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Abstract—The forecasting of time series data is an integral
component for management, planning, and decision making.
Following the Big Data trend, large amounts of time series data
are available in many application domains. The highly dynamic
and often noisy character of these domains in combination with
the logistic problems of collecting data from a large number
of data sources, imposes new requirements on the forecasting
process. A constantly increasing number of time series has to
be forecasted, preferably with low latency AND high accuracy.
This is almost impossible, when keeping the traditional focus on
creating one forecast model for each individual time series. In
addition, often used forecasting approaches like ARIMA need
complete historical data to train forecast models and fail if
time series are intermittent. A method that addresses all these
new requirements is the cross-sectional forecasting approach. It
utilizes available data from many time series of the same domain
in one single model, thus, missing values can be compensated and
accurate forecast results can be calculated quickly. However, this
approach is limited by a rigid training data selection and existing
forecasting methods show that adaptability of the model to the
data increases the forecast accuracy. Therefore, in this paper we
present CSAR a model that extends the cross-sectional paradigm
by adding more flexibility and allowing fine grained adaptations
to the analyzed data. In this way, we achieve an increased forecast
accuracy and thus a wider applicability.

I. INTRODUCTION

Nowadays, forecasting of time series data has become

an irreplaceable part of management, planning and decision

making. Especially, current developments in Smart Grid tech-

nologies, where thousands of Smart Meters monitor the en-

ergy consumption of individual households, energy providers

require reliable forecasts to balance the transmission grid [1],

[2]. Another current development is the Internet of Things

where thousands of objects are monitored with a multitude of

sensors. Here, thorough predictions are necessary to increase

the efficiency of production processes and manage stock

keeping, all with reduced human intervention [3].

The large number of monitoring devices combined with an

intensive data gathering leads to new requirements towards

the task of forecasting. As the monitoring granularity becomes

finer in structure and time, data sets now consist of thousands

of very long time series. This makes the timely provision of

forecast results a growing problem. Moreover, the increasingly

fine time granularity leads to much noisier and less regular

time series, which are smoothed by aggregation effects on

coarse granularities. The ability to work with such noisy data

is another emerging requirement for forecasting techniques.

Furthermore, the growing number of monitoring devices in-

creases the risk for sensor drop outs and transmission errors.

This causes missing values and incomplete or intermittent time

series which also is an arising requirement.

These new requirements hamper the application of tra-

ditional forecasting techniques like ARIMA or Exponential

Smoothing, although, they are successfully applied in a wide

variety of application scenarios [4]. These techniques only

focus on the prediction of one individual time series. This

makes the handling of large data sets very time consuming

since a large number of models has to be optimized to

properly represent each and every time series. Furthermore,

it is not possible to compensate for noise or missing values of

individual time series since these methods do not involve other

data sources during the model creation. Therefore, traditional

forecasting techniques are not suited to meet the requirements

that we are confronted with by the prediction of large scale

time series data sets.

An approach that already addresses the aforementioned

requirements is cross-sectional forecasting (CS) [5]. It creates

only one single model for all time series of an entire data set

assuming that time series from the same domain share a com-

mon behavior. But, this approach lacks modeling versatility

since it is limited by a very rigid data selection. CS does not

represent the actual behavior of every individual time series,

but the relative change from one point in time to the next

one (like an AR(1) model) for the whole data set and predicts

all time series with the same model. Therefore, this technique

can compensate noise and missing values in individual time

series, since other series from the same data set contribute to

the model creation. Furthermore, forecasting a large number

of time series in reasonable time is possible as well since only

one model has to be optimized. We want to keep these qualities

and make the model more adaptable. Because, as the research

on other prediction methods shows, adaptability of the model

towards the analyzed data leads to a higher forecast accuracy

[6], [7].

In this paper we present CSAR the Cross-Sectional

AutoRegression model. It combines the qualities of cross-

sectional forecasting with the adaptability of ARIMA. There-

fore, we create a model which meets all the aforementioned

requirements and is adaptable to wide range application sce-

narios. In detail, our contributions are:

• We give an overview on the forecasting process and

illustrate the new requirements for the forecasting of large

scale time series data sets in more detail in Section II.
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• Subsequently, we review existing forecast techniques

and discuss their abilities and shortcomings regarding

the new requirements in Section III. Thereby, we show

that none of the existing techniques entirely satisfies all

requirements.

• We describe our new CSAR model and how it combines

properties of cross-sectional forecasting and ARIMA in

Section IV. Furthermore, we introduce the parameters

which can be used to adapt CSAR to a specific data set.

• We extensively evaluate our approach on three different

real world data sets to show its high forecast accuracy

and short execution time in Section V.

Finally, we conclude the paper in Section VI with a short

summary and a brief overview on future research directions

for the prediction of large scale time series data.

