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Abstract

Estimation of a regression functions is a common goal of statistical learning. We propose a novel 

nonparametric regression estimator that, in contrast to many existing methods, does not rely on 

local smoothness assumptions nor is it constructed using local smoothing techniques. Instead, our 

estimator respects global smoothness constraints by virtue of falling in a class of right-hand 

continuous functions with left-hand limits that have variation norm bounded by a constant. Using 

empirical process theory, we establish a fast minimal rate of convergence of our proposed 

estimator and illustrate how such an estimator can be constructed using standard software. In 

simulations, we show that the finite-sample performance of our estimator is competitive with other 

popular machine learning techniques across a variety of data generating mechanisms. We also 

illustrate competitive performance in real data examples using several publicly available data sets.

1 Introduction

Estimation of the conditional mean of a random variable is necessary in many statistical 

applications. For example, we are often interested in estimating the causal effect of a binary 

intervention A, randomized based on covariates W, on an outcome Y. Under standard causal 

assumptions, efficient estimation in a nonparametric model of the causal effect requires 

estimation of two conditional means: the outcome regression EP0(Y|A, W) and propensity 

regression EP0(A|W), where P0 denotes the true distribution of the observed data. Estimating 

conditional means is also important in settings where prediction is of interest. For example, 

we may be interested in predicting an outcome Y based on X, a set of features of data units. 

In such settings, the target parameter is the prediction function ψ0 in a class of prediction 

functions Ψ that minimizes the average of a scientifically relevant loss function. That is, we 

would like to estimate Ψ(P0)(X) = argminψ∈ΨEP0{L(ψ)(X, Y)}, where L(ψ) is a loss 

function, such as squared-error loss L(ψ)(x, y) = {y − ψ(x)}2. The minimizer of the mean 

squared-error loss is ψ0(X) = EP0(Y|X), making estimating of the conditional again an 

important goal.

Parametric and semiparametric methods for estimating the conditional mean assume its form 

is known up to a finite number of parameters. For example, generalized linear models 

express the conditional mean as a transformation of a linear function of the conditioning 

variables. Parametric methods suffer from a large bias when the assumed functional form is 

different from the true conditional mean. In contrast, nonparametric methods, such as 

machine learning techniques, approximate ψ0 using highly flexible functions. This makes 

nonparametric methods more appealing in many applications where little is known about the 

relationships between observed variables and outcome. Nonparametric methods make far 

fewer assumptions than parametric methods; however, nonparametric methods do typically 
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require at least some assumptions to ensure statistical properties of estimators. For example, 

many methods assume ψ0 has nearly constant, linear, or low-order polynomial behavior for 

all points sufficiently close to each other in a given metric.

Examples of methods assuming local smoothness include many popular learning techniques, 

such as histogram regression, tree-based methods, and generalized additive models. A 

central feature of these methods is the implicit or adaptive selection of the size of a 

neighborhood. The neighborhood size that optimizes the bias-variance trade-off can often be 

calculated explicitly. For example, a kernel regression estimator using kernels that are 

orthogonal to polynomials in x of degree k and bandwidth h assumes that ψ0 is k-times 

continuously differentiable. The bias of the kernel regression estimator is O(hk) and variance 

is O(1/(nhd)), so that the optimal rate for the bandwidth can be calculated as h = 

O(n−1/(2k+d)), resulting in a rate of convergence O(n−k/(2k+d)). This example illustrates a key 

point about existing nonparametric regression methods in the literature: the rate of 

convergence is largely influenced by the dimension of the conditioning variables. The only 

way to achieve fast rates of convergence in high dimensions is by making strong smoothness 

assumptions and these assumptions may not be true in practice.

This discussion highlights the tradeoffs we are faced with when constructing nonparametric 

regression estimators: we must make some smoothness assumptions to guarantee reasonable 

convergence rates, but if we assume too much smoothness, the estimator will be ineffective. 

