularity. Next, the most
important features are identified by applying standard variable
importance algorithms for feature selection. The classification
model is then constructed by using the selected features.

In our experimental evaluation, we apply our framework
to the educational data mining task mentioned in the exam-
ple above. The data in this case comes from the recording
of communication events between students working on the
same project as part of course on project management. In
analysing these events, the main goal was not to predict
students’ performance, but to identify patterns that emerge
from the on-line interactions between students according to
their role in a project. This is valuable information for those
who are teaching the course: if the patterns of interaction
detected by the framework do not match those expected for
the roles assigned to students, this can indicate either that
there is a problem within the project team or that the social
structure within the team is evolving. Early detection of such
“mismatches” allows the teacher to take remedial action if
necessary.

We study the performance of our framework in terms
of recall, precision, F-measure, and area under the ROC,
and compare with a similarity-based baseline approach. The
experimental results show that our framework is able to detect
correctly the role of more than 90% of the students, compared
to only 57% using the baseline similarity-based model, in the
best case.

The remainder of this paper is organized as follows: in
Section II, we present an overview of the related work, while
in Section III, we introduce our proposed framework. Our ex-
perimental setup and findings are presented and demonstrated
in Section IV, while a discussion on our findings follows
in Section V. Section VI summarizes our conclusions and
provides directions for future work.

II. RELATED WORK

Sequence classification methods in the literature can be
divided into three categories: distance-based methods such
as the baseline approach we described earlier, feature-based
methods, such as the proposed multi-granularity classifier
introduced in Section III, and model-based classifiers such
as Hidden Markov Models, which are not considered in this
paper.

In feature-based classification, a sequence is transformed
into a single vector of features. Such vectors are typically
constructed by viewing the sequence as a bag-of-words (i.e.,
a word is a symbol), and they provide a summarisation of the
sequence. For example, a vector can be the histogram of the

mean frequency of each event symbol included the sequence.
However, this approach ignores the sequential order of the
events. A modified method, called k-grams, was proposed
in [8], where each sequence of k consecutive events is treated
as a single feature. Using k-grams, each sequence can be
represented as a binary vector indicating the presence and the
absence of each k-gram in the vector. Given that each sequence
has been converted to a feature vector, a supervised learning
algorithm, such as an SVM [22] or a decision tree [6], can be
used to train the classifier. Usually if the number of k-grams is
large, some feature-selection technique is required to retrieve
the most relevant features. For example, Chuzhomova et al. [6]
employ a genetic algorithm to find the best subset of features.

Another family of feature-based classifiers is that of
shapelet-based classification models, commonly used for time
series [32]. A shapelet is a distinctive subsequence that is
dominant in time series of a particular class. Using these
shapelets, different classification models can be constructed,
such as random shapelet forests [14]. The main bottleneck of
this type of classifier is that the shapelet selection procedure
can be quite cumbersome, since a large set of candidate
shapelets should be enumerated. An approach for learning
the most distinctive shapelets has also been proposed [10];
nonetheless, the computational cost may be prohibitive for
large datasets [15]. Despite their extensive employment for
time series classification, their use for classifying distinct event
sequences has been limited to early-classification [31], which
is a different problem than the one we study in this paper.

An alternative is to use a pattern-based approach to build
a feature-based classifier [20], [21]. In this approach, similar
to shapelets, sub-sequence patterns are considered as features.
These sub-sequences must satisfy some pre-defined criteria,
such as being frequent and distinctive in at least one class,
and not redundant. In our study, we adopt this technique,
and employ an existing sequential pattern mining algorithm,
SPAM [2], to mine frequent sequences, which are then used
as features for training the classifier.