II. TIME SERIES FORECASTING

In many application scenarios a lot of data is collected

from multiple sources, such that there is a large number of

time series originating from the same domain which have

to be analyzed, modeled, and forecasted. We refer to such a

collection of time series as a data set Y where all time series

Y n – n is a unique series identifier – are recorded at the same

points in time 1, ..., t.
Usually, the task of forecasting focuses on only one time

series Y . A time series is a sequence of values Y1, . . . , Yt

where the subscript marks the time at which a value was

recorded. Additionally, a time series is assumed to be sorted

in ascending order by time, complete, i.e., has no missing

values, and equidistant, i.e., all time series values are recorded

at regular time intervals. For the forecasting, a model is

optimized on the values of the time series to represent them

as good as possible and then this model is used to calculate

the requested forecast values [8]. Fig. 1 shows an example

of a time series represented by the connected black crosses

×. The x-axis of the diagram denotes the time and the y-axis

denotes the corresponding measure values. The red crosses ×
mark the forecast values Ŷt+1, . . . , Ŷt+h. The exact number of

requested forecast values is called forecast horizon h. In the

example three values are predicted h = 3. The prediction of

long forecast horizons entails additional problems beyond the

focus of this work. Therefore, we limit ourselves to one-step

ahead forecasts with h = 1 and address the topic of long range

forecasting in a later work.

There are two very important characteristics of time series

that a model should address in order to produce accurate

forecasts. The first one is the trend characteristic which sums

up all long term changes without reoccurring patterns. The

second is the seasonality which describes regularly reoccurring

patterns within fixed intervals. The example time series in Fig.

1 has a seasonality with a season length of s = 12, which

is recognizable at the reoccurring peaks, but lacks a clearly

visible trend, e.g., a continuous rise or decline in the measured

values. Between the time series and the x-axis of Fig. 1 there

is a secondary representation of the same time series. Each

square represents one time series value. Historical values are

Fig. 1. Example time series and forecast with a forecast horizon of h = 3.

marked by gray squares with a solid contour, forecast values

are marked by light gray squares with a dashed contour. In

the remainder of this paper, we will use this representation to

visualize how time series values are used to calculate forecasts.

Changes in the way of data collection, towards more and

more time series that are recorded on increasingly fine struc-

tural and temporal granularities, lead to new requirements for

the forecasting process [5]. We would like to emphasize these

new requirements and illustrate them with an example data

set from the energy domain which has to be predicted with

high accuracy despite its properties. It consists of Smart Meter

data monitored in Ireland over one and a half years in 30min

time granularity. The data was recorded by the Commission

for Energy Regulation (CER) and made publicly available by

the Irish Social Science Data Archive (ISSDA) [9].

R1 – Numerous Series The high number of time series that

has to be modeled, makes the application of models that only

predict one series at a time very difficult, since there is a large

number of models which has to be created. The example data

set consists of 6433 individual time series which request an

equally high number of forecast models. This is a very time

consuming task as we will show later on in our evaluation.

In order to suit the prediction of large scale time series data

sets, a modeling technique has to provide forecast values for

a large number of time series in reasonable time.

R2 – Incomplete Data The individual time series originate

from a multitude of different data sources, e.g., Smart Meters

of individual households and enterprises. Technical malfunc-

tion of the monitoring devices can lead to missing values and,

thus, to incomplete time series which many forecasting tech-

niques are not able to work with. In the example data set only

71% of all time series have a complete history and compared to

a complete data set where all time series were recorded over

the full monitoring time, 5% of the overall data is missing.

When the focus lies on only a few time series it often is

possible to ensure complete data, e.g., by the application of

imputation methods or the search of compensation values from

similar time series [10]. However, regarding data sets with

thousands of time series this is associated with very high cost

if it is feasible at all. Hence, a forecasting technique has to
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be able to provide accurate predictions regardless whether the

data set is complete or not.

R3 – Increasingly Fine Granularity The increasingly fine

structural and temporal granularity at which time series are

monitored leads to very long historical data. Most forecasting

techniques use all the available data for the model optimization

which makes the forecasting of large scale data sets even more

time consuming. On top of that, such fine grained time series

are very prone to noise originating from external influences

which can hardly be monitored and can only be seen at a

very fine granularity, e.g., the operation times of domestic

appliances which are unique per household and will vary on

a daily basis [11]. This makes time series especially hard to

model and forecast since their behavior does not seem to be

deterministic and describable. Therefore, a modeling technique

has to be able to compensate noisy behavior of time series and

provide accurate forecast values.

In the next section we review existing forecasting techniques

and discuss their ability to address these requirements.

III. RELATED WORK

The topic of time series forecasting is an old field with a

lot of published research available. In this section we give an

overview on the most commonly used methods and analyze

their advantages and shortcomings related to the just depicted

requirements.

A. Univariate Forecasting Methods

Univariate forecasting techniques focus on the prediction

of one single time series. The ARIMA model is one of the

most commonly used techniques from this class [4], [6].

We describe this model slightly more detailed than other

approaches since we will pick up on its properties later on.

ARIMA models a time series using three basic concepts:

autoregression AR, integration I, and moving average MA.

These three different concepts make the ARIMA model adapt-

able to different time series characteristics and applicable in a

wide range of use cases. The modeling process begins with the

integration step. The time series is differentiated to eliminate

trend and seasonal characteristics and make it stationary. A

time series is called stationary if it has a constant expectation

value and a constant variance over time. Afterwards, both,

one, or none of the two predictive model parts AR and MA

are applied. The autoregressive part models future time series

values based on the most recent historical time series values.