In this work, we outline a regression estimator that makes global, rather than local, 

smoothness assumptions on the true regression function. We assume that the true conditional 

mean function is right-hand continuous with left-hand limits (cadlag) and has variation norm 

smaller than a constant M. These are exceedingly mild assumptions that are expected to hold 

in almost every practical application. Nevertheless, these assumptions are sufficient to 

ensure a fast convergence rate regardless of the dimension of the regression function(van der 

Laan, 2015). We propose a minimum loss-based estimator in this class of functions, which 

can be computed using L1-penalized regression. This allows the estimator to be constructed 

using standard Lasso estimator software(Tibshirani, 1996). However, in stark contrast to the 

usual Lasso estimator, our implementation does not require a parametric specification of the 

relationship between predictors and outcome, but rather uses a special set of data-dependent 

basis functions. We call our estimator the highly adaptive lasso (HAL) estimator.

The remainder of the article is organized as follows. In Section 2, we review the theory 

developed in van der Laan (2016) that establishes the convergence rate of an MLE over the 

class of cadlag functions with finite variation norm. In Section 3, we propose a practical 

implementation of such an MLE using L1-penalized regression. In Section 4, we illustrate 

the performance of the proposed estimator relative to competitors. In Section 5, we evaluate 

the performance of our estimator on real data sets. In Section 6, we highlight potential 

extensions to big data and high dimensional settings. We conclude with a short discussion.
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2 Theoretical Framework

2.1 Cadlag functions with finite variation norm

Suppose the observed data consist of n i.i.d. copies of the random variable O = (X, Y) ∼ P0 

∈ ℳ, where ℳ is a nonparametric model. Define the support of P ∈ ℳ as a set P ⊂ ℝd+1 

such that P( P) = 1. We assume that for each P ∈ ℳ, P ⊂ [0, τP] for a finite  and 

define τ = supP∈ℳτP. Thus, τ is an upper bound of all the supports and for simplicity, we 

assume that τ is finite, though this need not be true for our main theorem to hold.

We make two key smoothness assumptions about ψ0. The first is that ψ0 ∈ D[0, τ], the 

Banach space of d-variate cadlag functions (Neuhaus, 1971). The second is that the variation 

norm of ψ0 is finite. The typical definition of the variation norm is ‖ψ‖υ = ∫[0,τ] |ψ(dx)|; 

however, we make use of an alternative formulation of the variation norm defined as the sum 

of the variation norm over sections of ψ0. Specifically, we define Xs = {Xj : j ∈ s} for a 

given subset s ⊂ {1, …, d}. We also define Xs,c = {Xj : j ∈ sc}, where sc = {j : j ∉ s} ⊂ {1, 

…, d} denotes the complementary set of indices of s. For example, if X = (X1, X2), we have 

subsets X1 = {X1}, X1,c = {X2}, X2 = {X2}, X2,c = {X1}, X1,2 = {X1, X2}, X1,2,c = ∅.

For any function ψ ∈ D[0, τ], we define the s-th section of ψ as ψs(x) = ψ(x1I(1 ∈ s), …, 

xdI(d ∈ s)). This is the function that varies along the variables in xs according to ψ, but sets 

the variables in xs,c equal to zero. Using these definitions, we can re-express the variation 

norm as

where the sum is taken over all subsets of {1, …, d}.

Consider the class of functions ΨM = {ψ ∈ Ψ : ‖ψ‖υ < M}, where M can be taken to be an 

arbitrarily large constant. We expect that the true conditional mean in almost every real data 

application will fall into this class and we therefore view this as an extremely mild 

assumption of the true conditional mean. Examples of functions with infinite variation norm 

tend to be pathological; for example, ψ0(x) = cos(1/x) has infinite variation norm.

2.2 Minimum loss-based estimator in class of cadlag functions with finite variation norm

We now turn to what can be said about a minimum loss-based estimator in the class ΨM for 

a given M. We define the MLE in this class as

and the true minimizer of the average loss as

Benkeser and van der Laan Page 3

Proc Int Conf Data Sci Adv Anal. Author manuscript; available in PMC 2017 October 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Note that if M > ‖ψ0‖υ, then ψ0 ∈ ΨM and ψ0,M = ψ0. The following theorem establishes 

the rate of convergence of the MLE with respect to L2(P0) norm denoted ‖ψn − ψ0‖P0 = 

{P0(ψn − ψ0)2}1/2, where we use the notation Pf = EP{f(O)}.