On the other hand, distance-based methods, also known as
lazy-learners, use a similarity function that measures to what
extent two sequences are similar. Euclidean distance [16],
[28] is a similarity measure commonly used in time-series
classification when the compared sequences are of the same
length and phase, while Dynamic Time Warping [17] is used
when more flexible matching is desired. Under the same
category, alignment-based methods have been used in several
applications in which the sequences consist of symbols [13].
Two types of functions have been proposed: (1) global-
alignment functions, such as the Edit Distance, which com-
pute an optimum global alignment score through dynamic
programing [25], and (2) local-alignment functions, such as
Smith-Waterman [27] and BLAST [1], which calculate scores
between two sequences based on most similar sub-regions.
Once the similarity scores have been calculated, an existing
classification algorithm, such as k-nearest neighbour or SVM
with a local alignment kernel [26], can be applied. Xing et
al. [31] give a thorough overview of sequence classification



algorithms which is outside the scope of this paper.
Our goal in this paper is not to compete with the literature

of sequence classification, but to demonstrate its applicability
to the domain of education. Hence, our main technical contri-
bution is the development of a multi-granularity pattern-based
classification framework that employs the novel idea of using
frequent patterns at variable window lengths as class features,
and the demonstration of its high applicability to education.

III. MULTI-GRANULARITY PATTERN-BASED
CLASSIFICATION

In this section, we introduce a multi-granularity sequence
classification framework for effective classification of sequen-
tial data. The framework is depicted in Figure 1 and it consists
of three main phases:
• feature generation: in this first phase the objective is to

generate sequential patterns that are used as distinctive
features for classification. The features are produced from
all possible time-granularity levels.

• multi-granularity feature selection: the next objective
is to employ a multi-granularity approach for feature
selection. The most informative features generated from
the previous step are selected using various variable
importance techniques.

• model construction: the final objective is the con-
struction of the classification model using the selected
features.

Next, we provide some basic definitions and then describe
the three phases in more detail.

A. Definitions

Let E be the space of possible events that can occur in a
sequence. A transaction is a triple

T = 〈id, e, t〉,

where T.id is the identifier of the transaction, T.e ⊆ E is a
single event or a set of events from E , and T.t is the time-stamp
of the transaction. For example, a transaction may correspond
to the set of student communication activities (events) during
a day or a week (time-stamp).

Given a set of predefined classes C = {c1, c2, . . . , cn}, a
transactional sequence S is of the form

S = 〈id, c, (T1, . . . , Tn)〉,

where S.id is the identifier of S, S.c ∈ C is the class of S,
and (T1, . . . , Tn) is an ordered set of transactions, such that,
if 1 ≤ i < j ≤ n then Ti occurs before Tj . In other words, the
transactional sequence respects the order of transactions within
it. A collection of transactional sequences defines a dataset D.

Before proceeding to the first phase of the proposed frame-
work, we assume that our dataset D is partitioned into two
non-overlapping parts: a training set D1 and a validation set
D2. We will use D1 to generate our feature space and D2 to
validate the constructed model.

B. Feature generation

The aim of this phase is to generate sequential features that
capture the inherent time dependencies between the transac-
tions and are highly correlated with the class label. These
features correspond to sequences that are characteristic of a
class in D1, i.e., occur frequently in that class, but at the
same time they are infrequent in other classes. These frequent
sequences will be used as the set of features when building
the multi-granularity classifier in the next phase.

Firstly, we employ SPAM, an efficient algorithm proposed
by Ayres et al. [2] for mining frequent sequential patterns
within a transactional dataset. SPAM has been shown to be
efficient in mining frequent sequences when the sequential
patterns in the data are very long. Specifically, SPAM is
applied to D1 and the set of frequent patterns per class is
extracted. We should note, however, that our framework is
not restricted to merely using SPAM for the frequent pattern
extraction. On the contrary, it is flexible enough to allow
for any alternative sequential pattern mining algorithm to be
applied. Hence, for the pattern extraction step any appropriate
pattern mining algorithm can be used.

More formally, a sequential pattern is a sequence of patterns
denoted as

p = (p1, . . . , pm),

where each pattern pi is a subset of E . Let P define the space
of possible sequential patterns that can be generated from E .
We say that a transaction T = 〈id, e, t〉 supports pattern p,
denoted p ≺ T , if p ⊆ e. In addition, a transactional sequence
S supports sequential pattern p ∈ P , denoted p ≺ S, if

∀pi : i ∈ {1, 2, . . . ,m}


∃Tj : pi ≺ Tj , if i = 1
∃Tj : pi ≺ Tj and
∃Tk : pi−1 ≺ Tk and
k < j, if i > 1

(1)

For each class c ∈ C, we use |c| to denote the number of
sequences in D which belong to class c, i.e.,

|c| = |{S ∈ D1 | S.class = c}| .