The moving average part models future values based on error

terms which are the result of the simulated prediction of the

available time series history. This type of error correction

uses historical errors to create better predictions. For every

model part there is a distinction between a non-seasonal and a

seasonal case. Whether a seasonal model has to be applied or

not depends on the presence of a seasonal pattern in the time

series. For every analyzed time series the optimal ARIMA

model has to be configured, i.e., the degree of differentiation

has to be determined and the right number of AR and MA

components has to found. There are some very helpful guides

available [6], [12], which show how to find the right ARIMA

model for a specific time series but the search for the optimal

model configuration is not part of this paper and therefore not

detailed any further.

Another often applied univariate technique is Exponential

Smoothing, i.e., the Holt-Winters model [4], [13]. This model

applies a smoothing mechanism on the entire time series and

continues the process in order to generate forecast values.

This model is also capable of handling time series with

seasonal and trend characteristics. Both techniques, ARIMA

and Holt-Winters, apply smoothing mechanisms in parts of

their modeling and, therefore, rely on complete time series.

Missing values clearly limit their applicability whereby they

fail to meet the requirement R2.

Two more recent developments towards this topic are

Multivariate Adaptive Regression Splines (MARS) [14] and

Gradient Boosting Machines (GBM) [15]. MARS uses a set of

external influences of which it autonomously extracts the most

relevant ones to forecast the currently analyzed time series.

Furthermore, it is capable of modeling non-linear relationships

between the external influences and the target series. The

GBM model uses an ensemble of weak predictors, typically

regression trees, to combine their predictions into the final

forecast for the analyzed time series. The input for the decision

trees may be historical data of the time series itself or external

influences.

All of these techniques have in common that they only focus

on one time series. This makes their application very time

consuming when it comes to the prediction of thousands of

individual time series. Therefore, they do not meet the require-

ment R1. Additionally, they are not capable of compensating

noise in the modeled time series, when its behavior can neither

be explained properly by its own history nor by external

influences. This often leads to an insufficient model fit and

subsequently high forecast errors. Therefore, these techniques

also fail to the meet requirements R3.

B. Techniques for Incomplete Time Series Data

The forecasting of incomplete or intermittent time series has

already been discussed in the forecasting literature. Croston’s

method is the most widely used approach for this kind of data

and especially designed for time series of intermittent occur-

rence [16], [17]. The model involves two simple exponential

smoothing processes. The first one models the interval between

the non-zero observations of the time series. The second one

models the actual time series values when they occur.

Actually, since it only models one time series, Croston’s

method is a univariate technique with all the associated

problems. However, we mention it in a separate category

since it is mostly referenced in the context of intermittent

series. Although, Croston’s method might be able to calculate

forecasts for incomplete time series, and therefore meets the

requirement R2, it requires missing or zero values to occur

regularly to properly model them. A regular pattern of the

missing observations is usually not given in the aforemen-

tioned scenarios. On top of that, for complete time series
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Crostons’s method becomes simple exponential smoothing

which is hardly ever an accurate method since it misses the

ability to work with trends and seasonalities.

C. Hierarchical Forecasting

Another possibility to overcome the issues of univariate

modelling is to exploit the often hierarchical structure of large

data sets [18]. Time series are transferred to a more coarse

grained aggregation level by the application of an aggregation

function, e.g., sum. For example, time series representing

the energy consumption of many individual consumers are

aggregated to a higher aggregation level representing a whole

city or a certain district. This can help to compensate the

effects of incomplete and noisy data (requirements R2 and

R3). Values of other time series cover the points where values

are missing in one time series and fluctuations of several

time series can equalize each other. Therefore, hierarchical

forecasting addresses all the requirements R1 to R3 since

it reduces the number time series that has to be forecasted

by aggregating them and compensates for missing values and

noisy behavior.

As convenient as this approach might seem, it does not solve

the problems entirely. Even at higher aggregation levels it is

possible to experience missing values for groups that consist

of only a few time series. On top of that, by the utilization of

aggregation we loose the opportunity to conduct analyses on

the base level of the data set. This is not acceptable since we

assume that in many domains data is collected and stored in a

granularity that is relevant for the analysis. In fact, it is possible

to overcome this issue by the use of disaggregation methods

where the forecasted aggregates are split and distributed to

lower aggregation levels. However, this involves a second

modeling step to generate the disaggregation keys and will

lead to another source of forecast errors, especially keeping

noisy and incomplete time series in mind.

D. Multivariate Forecasting Methods

Multivariate forecasting techniques focus on the analysis

and prediction of multiple time series within one model. The

most commonly referenced approaches are VARMA models

[19], [20]. They use the concept of autoregression and moving

averages of ARIMA and apply them to a set of time series.

Thereby, they do not model each time series individually but

explicitly express how the time series in a data set interfere

with each other. Econometric models build up on this idea

and add external influences which affect the time series that

should be predicted but are not affected themselves by other

time series [8].