Theorem 1 Let L(ψ) be the squared-error loss function and ΨM = {ψ ∈ Ψ : ‖ψ‖υ < M} be 

the set of cadlag functions with variation norm smaller than M, and 

 be the loss-based dissimilarity for squared-

error loss. If

(A1)

(A2)

then ‖ψn,M−ψ0,M‖P0 = OP(n−1/4−α(d)/8) where α(d) = 1/(d+1). Specifically, if M > ‖ψ0‖υ, 

then ‖ψn,M − ψ0‖P0 = OP(n−1/4−α(d)/8).

Proof: We have

Note that L(ψn,M) − L(ψ0,M) falls in the P0-Donsker class of all cadlag functions with 

variation norm smaller than a constant. By (A1) it follows that P0{L(ψn,M) − L(ψ0,M)} = 

OP(n−1/2). As a consequence of (A2), we have . By 

empirical process theory (van der Vaart and Wellner, 1996), we have that √n(Pn − P0)fn → 0 

in probability if fn falls in a P0-Donsker class with probability tending to 1, and  in 

probability as n → ∞. Applying this to fn = L(ψn,M) − L(ψ0,M) shows that (Pn − P0)

{L(ψn,M) − L(ψ0,M)} = oP(n−1/2), which proves d0(ψn,M, ψ0,M) = oP(n−1/2) and that ‖ψn,M, 

− ψ0,M‖p0 = oP(n−1/4). However, it, is possible to provide a more precise rate by utilizing the 

bound on the entropy of the Donsker class of cadlag functions with variation norm smaller 

than a constant established in van der Vaart and Wellner (2011) (van der Vaart and Wellner, 

2011). This result was used by van der Laan (2015) (van der Laan, 2015) to give the precise 
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rate d0(ψn,M, ψ0,M) = OP(n−1/2−α(d)/4) with α(d) = 1/(d+1). Thus, we have that ‖ψn,M − 

ψ0,M‖P0 = OP(n−1/4−α(d)/8).

Theorem 1 establishes that MLE ψn,M converges to its M-specific true counterpart in L2-

norm no slower than n−1/4 regardless of the dimension of X. This is a remarkable result since 

this minimum rate does not depend on the underlying local smoothness of ψ0. For example, 

ψ0 could be a function that is non-differentiable at many points.

2.3 Cross-validated choice of bound on variation norm

The bound on the variation norm of ψ0 is unlikely to be known in practice and will need to 

be chosen based on the data via cross validation. Consider a grid M1, …, MKn of Kn 

potential values for the bound, the largest of which is larger than ‖ψ0‖υ. The latter can be 

achieved in practice by selecting MKn to be such that ψn,MK,n perfectly fits the data. For k = 

1, …, Kn, let ψn,Mk = Ψ̂
M(Pn) denote the MLE over the class of cadlag functions with 

variation norm smaller than Mk. Consider a V-fold cross-validation scheme and let , 

 be the empirical distribution of the training and validation sample corresponding with 

sample split υ, υ = 1, …, V. The cross-validation selector Mn of M is the choice with the 

lowest estimated cross-validated risk,

The estimator of ψ0 is given by ψn = ψn,Mn = Ψ̂
Mn(Pn). To examine how the cross-

validation-based selection of M affects the statistical properties of ψn relative to the MLE 

presented in Theorem 1 (where the bound was known), we now assume that the loss 

function is uniformly bounded

(A3)

The oracle selector is defined as the value of M that minimizes the true cross-validated risk

We can compare the performance of ψn to the oracle choice  using the finite-

sample oracle inequality for cross validation (Van Der Laan and Dudoit, 2003; van der Vaart 

et al., 2006; van der Laan et al., 2006), which establishes
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in probability. Thus, the cross-validated selector is asymptotically equivalent with the oracle 

choice in loss-based dissimilarity. We can further establish that

so that by choosing Kn such that n−1/2logKn converges to zero as n goes to infinity, the 

minimal convergence rate established in Theorem 1 will be preserved. Note that this 

requirement is mild and in particular, admits schemes with Kn = np for any p > 0.

We have now established that the statistical properties of the MLE presented in Theorem 1 

are retained even when the true variation norm is not known and must be chosen via cross 

validation. We now turn to how such an MLE can be constructed in practice.