The frequency of a sequential pattern p ∈ P in class c ∈ C is
defined as follows:

FreqD(p, c) =
|{S ∈ D1 | p ≺ S ∧ S.class = c}|

|c|
.

Given a user-specified minimum frequency threshold σ, the
set Pc of frequent sequences of class c is the following:

Pc = f(P, D,≺, σ, c) = {p ∈ P | FreqD(p, c) ≥ σ},

where f is a function that corresponds to the algorithm
producing these patterns, in our case SPAM. To provide a
better illustration of the previous definitions we present the
following example.

Example I. Assume that we have an event space

E = {a, b, c, d, e}



Sequence Id Class Transactions
1 c1 ({a}, {a, b}, {e})
2 c1 ({a}, {c, d}, {a}, {a, b})
3 c1 ({e}, {a, b}, {a, b}, {c, d, e})
4 c1 ({a}, {b}, {c}, {a})
5 c1 ({a, b}, {a, b}, {a, b})
6 c2 ({a}, {a}, {a, b})
7 c2 ({a, c, b})
8 c2 ({b}, {d}, {a, d}, {a, b})
9 c2 ({a, b})
10 c2 ({e}, {a, b}, {e}, {a, b})

TABLE I: Example of a transactional dataset.

and a transactional dataset D consisting of the 10 sequences
shown in Table I. Each row in the table represents one
sequence. The first column shows the sequence identifier, the
second column indicates the class of the sequence, and the
third column shows the events of transactions forming the
sequence. Each transaction in the sequence consists of a set of
one or more events. To simplify the example, we have omitted
the identifiers and durations of transactions. Now consider
the sequential pattern p = ({a}, {a, b}) and the minimum
frequency threshold σ = 0.7. Pattern p is a frequent sequence
for class c1, because p is supported by 4 out of the 5 sequences
in class c1, namely sequences 1, 2, 3 and 5, hence

FreqD(({a}, {a, b}), c1) = 4/5 = 0.8 ≥ 0.7.

From the previous example, it becomes apparent that each
set Pc captures the sequential patterns that occur frequently
in a class c. Nonetheless, it fails to take into consideration
the exact location of these patterns in the sequences. In
other words, a similar frequent communication pattern could
occur between a project executive and a project manager,
but the location of this pattern in the sequences might be
different between the two roles. Hence, using the pattern as
a classification feature while ignoring the temporal location
would increase the classification error.

C. Multi-granularity feature generation

In order to capture time dependencies between the patterns
and classes in the sequences at different levels of granularity,
we segment the time-line of the dataset into n non-overlapping
windows {w1, . . . , wn}. The number of non-overlapping win-
dows n is defined by the user.

Given a minimum frequency threshold σ, we run the chosen
pattern mining algorithm, e.g., SPAM, to find the set of
frequent sequences Pk

c for each class c and each window wk:

Pk
c = f(P, D1,≺, σ, c, n, k)

= {p ∈ P | FreqD1
(p, c, n, k) ≥ σ},

where f is again the algorithm that generates the set of
patterns, ≺ is the support operator, n is the total number of
windows, k ∈ [1, n] is the window index, FreqD1(p, c, n, k)

is the frequency of the sequence (pattern) p that occurs within
the window wk, when we consider sequences of class c in D1.

Next, we post-process the output Pk
c of the pattern min-

ing algorithm f to reduce the amount of redundancy and
dependencies in the features. This can be done in several
ways, e.g., simply by considering only the maximal or closed
sequential patterns, or by introducing additional constraints on
the content of the patterns based on domain knowledge. For
simplicity, we demonstrate the first approach, where the set of
frequent patterns is reduced to the maximal ones, i.e., those
for which no superset is frequent. To better illustrate the multi-
granularity pattern generation approach described above, we
provide the following example.