Multivariate models address requirement R3 by using the

information of many time series. They can compensate noise

of individual time series much better, because some effects

which may not be entirely explained by a time series itself may

be explained from others. However, in order to apply this kind

of model succesfully the time series have to directly influence

each other. This is not given in the described scenarios, i.e.,

the energy consumption in one household is not directly

Fig. 2. Cross-sectional forecasting

affected by the energy consumption of others. Rather, they

are influenced by the day-night rhythm, which is a trait that

is hard to measure and to model. In those cases multivariate

modeling techniques will not work since there is no inter time

series relationship worth modeling. Furthermore, these models

are not capable of handling thousands of time series. The

optimization process of the quadratic number of parameters to

model the influences of all time series on one another becomes

too time consuming and requires a very long history of training

data [5], therefore, they miss the requirement R1. Ultimately,

these models also fail to meet requirement R2 since the time

series have to be complete in order to properly model the

interference of all analyzed time series.

E. Cross-sectional Forecasting

Cross-sectional forecasting is a modeling technique which is

designed to address the requirements R1 to R3 of forecasting

large scale time series data sets [5]. CS follows three core steps

which are shown in Figure 2. First of all, the model assumes

that the time series from the same data set follow a common

behavior and that this behavior – the changes from one period

t to the next period t + 1 – is stable over several seasons.

In Fig. 2 this is the change from December to the following

January. The data for the model creation is extracted from the

historical data of all time series of the data set in the form of

so called cross-sections. A cross-section is a time slice which

contains the values of all time series at a certain period t.
In the second step the model parameters are optimized.

Equation 1 shows the cross-sectional forecast function where

�yt and �yt+1 are the cross-sections over all time series at time

t and t+1. φ1 and c are the parameters which are optimized.

�̂yt+1 = c+ φ1 · �yt (1)

The model now represents the average transition from one

period to the next one for all time series, e.g., as shown in

Fig. 2 the transition from Dec 2015 to Jan 2016.

Finally in step three, the optimized model is applied to the

last monitored cross-section of the data set to obtain a forecast

value for every single time series in one step. The cross-

sections for model training and forecast calculation are situated

in the distance of exactly one season to properly represent a

reoccurring seasonal behavior. This approach is always applied

on the most fine grained aggregation level (base level) of the
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data set. This ensures on the one hand a sufficiently broad

training set with many time series contributing to the model

optimization. On the other hand, all possible aggregation levels

which might be of interest can be predicted using the same

model by aggregating the forecasts after the model application.

By optimizing only one model for an entire data set CS

meets requirement R1 and by incorporating data from many

time series into the model creation it can compensate incom-

plete data and noise of individual series and also meets R2 and

R3. However, compared to other modeling techniques CS is

limited in its modeling versatility by a very rigid data selection.

This also limits the accuracy the model can achieve on data

sets with different characteristics, because, as we have learned

in the related literature, adaptability of the model towards the

data can significantly improve its accuracy [6], [7].

IV. CSAR-MODELLING

In this section, we describe in detail how our new CSAR

model is working. It combines the qualities of cross-sectional

forecasting and ARIMA, thus CSAR meets all the require-

ments R1 to R3 and is adaptable to different data sets with

their unique characteristics. We follow the structure of the

ARIMA model and highlight the adaptations we introduced

to combine every individual part with the paradigm of cross-

sectional forecasting. For us, the ARIMA model is the logical

choice for this combination since it is a mature forecasting

technique and suits the paradigm of CS.

A. Integration

The integration part serves, as in the ARIMA model, as a

preparation step to remove trend and seasonal characteristics

from the time series and make them stationary. In our approach

every time series is differentiated individually, such that the

properties of each time series are preserved and not changed

by the influence of other series. When the integration is used,

every time series is differentiated first, then the data set is

forecasted, and finally the series are integrated to obtain the

forecast values for the original time series. As in the ARIMA

model there is a distinction between a non-seasonal and a

seasonal case.

The non-seasonal differentiation is used to eliminate trend

characteristics. The first degree of numeric differentiation is

shown in Equation 2. The value yt of the differentiated time

series is calculated as the difference of the original time series

value Yt and an earlier value Yt−d divided by their distance

d. In the usual case when there are no missing values we set

d = 1 and yt is calculated directly from the corresponding

value Yt and its predecessor Yt−1. If there are one or more

missing values directly before Yt then d is increased, such that

the next available value Yt−d is used for the differentiation.

The division by their distance is necessary to represent the

trend change from one period to the next one.

yt =
Yt − Yt−d

d
(2)

This kind of numeric differentiation is called backward dif-

ferentiation since we are looking backwards from the cur-

rent point in time t. Alternatives like forward differentiation

yt = (Yt+d − Yt)/d or a symmetrical approach yt = (Yt+d −
Yt−d)/2d are not suited for the task of forecasting since

the differentiation of the last value of the time series is not

possible; and this value is crucial for the forecast calculation

in most if not all forecast methods. The absence of the first

value as it is the case for the backward differentiation is not

a problem at all if the time series is long enough to train a

model without depending on this first value, which is usually

the case.