3 The highly adaptive lasso estimator

For any ψ ∈ D[0, τ] with ‖ψ‖υ < ∞, we have the following representation of ψ (Gill et al., 

1995):

which can also be written as

(1)

Consider approximating the representation of ψ in equation (1) using a discrete measure ψm 

with m support points. For each subset s, define ψn,s to be the discrete approximation of ψs 

with support points given by (us,j : j). Let dψm,s,j be the pointmass assigned to point us,j by 

ψm. An approximation of ψ may then be constructed as:

(2)

Note that this approximation consists of a linear combination of basis functions x → ϕs,j(x) 

= I(xs ≥ us,j) with corresponding coefficients dψm,s,j summed over s and j. Additionally note 

that the sum of the absolute values of these coefficients gives the variation norm of ψM:
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In words, we have illustrated that any function of finite variation norm admits a 

representation as the sum over subsets of an integral with respect to a subset-specific 

measure. Each subset-specific measure can be approximated using a discrete measure with a 

given set of support points. In simpler terms, each subset-specific function ψs can be 

approximated by a step function with jumps at a given set of points. At a given point, the 

sum of the subset-specific step functions at that point gives an approximation of the function 

ψ at that point. Each subset-specific step function can be represented as a linear combination 

of indicator basis functions for a given set points where the step function jumps. 

Furthermore, the variation norm of the approximation of ψ is given by the sum over all 

approximating step functions of the absolute value of the jumps made by each function.

The question natrually arises as to where the support points of the discrete measure should 

be placed; that is, where should the step functions jump? We argue that the minimizer of the 

empirical risk over all measures (continuous and discrete) is equivalent with minimizing the 

empirical risk over all discrete measures with support defined by the actual n observations. 

The empirical risk PnL(ψ) only depends on ψ through {ψ(x̃i) : i = 1, …, n}, where we use x̃i 
to denote the observed values of X, i = 1, …, n. This suggests that the infinite-dimensional 

minimization over ΨM can be replaced by a finite dimensional minimization problem. 

Specifically, for each subset s ⊂ {1, …, d}, let x̃i,s be the subvector {x̃i,k : k ∈ s}, i = 1, …, 

n. We now apply (2) with support points of ψs given by {x̃i,s : i = 1, …, n} for each s:

(3)

We can consider minimization only over linear combinations of basis functions x → ϕs,i (x) 

= I(xs ≥ x̃s,i) and corresponding coefficients dψm,s,i summed over subsets s ⊂ {1, …, d} and 

for i = 1, …, n. For the purposes of carrying out the minimization, we define

and a corresponding subspace

The minimizer ψn,M will be equivalent with ψβn, the minimizer in β over this subspace:
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Note that this minimization corresponds exactly to Lasso linear regression (Tibshirani, 1996) 

with covariates ϕs,i across all subsets s ⊂ {1, …, d} and for i = 1, …, n. Thus, computation 

of ψn,M requires minimizing over the vector β under the constraint that its L1-norm is 

bounded by M. If all d components of X are continuously distributed, then the dimension of 

the vector β will be at most n(2d − 1). If X has discrete components the representation of ψ 
given above generalizes. For example, a function on {0, 1} is not cadlag, but may be 

extended to a cadlag function by defining it as constant on (0, 1) with right-continuous 

jumps at 0 and 1. Note that when X has discrete components the number of unique basis 

functions required for the approximation (3) will be far fewer than n(2d − 1).

4 Illustration in low dimensions

In this section, we illustrate our estimator in the simple situations with d = 1 and d = 2. For 

the univariate setting, we drew n = 500 independent copies of X from a Uniform(-4,4) and of 