Example II. Consider a simple dataset of five transactional
sequences. Each sequence consists of 10 transactions, where
each transaction consists of a single event from the set E =
{a, b, c, d, e}. Given a threshold σ of 0.8, Figure 2 shows the
frequent patterns in each window when we divide the time-line
into (a) 2 and (b) 5 windows.

Id 1 2 3 4 5 6 7 8 9 10
1 a e b e c e a c c e
2 c d a b c a b b c c
3 a a b b c a c d c b
4 d a b c b d c a c c
5 a b b b c b a c d c

k = 1 k = 2
(a), (a, b) (a), (a, c)
(b), (b, c) (c), (c, c)
(c), (a, c) (a, c, c)
(a, b, c)

(a) 2 windows
Id 1 2 3 4 5 6 7 8 9 10
1 a e b e c e a c c e
2 c d a b c a b b c c
3 a a b b c a c d c b
4 d a b c b d c a c c
5 a b b b c b a c d c

k = 1 k = 2 k = 3 k = 4 k = 5
(a) (b) (c) (c) (c)

(b) 5 windows

Fig. 2: Frequent sequences with threshold σ = 0.8.

Next, the output is post-processed and the number of
patterns is reduced by keeping only the maximal ones. For no-
tation purposes, we use fmax to denote the whole algorithmic
procedure: running SPAM and pruning out the non-maximal
patterns. For example, Figure 2(a) shows 7 frequent sequences
for the first window and 5 frequent sequences for the second.
In each case, there is only one maximal sequence: (a, b, c) for
the first window, and (a, c, c) for the second.

Our framework observes the data at multiple levels of
granularity by using multiple window sizes. In other words,
we repeat the previous steps several times, each time using a
different number of windows n ∈ N , with N denoting the



Fig. 1: Stages of the multi-granularity classification framework.

set of window sizes employed in this step. The motivation
behind considering different window sizes is that a particular
window size could be useful to detect one class, but irrelevant
for another. The final set of patterns is, hence, the following:

F =
⋃
c∈C

⋃
n∈N

⋃
k∈[1,n]

fmax(P,D1,≺, σ, c, n, k).

where c is the sequence class, n is the total number of
windows, and k is the window index. Any frequent pattern
f ∈ F is a triple f = (p, k, n) where F.p is a frequent
sequential pattern appearing in window k, given that the time-
line is divided into n windows.

In spite of the large number of frequent patterns obtained
using this approach, many patterns can be removed during the
feature-selection phase that follows.

D. Feature selection and model construction

We will now use the set of features F generated in the
previous phase to build a multi-granularity sequence classifi-
cation model. For this purpose, we will use the validation set
D2. Firstly, we map D2 to a binary feature matrix that is used
for building the classification model. For each sequence s in
D2, we check, for each feature f = (e, k, n) ∈ F , whether s
supports e, using the following function:

check(s, f) =

{
1 if e ≺ s
0 otherwise

Assuming that D2 = {s1, . . . , sn} and F = {f1, . . . , fm},
this step will result in an n×m Boolean matrix M , with

Mi,j = check(si, fj),∀ i ∈ [1, n] and j ∈ [1,m].

This is the matrix that contains all the (Boolean) features of
the validation set.

The process of building the final classifier consists of the
following steps:
• Feature selection: a feature-selection algorithm is ap-

plied to M , so that only the most discriminative class fea-
tures are selected. Depending on the classification method
at hand, we may use different alternatives, such as SVM
feature selection [29] or Random Forest [4]. There are in
general three main directions that have been taken in the
literature to tackle the problem of variable selection. The
first approach is called the wrapper methodology [19],
where the learner is seen as a black box and is used off-
the-shelf to provide a score for each subset of variables
according to their predictive performance. In practice, we
should define the search space of all possible variables,
how to assess the predictive performance, and finally
which leaner to use. The second approach is the filter
methodology, where subsets of “important” variables are
selected as a pre-processing step independently of the
chosen learner. Compared to wrappers, filters are faster,
and more importantly, they provide a more generic vari-
able selection that is not biased or tuned by the objective