The seasonal differentiation is used to eliminate reoccurring

seasonal patterns of the time series Y . Equation 3 shows how

yt is calculated by the difference of Yt and its corresponding

value in a previous season Yt−D·s. s is the seasonality of the

data set which is either known from the contextual information

about the data set or can be determined, e.g., using the auto-

correlation function. When the value in the direct preseason

is available we set D = 1, otherwise D is increased such that

the next available corresponding seasonal value of Yt is used

to calculate the differentiated value.

yt = Yt − Yt−D·s (3)

The seasonal differentiation does not need a division by the

size of the gap that is bridged, since it is assumed that the

seasonal behavior is stable over time and should be removed

entirely.

B. Autoregression

The autoregressive part of the CSAR model is a combination

of the cross-sectional forecasting approach and the autoregres-

sive part of the ARIMA model. It predicts all time series of

a data set based on their most recent historical observations.

As in the ARIMA model the autoregressive part of CSAR

consists of non-seasonal and seasonal components. Though,

the optimized weights are not applied to only one time series

but to cross-sections which span over all time series in the data

set. Hence, every time series is forecasted based on a weighted

sum of its own historical values while the model parameters

(the weights) are optimized on all time series of the data set

which have the necessary historical data.

The Equations 4 and 5 show how the predictions are

calculated in the non-seasonal and seasonal case. In the

non-seasonal case (Equation 4), the forecast values �̂yt+1 are

calculated as the weighted sum of their direct predecessor

values �yt to �yt−(p−1) weighted with the model parameters φ1

to φp. p denotes the number of non-seasonal autoregressive

model components. �yt refers to the cross-section at time t
which contains the historical values ynt of every individual

time series yn. Additionally, there is a constant part c which

is also optimized during the model training and used for every

time series. c can be excluded in order to fit the optimal model

to a data set.

In the seasonal case (Equation 5) �̂yt+1 is calculated by the

corresponding seasonal historical values �yt−s+1 to �yt−P ·s+1
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Fig. 3. CSAR model with one seasonal and two non-seasonal AR components.

with a time distance of s periods. P denotes the number

of seasonal autoregressive model components. The seasonal

weights are represented by Φ1 to ΦP .

�̂yt+1 = c+ φ1 · �yt + · · ·+ φp · �yt−(p−1) (4)

�̂yt+1 = c+Φ1 · �yt−s+1 + · · ·+ΦP · �yt−P ·s+1 (5)

Fig. 3 shows an example of five time series y1 to y5 with a

season length of s = 12 which are predicted using the same

CSAR model. The model shown in this example is comparable

to an autoregressive (AR) model with two non-seasonal and

one seasonal component. The difference is, that this model is

not applied to only one individual time series but, following

the idea of the cross-sectional forecasting approach, to cross-

sections which are highlighted by vertical boxes that stretch

over all time series. The solid arrows show how the involved

cross-sections (highlighted in blue) contribute to the model

training. The two short arrows represent the non-seasonal

components of the model and the long arrow reaching back

exactly one season represents the seasonal component. Every

time series which has values in all involved cross-sections

contributes to the model creation. Thus, the model represents

how in average the target cross-section of the training data can

be composed from the historical values for all involved time

series. In the example, these are the time series y1, y2 and y5.

Series y3 for example does not contribute to the model creation

since it has no value for the seasonal component. The dotted

arrows represent correction terms which are necessary due to

the combination of seasonal and non-seasonal components.

They subtract the direct predecessor values from �yt−s+1 in

the same way as the direct predecessors of �̂yt+1 would add

up in the forecast value. In doing so, the seasonal component

only represents the actual seasonal change. There are always

as many correction terms to every seasonal component as the

model contains non-seasonal components and they are also

mandatory for a time series in order to contribute to the

model creation. The data for the model creation is still, as

in the cross-sectional forecasting model, situated exactly one

season before the model application which is represented by

the dashed arrows in Fig. 3. The optimized model is now used

to calculate the forecast values for the target period t + 1. A

forecast value can be calculated for every time series which has

historical values in all involved cross-sections (highlighted in

red). In the example, these are the time series y1 to y3. Series

y4 for example can not be forecasted because it has no values

for the second non-seasonal component.

Equation 6 shows the corresponding formula to the model

of the example. Next to the constant part c there are two non-

seasonal components with the respective weights φ1 and φ2

and one seasonal component with its weight Φ1 followed by

the two corresponding correction terms.

�̂yt+1 = c+ φ1 · �yt + φ2 · �yt−1 +Φ1 · �yt−s+1

+ (−Φ1φ1) · �yt−s + (−Φ1φ2) · �yt−s−1 (6)

Considering this example, it becomes clear how a CSAR

model is created on a multitude of time series like a cross-

sectional forecast model but offers higher flexibility in the

selection of the underlying data. The model keeps the posi-

tive properties of the cross-sectional forecasting model. This

means, it is still possible to compensate for high levels of noise

and to handle time series with missing values since the creation

of a model does not solely depend on the historical data of

only one time series. Please note, albeit CSAR can compensate

for missing values a higher model complexity (more non-

seasonal and/or seasonal model components) increases the risk

of cases where missing values forbid the forecast calculation

of individual time series when they occur in the base for

the forecast calculation. Hence, for very sparse data sets a

less complex model may lead to better forecasting results.