ε from a Normal(0, 1) distribution and let Y = 2sin(π/2|X|) + ε, so that ‖ψ0‖υ = 16. The 

basis functions used by the HAL estimator consist of n indicators at the observed data 

points: ϕj(x) = I(x ≥ x̃j) for j = 1, …, n. To select the bound on the variation norm, we used 

ten-fold cross validation to select from 100 possible bounds ranging from 0 to about 350. We 

illustrate the fit from three of these choices in Figure 1. The solid line is the HAL estimator, 

which uses the cross-validation-selected value Mn = 13.9. The dashed and dotted lines 

represent choices that are smaller and larger than the true variation norm, respectively. The 

ticks at the bottom of the figure are placed at the 46 support points of ψn with a non-zero 

coefficient. The choice of 4.8 as bound on the variation norm (dashed line) visibly over-

smooths the data, while the bound of 35.2 appears to provide a reasonable approximation 

and is similar with the prediction from the HAL estimator. However, the larger bound does 

appear to produce more noise near the edges of the support. Theory dictates that any choice 

of bound larger than the true norm will yield an estimator with the properties established in 

Theorem 1. Nevertheless, we expect that the HAL estimator will exhibit superior 

performance in finite samples by allowing for selection of a bound smaller than the true 

norm. The oracle inequality guarantees that so long as at least one bound larger than the true 

norm is considered as a candidate bound, then we will eventually select a bound that is 

larger than the true variation norm. Indeed, when the sample size was increased to 5,000 

(data not shown), the cross-validation-selected bound was selected as 16.8, which is close to 

the true value.

We now illustrate the bivariate setting where X has a discrete component. We again drew X1 

from a Uniform(-4,4) distribution and also drew X2 independently from a Bernoulli(0.5) 

distribution. We let  where ε was drawn from a 

Normal(0,1) distribution. To construct the HAL estimator in this setting, we first created n 
basis functions corresponding with indicators at the observed values of X1: ϕ1,i(x) = I(x1 ≥ 

x̃1,i) for i = 1, …, n. Next, we added basis functions for the subset consisting only of X2: 
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ϕ2,i(x) = I(x2 ≥ x̃2,i) for i = 1, …, n. Note that because X2 is binary, there was only be a 

single unique basis function to be added, ϕ2(x) = I(x2 ≥ 1). Finally, we created bivariate basis 

functions of the form ϕ12,i(x) = I(x1 ≥ x̃1,i, x2 ≥ x̃2,i) for i = 1, …, n. These basis functioned 

number fewer than n due to binary X2. In particular, it was unnecessary to add basis 

functions ϕ12,i(x) for any i for which x̃2,i = 0 due to the fact that for any such i we had 

already placed support on this zero-edge by including ψi,1. This illustrates the point made at 

the end of the previous section that the number of basis functions in a given sample will be 

at most n(2d − 1), while in practice the number may be far fewer depending on the number 

of unique observations in a given data set.

Figure 2 illustrates a random draw of size n = 500 from this data generating mechanism. 

Two lines are shown corresponding with the estimate of ψ0 when X2 = 1 (upper dashed line) 

and when X2 = 0 (lower solid line). The solid tick marks across the bottom of the figure 

indicate the univariate basis functions with a non-zero coefficient in ψn. Accordingly, these 

marks corresponding with jumps in both ψn(·, 0) and ψn(·, 1). The dashed tick marks 

indicate the bivariate basis functions with non-zero coefficients and thus correspond with 

values of a jump in ψn(·, 1), but not ψn(·, 0). Notice that, as expected these ticks occur most 

frequently when X1 > 2, corresponding with the values for which ψ0(x1, 0) is decreasing in 

x1, while ψ1(x1, 1) is increasing.

5 Simulation

We evaluated the finite-sample performance of the HAL estimator relative to other 

nonparametric algorithms: regression trees (Breiman et al., 1984), random forests (Breiman, 

2001), gradient boosted machines (GBM) (Friedman, 2001), kernel regression (Nadaraya, 

1964; Watson, 1964), support vector machines (SVM) (Hearst et al., 1998), and polynomial 

multivariate adaptive regressions splines (Polynomial MARS) (Friedman, 1991). We 

considered three types of data generating mechanisms, which we call smooth, jumps, and 

sinusoidal. For each type of data generating mechanism, we varied the dimension of X and 

considered d ∈ {1, 3, 5} and sample sizes n ∈ {500, 1000, 2000}. Performance was judged 

based on R2, which was calculated on an independent test set of size N = 1e4, where for a 

given estimator ψ̂, we define

Each setting was designed so that the optimal R2 value was , where

is the value of R2 obtained when using the true regression function ψ0. This value can be 

viewed as an upper bound on the performance of any estimator.
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The distribution of X was as follows:

For dimension d, call the target parameter  and let X = (Xj : j = 1, …, d}). We define 

 where ε ∼ Normal(0, 1).