learning algorithm; hence, the chance of overfitting is
reduced [11]. Finally, a third approach is the embedded
methodology, where the variable selection method is used
at a pre-processing step and is coupled to the particular
learning algorithm that will be used at the training phase.
In our framework, we employ the filter methodology,
which produces a more compact set of features with
reduced bias towards the learning algorithm and less
prone to overfitting [11]. More concretely, our framework
allows us to use any feature selection algorithm off-the-
shelf irrespective of the underlying classification model.

• Model construction: the feature selection step produces
a set of features that are then used to build the final
classifier for the transactional sequences. For this final
step of model constructions, validation set D2 was used.
Our framework provides us with the flexibility to use any
supervised learning algorithm at this step.

To recap, the proposed multi-granularity sequence classifi-
cation framework is flexible in terms of (1) the pattern extrac-
tion algorithm employed during the feature generation phase,
(2) the variable importance method used during the feature
selection phase, and (3) the predictive modeling technique
used during the model construction phase.

IV. EXPERIMENTS

We studied the performance of our framework on a dataset
representing on-line interactions between students while un-
dertaking projects. The task was to correctly detect the team-
member role of each student. Below, we first introduce the col-
lected dataset and then describe the details of the experimental
setting, followed by a discussion of the results obtained.

A. Dataset

Our dataset is from on-line asynchronous communication
tools used by Universidad de la Rioja and Universidad
Politécnica de Madrid. These tools are based on the PPM
software used to support the students’ learning experience
(http://www.project.net) and as a tool for coordinating groups
of students in order to accomplish and complete the projects
they are working on:
• Blogs. Blog posts can be created either globally for the

project or tied to specific tasks, keeping a complete record
of activity associated with that item easily accessible.
Thus, project members create blog posts to record recent
activities or completed work, as well as to ask something
related to the work to be done (Figure 3). In summary,
blogs:

– Record completed work and general comments.
– Provide a log of all work activity for a project.
– Facilitate two-way communication between manage-

ment and team members.
• Discussion groups. Project members can establish

threaded discussions. The centralised discussion board
allows project members to consolidate thoughts and ideas
and share running commentary with other project mem-
bers. In this particular application, discussion posts were

Fig. 3: Sample screen for blog messages held within a project.

Fig. 4: Sample screen for discussions held within a project.

also used to inform those project members responsible
for a deliverable that the requested work had been done.
The person responsible can then reply in order to provide
feedback on the performed work in a positive (accep-
tance) or negative (request changes) way. Furthermore, it
is possible to see who posted a discussion comment and
who has viewed your comments (Figure 4). In summary,
a project member can:

– Hold discussions around specific deliver-
ables/documents.

– Track who has viewed each message.
We gathered usage data for 194 students organised in 8

different projects. In each project, there are about 25 students.
Six projects started in October and finished at the end of
December in 2013. The remaining two projects extended over
the same period in 2014.

Three different roles could be assigned to the students
within a project: project executives (EX), project managers
(PM), and team members (TM). The students interact by
submitting messages to the communication tool; These can
be categorised as follows:
• BW: blog entry related to reported work.
• BT: blog entry related to a task. This can be used to ask

something about the work to be done.
• BE: blog entry related to anything else.
• BR: reply to a blog entry.



• PE: post entry.
• PR: reply to a post.

These messages can be read by all students who are involved
in the same project. Each interaction activity (sending or
viewing a message) has a time-stamp which indicates when
the interaction took place. Table II lists the full statistics of
the collected data.

B. Setup

In order to generate stable results, we ran the experiments
several times. For each run, we used two projects as the
training dataset D1 and the remaining six projects as the
validation dataset D2. Since dataset D consists of 8 projects,
this yields 28 different ways to divide the full dataset into the
training and testing datasets. The overall results are reported
as the average obtained over all 28 executions. The four
evaluation metrics used were precision, recall, F-measure, and
area under the ROC.