Although it might not represent the data set as good as

possible, it can predict more of the incomplete series.

C. Error Terms

Moving average components as in the ARIMA model are

not applicable in combination with a cross-sectional model

where the core idea is that the same model parameters are used

for all time series of a data set. In contrast to the autoregressive

components, the moving average does not only rely on the

most recent historical values but applies a smoothing process

to the full history of a time series y. This is done by using

error terms as shown in Equation 7 where the error e at time

t is the difference of the original time series value y and the

corresponding forecast ŷ. Equation 8 shows the calculation

of a forecast value using moving average components. The

forecast ŷt+1 results from subtracting the error terms et to

et−q+1 from the constant part c, respectively from a forecast

calculated by autoregressive components. Every error compo-

nent is weighted with a corresponding parameter θ, q denotes

the number of error terms which influence the current forecast.

et = yt − ŷt (7)

ŷt+1 = c− θ1 · et − · · · − θq · et−q (8)

Considering this calculation, it becomes clear that missing

values make this approach impossible since the calculation of

a forecast value depends on the error terms of all historical

values of the time series.

There are already concepts available to apply smoothing

techniques such as exponential smoothing to incomplete time

series [21]. In the proposed solution the next available histori-

cal predecessor value is used instead of the direct predecessor
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and its weight is lowered depending on how many missing

values are bridged. Although, this solution could be transferred

to the moving average part of the ARIMA model, the missing

values of different time series are not evenly distributed in the

data set (see the example in Fig. 3) and, thus, an individual

adaptation of the model parameters for every time series with

missing values is required. This contrasts the core idea of the

cross-sectional forecasting approach to train a single model

with one single set of parameters for a multitude of time series.

For the CSAR model we introduce an alternative way

to incorporate the error terms into the forecast calculation.

Instead of applying the moving average function of Equation

8 we use the average of the error terms of each individual

time series of the data set and include these into the forecast

calculation. Equation 9 shows how the average error ent+1 for

time series n at time t is calculated. The first sum collects the

non-seasonal forecast errors for the periods directly prior to

period t. The second sum collects all seasonal forecast errors

which are situated exactly one or more full seasons prior to

t. The error terms of the individual time series are summed

up and divided by the number of non-seasonal f and seasonal

error terms F . If a time series misses values to calculate either

forecast or error these specific values are neglected during

the error calculation and f or F are lowered accordingly for

this time series. Finally, Equation 10 shows how the error is

incorporated into the forecast calculation by subtracting it from

the constant part c or the corresponding forecast calculated by

a CSAR model without error terms.

ent+1 =
1

f + F

( f∑
i=1

ent−i +

F∑
j=1

ent−j·s

)
(9)

ŷn,t+1 = c− ent+1 (10)

In this way, it is possible to compensate the forecast errors for

time series which are systematically mispredicted. Actually,

we have assumed, that a high number of error terms would be

necessary in order to obtain a reliable error component. As the

evaluation in the next section will show, this is not the case and

small numbers of error terms already lead to improvements of

the forecast accuracy.

V. EVALUATION

We conduct an experimental study to evaluate the accuracy

and execution time of our CSAR model. We start by giving

an overview of the experimental setting, including the data

sets we used for the evaluation. This is followed by a detailed

description of the experiments and the discussion of the results.

A. Experimental Set-Up

We implement our CSAR model in the statistical computing

environment R [22], which provides us with efficient built-

in functions for model parameter estimation and commonly

used forecasting techniques. The experiments are executed

on a server machine with a Six-Core AMD Opteron(tm)

Processor 2435@2.6GHz processor and 32GB of RAM. For

the evaluation we use three real world data sets:

Energy The first one is the example data set from Section II.

The data represents the energy consumption of 6433 individual

households and small and medium enterprises. The time series

are monitored in 30 min granularity over one and a half years.

We use the last complete week of data as evaluation part. For

this data set we executed our experiments on different time

granularities from 30 min to daily energy consumption. Due

to space limitations, we only present the 6 hour granularity in

this paper since this shows the effects we want to emphasize

during the evaluation best. Time series on this time granularity

have a history length of 2144 values. However, the results can

readily be transferred to other time granularities.

Payment The second data set is taken from the IJCAI-2017

Data Mining Contest [23]. It consists of payment transactions

of 2000 distinct shops in daily granularity monitored over 494

days. We use the number of payments per shop and day of

the last 14 days as evaluation period. None of the time series

has a complete history which means that every time series is

either not monitored right from the beginning or has missing

values in its history. Compared to a complete data set, 40%

of data is missing.

Sales The third data set is taken from the sales domain and

is provided to us as a private data set by a market research

company. It contains 6266 time series of items from the field

of home appliances sold in Germany recorded in a monthly

granularity over 3 years. We use the last six month for our

evaluation. Only 6% of the time series have a complete history

and overall there are 59% of data missing. Since the time series

are very short, this data set does not allow the creation of

very complex models because more complex models require

a longer history of training data.