The “smooth” regression functions for d = 1, 3, 5 respectively were defined as

The “jump” regression functions were defined as

The “sinusoidal” regression functions were defined as

Figure 3 displays the results of the simulation study with rows representing the different data 

generating mechanisms and columns representing the different dimensions of X. The 

margins of the figure show the results aggregated across data generating mechanisms of a 

particular dimension (bottom margin) and aggregated across different dimensions of a 
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particular data generating mechanism (right margin). In each plot, the algorithms have been 

sorted by their average R2 value across the three sample sizes with the highest R2 at the top 

of the figure and the lowest R2 at the bottom.

Beginning with the top row corresponding to the “smooth” data generating mechanisms, we 

find that all algorithms other than random forests perform well when d = 1, with kernel 

regression performing the best in this case. However, as the dimension increases, the relative 

performance of kernel regression decreases, while the relative performance of HAL 

increases. Across all dimensions the SVM had the best overall performance; however, the 

performance of the GBM and HAL were comparable. In the second row corresponding with 

the “jumps” scenario, we see that the HAL performs extremely well, nearly achieving the 

optimal R2 when n = 2000 for all dimensions. In the third row corresponding with the 

“sinusoidal” scenario, we find that somewhat surprisingly the kernel regression performs the 

best across all dimensions. This appears to be due in part to superior performance relative to 

other estimators when n = 500. For the larger sample sizes, the R2 achieved by kernel 

regression, random forests, and HAL are similarly high. The far bottom right plot shows the 

results over all simulations with algorithms sorted by average R2 and we see that HAL had 

the highest average R2 followed by kernel regression and random forests. Overall, HAL 

performed well relative to competitors in all scenarios and particularly well in the jump 

setting, where local smoothness assumptions fail. Though the estimator was not ranked 

highest for the smooth and sinusoidal data generating mechanisms, its performance was 

comparable to the best-performing machine learning algorithms, which are generally 

considered to be state-of-the-art.

6 Data Analysis

We separately analyzed five publicly available data sets listed with citation in Table 1. 

Sample sizes for the data sets ranged from 201 to 654 and d ranged from four to eleven. In 

addition to the nonparametric methods evaluated in simulations, we considered estimation of 

ψ0 with several parametric methods as well. These included a main terms generalized linear 

model (GLM), a stepwise GLM based on AIC including two-way interactions, and a 

generalized additive model (GAM) with the degree of splines determined via ten-fold cross-

validation.

In practice, the individual best method for estimating a conditional mean will not be known 

a-priori. The performance of the various methods will be determined by both the sample size 

and the underlying true data distribution. Therefore, in a given data example, we may wish 

to consider many algorithms for the purpose of estimating ψ0. The Super Learner is an 

ensemble learning method that, based on the methods' cross-validated risk, selects either the 

single best method or the best weighted combination of methods from a library of candidate 

methods. The former is often referred to as the discrete Super Learner, while the latter is 

referred to as either the continuous Super Learner or simply the Super Learner (van der Laan 

et al., 2007). The same oracle inequality used to establish the performance of the HAL 

estimator in Section 2.3 may be used to establish that the performance of the Super Learner 

will be asymptotically equivalent with the performance of the best method considered. 
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Therefore, by including the HAL estimator in the Super Learner, under mild conditions we 

are guaranteed to perform at least as well as the HAL estimator, but possibly much better.

In order to compare the performance of the various methods across different data sets with 

different outcomes, we studied the ten-fold cross-validated mean squared-error of each 

method relative to that of the main terms GLM. Values greater than one correspond to better 

performance of the GLM. The results of each of the data analyses are shown in Figure 4. 

The gray dots corresponds to the relative MSE in a particular data set, while the black cross 

corresponds to the geometric mean across all five studies. The Super Learner and discrete 

Super Learner perform best, followed by the HAL estimator. The HAL estimator performed 

particularly well on the cpu dataset, where its cross-validated MSE was nearly half that of 

the main terms GLM.