C. Nearest-Neighbour classifier.

Each student in the dataset is considered as a sequence of
events. An event is either reading or sending a message, hence
E = {reading, sending}. We experimented with two func-
tions: (1) edit-distance (NN-ED), which counts the minimum
number of edit operations (insertion, deletion, substitution)
required to transform one sequence into another, and (2)
Smith-Waterman (NN-SW), which performs local sequence
alignment.

D. Multi-granularity pattern-based classifier.

Each student is modelled as a sequence of transactions, and
each transaction represents one day. This means that the event
space becomes E = {reading, sending, gap}, where the gap
event means that no reading or sending activity was carried
out by the student in a particular transaction (day). We used
a minimum frequency threshold of σ = 0.8 when running the
SPAM algorithm. As mentioned before, we generated the set
of frequent sequences by dividing the time-line of the projects
in the dataset D1 into n windows of equal size, applying the
SPAM algorithm on each of these n windows. We explored
different levels of time granularity by iterating this process
using four different window sizes, i.e., N = {10, 15, 20, 25}.
Hence, this resulted in a pool of sequential features that
correspond to different time-granularity levels that are readily
available for the next phase of feature selection and model
building.

For training and testing our classifier, we used Weka [30] for
all experiments. For the feature-selection step, we investigated
two algorithms:
• SVM [29]: returns a ranked list of features. In this

case, we denote the classifier by MG-SVM-l, where we
consider the top l features when building the classifier
in the next step. We evaluated the results obtained for
l ∈ {10, 20, 30, 40, 50}.

• RandomForest [4]: returns a subset of features to be used
for training the classifier. We denote this classifier by
MG-RF.

After selecting the features, the final model can be built
using any supervised-learning algorithm. In our experiments,
we used the Random Forest classifier. Note that we could
alternatively optimise for a particular classifier by employing
the corresponding variable importance selection algorithm.
Nonetheless, as also discussed in [11], feature selection tech-
niques can also be used out-of-the-box for for providing
features that can be used by various classification models.

Finally, we used 10-fold cross validation by partitioning the
validation dataset D2 consisting of 6 projects into 10 equal
subsets. The values of the evaluation metrics were based on
their means over all runs.

E. Experimental results

The results for the MG-SVM classifiers when using various
top-l features for l ∈ {10, 20, 30, 40, 50} are highly similar. As
the results for l = 40 are slightly better than the others, we
used them (MG-SVM-40) when comparing to MG-RF and the
two baselines NN-SW and NN-ED in Table III. Clearly, MG-
RF returns a result very close to that obtained by MG-SVM-
40, with an F-measure of 0.886 compared to 0.912. However,
both MG-RF and MG-SVM-40 are substantially better than
the two baseline classifiers, where the F-measure scores were
only 0.313 for NN-SW and 0.567 for NN-ED. The reason
behind the difference in these results is that NN-ED performs
global sequence alignment, and hence local structure within
the classes may be hidden by the global structure captured by
NN-ED. On the other hand, NN-SW performs local alignment,
hence favouring local structural similarity between the classes.

NN-SW NN-ED MG-RF MG-SVM-40
precision 0.548 0.611 0.886 0.914
recall 0.387 0.563 0.890 0.915
F-measure 0.313 0.567 0.886 0.912

TABLE III: Average precision, recall, and F-measure using
NN-SW, NN-ED, MG-RF and MG-SVM-40.

When considering the individual results of the 28 exper-
iments, a similar pattern emerges, as shown in Figure 5.
In all experiments, NN-ED performs better than NN-SW,
while the performance of MG-SVM-40 and MG-RF are quite
similar and considerably better than both NN-ED and NN-
SW. When algorithm execution time is a factor, then MG-
SVM is preferable to MG-RF; each experiment using MG-
SVM takes about 15 minutes compared to more than 60
minutes for MG-RF. In addition, the ROC scores in Table
IV show that, for all the top-l features we considered, MG-
SVM is better than MG-RF. On the other hand, using MG-
SVM is not recommended when there are many redundant
features. If the set of features generated from the first phase
includes many redundant features, MG-RF is more effective in
classifying the transactional sequences since it selects only a
subset of features. This subset will include only non-redundant
features if those features are discriminative for classifying the
sequences.