B. Forecast Accuracy

In the first experiment, we evaluate the accuracy of our

forecasting approach on two different aggregation levels per

data set. We begin with the top aggregation level where all

base time series are aggregated only grouped by the time.

This represents for example the overall energy consumption

of all households and enterprises in the Energy data set.

Afterwards, we analyze the base aggregation level where every

base time series is evaluated individually. As comparison

methods we use the ARIMA model as implemented in the

auto.arima-function of the forecast package of R [7] and the

cross-sectional forecasting model (CS) as presented in [5].

For ARIMA we filled missing values of all data sets with

zero values to enable its application. CS is represented by

a CSAR model with only one non-seasonal autoregressive

component and the constant part. Additionally, we include the

naı̈ve forecast where every predicted period shows the same

value as its predecessor ŷnt+1 = ynt . This is the baseline, if a

forecasting technique performs worse than the naı̈ve forecast,

it is not suited for the specific data set, as it does not properly

represent its characteristics. For a comparison with other

forecasting techniques, i.e., Triple Exponential Smoothing,

Vector Autoregression, Croston’s Method, and Hierarchical

Forecasting, please refer to the evaluation of [5] where the
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authors show that CS already achieves a higher accuracy than

these methods.

The ARIMA model is always applied at the same aggre-

gation level the data is evaluated on, which means the data

is aggregated first and then forecasted. CS and CSAR are

applied on the base level and the forecasts are aggregated

afterwards to obtain the top level. The optimal metaparameters

for CSAR, i.e., number of seasonal and non-seasonal autore-

gressive components and error terms as well as the degree of

integration, were optimized manually. The model parameters,

i.e., the weights of the autoregressive model components and

the constant c, were optimized using the optim-function of R.

All data sets are divided into a training and an evaluation

part as mentioned in the data set description. All data preced-

ing the evaluation part may be used for the model training.

We apply a rolling forecast, where we create a new model

for every period t in the evaluation part of every data set to

calculate the forecast values. Then we compare the forecasts to

the corresponding time series values and calculate the forecast

error with the SAPE measure (Symmetric Absolute Percentage

Error):

SAPE =
|y − ŷ|

(|y|+|ŷ|)/2
· 100, (11)

y denotes the real time series value and ŷ is the corresponding

forecast of one of the evaluated techniques. We use SAPE

because as a relative measure it is easier to interpret and

compare than absolute error measures. Furthermore, it can

be applied even when the real time series value equals zero,

where other relative error measures are not defined. If the time

series value and the corresponding forecast both equal zero we

assume a forecast error of zero. Values in the evaluation part

that a method was not able to predict are filled with a zero

forecast and, therefore, punished with a maximum error.

The results of this experiment are shown in Fig. 4. Each

diagram presents the forecast errors for one data set and

aggregation level as a Box-Whisker-Plot. The y-axis denotes

the SAPE forecast error. Each box represents the forecast

errors of one forecasting technique. The red cross in each box

× denotes the corresponding average error.

The first three diagrams (Fig. 4a - 4c) show the results of

the top aggregation level. Our new CSAR model (rightmost

box) performs best on all three data sets. For the payment data

set all approaches perform well since the number of overall

payments does not fluctuate very strong on a daily basis. For

the energy and sales data sets the naı̈ve forecast performs

significantly worse since there is a strong seasonality which

this approach can not model. The cross-sectional forecasting

model performs better than the ARIMA model because it

incorporates the knowledge of all base time series which

leads to a better representation of the overall data sets. CSAR

performs even better and profits from the higher adaptability.

The results for the base aggregation level are shown in the

Fig. 4d - 4f. Every time series is evaluated individually and,

therefore, it is much harder to achieve a high accuracy which

causes the generally higher forecast errors. The diagrams show

(a) Energy - Top Level (b) Payment - Top Level

(c) Sales - Top Level (d) Energy - Base Level

(e) Payment - Base Level (f) Sales - Base Level

Fig. 4. Forecast error on top and base aggregation level.

again that the adaptability of the CSAR model leads to the

most accurate forecasting results of all tested methods. The

forecast errors of CSAR are the overall best for the energy

data and on par with the best comparison method for the

Payment and the Sales data. For Energy and Payment the time

series on the base level still have some predictable properties.

This leads to also acceptable results for ARIMA which is only

outperformed by CSAR. For the Sales data set the individual

time series are extremely noisy. Therefore, ARIMA and CS

perform even worse than naı̈ve forecast. The optimal CSAR

model for this data set resembles the naı̈ve forecast as it

only uses one non-seasonal autoregressive component and,

therefore, is the only technique that can keep up with the naı̈ve

forecast.