7 Considerations for increasing dimensions

A limitation of the proposed HAL estimator is that as the dimension of X increases storage 

of the n(2d − 1) basis functions becomes infeasible. However, because the empirical risk 

PnL(ψ) only depends on ψ through n values {ψ(Xi) : i = 1, …, n}, it may be possible to 

further reduce the number of basis functions while still attaining the minimum of the 

empirical risk. Our theorem proves that any ψn,M attaining the minimum will converge to 

ψ0,M at the desired rate, while in fact, it suffices to achieve the minimum up to an 

approximation error smaller than this rate. This suggests that for finite samples it might 

suffice to work with a smaller subset of basis functions even though, in theory, all of these 

types of basis functions would be included as sample size increases so that any function can 

be arbitrarily well approximated.

One such strategy could consist of ordering basis functions from one-way, two-way, to d-

way, while also ordering within each set of k-way basis functions k = 1, …, d. An example 

of the latter ordering could be choosing basis functions based on p evenly spaced quantiles 

of the observed X, letting p go from one to n. The modified HAL estimator would determine 

the cross-validated risk of a HAL estimator based on nℓ ≪ n(2d − 1) basis functions and 

subsequently add the ordered basis functions until the cross-validated risk is no longer 

improved or increases by a fixed amount. Under reasonable assumptions, we expect such a 

scheme should perform well in finite samples, while ensuring that as sample size increases, 

there will be enough basis functions added to adequately approximate ψ0.

Computational problems may also arise as the number of observations n grows even for 

small dimensions. In these cases, one may not be able to compute the empirical minimizer 

ψn,M using standard software. However, it may be possible to adopt an online minimization 

approach, such as stochastic gradient descent (Bottou, 2010). The bound on the variation 

norm can also be selected in an online manner by minimizing online cross-validated risk. 

Developing computationally feasible algorithms which approximate the desired ψn,M will be 

an important area of future research.

Benkeser and van der Laan Page 12

Proc Int Conf Data Sci Adv Anal. Author manuscript; available in PMC 2017 October 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



8 Conclusion

In this paper we defined a new nonparametric regression estimator, which we call the highly 

adaptive lasso estimator. A remarkable feature of this estimator is that it will converge to the 

truth at a rate faster than n−1/4 regardless of the dimension of X. At first glance, this seems to 

contradict the well known minimax convergence rates from the nonparametric estimation 

literature. However, such minimax rates are with respect to estimation of ψ0 at a single point 

x, while our rates are with respect to L2(P0) norm. Another fascinating consequence of the 

minimal convergence rate achieved by HAL is its relation to construction of efficient 

estimators of pathwise differentiable parameters in infinite-dimensional models. These 

estimators typically require as an intermediate step estimation of the nuisance parameters 

that index the target parameter's efficient influence curve. For example, as mentioned in the 

introduction, the statistical parameter identifying the average causal effect of a treatment 

requires estimation of the outcome regression and propensity regression. These estimators 

can be used to construct a cross-validated targeted minimum loss-based estimator (CV-

TMLE) (Zheng and van der Laan, 2011) of the average causal effect. If every strata of 

covariates has a positive probability of receiving treatment, then a sufficient condition to 

prove asymptotic efficiency of the CV-TMLE estimator is that the estimated regressions 

converge to their true value in L2(P0) norm faster than n−1/4. The HAL estimator appears to 

be the first estimator that can guarantee asymptotically efficient estimation of the average 

causal effect without enforcing strong smoothness conditions (van der Laan, 2015).

We have made available the code used to execute the simulations and data analyses in a 

GitHub repository at https://github.com/benkeser/hal.
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Figure 1. 
The highly adaptive lasso in the univariate setting.
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Figure 2. 
The highly adaptive lasso in the bivariate setting.
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Figure 3. Simulation study results
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Figure 4. 
Relative cross-validated mean squared error of methods in five real data sets. circle = result 

on a single data set, cross = geometric mean over five data sets.
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Table 1
Data sets analysed using the HAL estimator and competitors

Name n d

cpu(Kibler et al., 1989) 209 6

laheart(Afifi and Azen, 1979) 201 11

oecdpanel(Liu et al., 1999) 616 6

pima(Smith et al., 1988) 392 7

fev(Rosner, 1999) 654 4
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