TABLE II: Statistics about students and messages for each project.
Numbers of students Numbers of messages

Project Role-1 Role-2 Role-3 total BW BT BE BR PE PR total
1 3 12 11 26 641 18 39 92 57 374 1221
2 3 11 10 24 475 49 87 54 35 509 1209
3 3 11 10 24 401 43 97 39 54 741 1375
4 4 10 8 22 484 32 223 259 68 580 1646
5 4 10 9 23 426 9 190 182 38 746 1591
6 5 10 7 22 440 59 34 72 42 669 1316
7 3 9 16 28 342 39 42 50 36 510 1019
8 3 7 15 25 545 29 56 60 79 784 1553

All 28 80 86 194 3760 278 768 808 409 4913 10936
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Fig. 5: F-measure per experiment using NN-SW, NN-ED, MG-RF, and MG-SVM-40.

MG-RF SVM-10 SVM-20 SVM-30 SVM-40 SVM-50
ROC 0.942 0.957 0.967 0.971 0.973 0.973

TABLE IV: The average ROC scores using MG-RF and all MG-SVM variants.

V. DISCUSSION

The purpose of this investigation was to propose a novel
multi-granularity pattern-based sequence classification frame-
work and to examine its performance in the Educational Data
Mining (EDM) field.

EDM proposes the use of various techniques (statistical
analysis, machine-learning, data mining, etc.) to convert raw
data from educational systems into useful information that
could resolve educational research issues and understand the
setting in which students learn [3]. Some authors suggest
several EDM subjects as being relevant [5]:
• applications that assess students’ learning performance,
• applications that provide course adaptation and learning

recommendations based on the student’s learning behav-
ior,

• approaches that evaluate learning material and educa-
tional web-based courses,

• applications that provide feedback to teachers and stu-
dents in e-learning courses, and

• developments for the detection of atypical student learn-
ing behaviours.

Data analyses usually consider aggregated information
about students’ behaviour. However, the aggregated descrip-

tions often mask specific behaviours and strategies that stu-
dents employ as they work as a project team. An important
component to identify and analyse detailed students’ behaviour
is the use of sequence mining to identify frequent patterns of
actions within a group [18].

This work focused on asynchronous conversations because
they tend to be better structured and developed than syn-
chronous communication [9] and they provide project mem-
bers time to examine and reflect on a topic before they
formalize their contribution [12].

Despite these interesting results, it must be taken into ac-
count that different roles could emerge during project activities
beyond the formal project organisation. For instance, some
team members (TM) could emerge informally as leaders and
act as informal project managers (PM) in the day-to-day ac-
tivities. Although the analysis of these project team dynamics
have not been the main goal of the present investigation, we
are considering the idea of determining the social behavioural
profiles of project members beyond their formal given roles.

Finally, it is noteworthy that, since the EDM process
follows the same steps as the general data mining process,
the proposed framework could be applied to other areas of
application.



VI. CONCLUSIONS

We addressed the problem of detecting the roles of users
working in a shared activity by analysing their online interac-
tions. We approached the problem as a sequence classification
problem in which users can be represented by sequences of
their online activities. Two approaches were considered, a
baseline Nearest-Neighbour classifier built using a similarity-
based function, and our proposed multi-granularity classifier
that employs frequent sequential patterns at different time
granularity levels as distinctive class features. We evaluated
our framework to detect the roles of students working in
a project and interacting via an online asynchronous com-
munication. Our results demonstrate the superiority of the
multi-granularity pattern-based classifier, which can detect the
correct student role more than 90% of the time.

Directions for future work include the validation of our
framework in other domains such as industrial project man-
agement. In addition, we plan to explore alternative pattern
representations, such as closed patterns, that could possibly
provide features of better quality without substantially sac-
rificing computation time during training. Considering other
features, such as the actual contents of the interactions, might
also be beneficial.
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