In summary our CSAR model performs best for all data

sets without requiring a manual preparation of the data or any

missing value treatment, although, all data sets have different

characteristics, especially their levels of sparsity. Thus, of all

compared techniques CSAR is suited best to derive accurate

forecasts for noisy and incomplete data sets and satisfies the

requirements R2 and R3.
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TABLE I
OPTIMAL CSAR MODELS

AR SAR ER SER const c

Energy Top 1 1 2 10 TRUE

Payment Top 3 0 0 1 TRUE

Sales Top 2 0 0 1 TRUE

Energy Base 4 0 0 0 FALSE

Payment Base 0 1 1 10 TRUE

Sales Base 1 0 0 0 FALSE

Finally, Table I shows the metaparameters of the best

CSAR model for every data set and aggregation level. The

columns AR and SAR show the numbers of non-seasonal

and seasonal autoregressive model components, ER and SER

show the number of non-seasonal and seasonal error terms. For

different data sets with their unique properties different model

components have to be used in order to achieve the optimal

forecasting result. Furthermore, even for the same data set on

top and base aggregation level the optimal model components

can differ significantly and there is no general pattern which

model components lead to an accurate forecast.

Please note, for none of the data sets in our evaluation

CSAR could profit from a preceding differentiation. This

happens since trend and seasonality characteristics are not

equally strong represented in all time series of the data sets.

Thus, some time series profit from differentiation and others do

not, but there is no overall improvement. Apart from this, all

other model components are used in any of the optimal models

of our experiment and, therefore, are definitively meaningful

parts of our CSAR model.

C. Model Complexity

In the second experiment we evaluate the influence of

the model complexity, i.e., the number of non-seasonal and

seasonal autoregressive components of the model, to the

accuracy of the forecast results. Using the set-up from the

previous experiment, we calculate forecasts for the Energy

data set at top and base level and increased the number of

model components. The results of the experiment are shown

in Fig. 5. The x-axis shows the model complexity by the

number of seasonal,non-seasonal parameters. We start with

a model without autoregressive components followed by an

increasing number of non-seasonal (0,1 . . . 0,4) and finally

seasonal components. The y-axis, again, denotes the SAPE

forecast error.

The model complexity clearly has a significant influence

on the forecast accuracy but a higher complexity does not

necessarily lead to better forecasts. For the top aggregation

level the forecast error even increases with higher model

complexity. For the base level more autoregressive model

components lead to an increased accuracy. For both diagrams

there is no systematic pattern in the fluctuations of the forecast

accuracy, when the model complexity is increased. Thus,

finding the optimal CSAR model for a data set is no trivial

task. More research into this direction is necessary, but as the

next experiment will show, the search for the optimal CSAR

model can easily afford the creation of several models to test

their accuracy.

(a) Energy - Top Level (b) Energy - Base Level

Fig. 5. Forecast error for increasing model complexities.

D. Execution Time

In the last experiment we evaluate the execution time for

different complexities of our CSAR model and compare them

with those of ARIMA. Using the set-up of the previous

experiments, we calculate forecasts for the base level of

the Energy data set and monitor the execution time for the

prediction of one one-step ahead forecast for all time series

of the data set. We execute the experiment ten times and use

the average time of all ten passes for the comparison.

The results of the experiment are presented in Table II. The

first five columns show different complexities of our CSAR

model named with the notation of the previous experiment.

First of all, there is no difference between the execution times

for seasonal and non-seasonal models. They access the same

amount of data and have to optimize the same number of

model parameters. Hence, I/O cost and computation times are

very close to each other. The addition of more model param-

eters increases the execution time in two ways. More data

for model training and forecast calculation has to be accessed

and the optimization process of the model parameters takes

longer when more parameters are optimized. The combination

of seasonal and non-seasonal components further increases the

execution time since the correction terms have to be taken

into account (ref. Section IV-B). A further increase of the

number of model components leads to a higher execution time

with super linear growth. Again, this is caused by the number

of correction terms which grows in a multiplicative manner

since there are as many correction terms for every seasonal

component as there are non-seasonal components.

The sixth column shows the execution time of ARIMA.

Note, the execution time of the ARIMA model was measured

on ten individual time series and the overall execution time

was extrapolated by the number of time series in the data

set. Moreover, we did not use the auto.arima function which

includes the search for the optimal metaparameters and would

have lead to a much higher execution time. We evaluated

the pure execution of R’s arima function to create a model

and calculate one forecast value per time series. Compared to

TABLE II
COMPARISON OF EXECUTION TIMES

CSAR
ARIMA

0,1 1,0 0,2 1,1 2,2

0.4s 0.4s 0.8s 0.9s 5.9s 42min38s
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the ARIMA model CSAR has a significantly lower execution

time which is the result of the creation of only one model

for an entire data set instead of modeling each time series

individually. For the Energy data set on its original 30min

granularity ARIMA is even not able to provide forecasts

in time since the execution time exceeds the monitoring

granularity by more than 40%.

Therefore, we can show that CASR meets the requirement

R1 and in combination with the results from the first experi-

ment satisfies all the requirements (R1 to R3) on the prediction

of large scale time series data sets.

VI. CONCLUSION

In this paper, we presented CSAR, a new forecasting

technique designed to meet the requirements of forecasting

large scale time series data. We have framed these new

requirements originating from data sets which consist of

thousands of time series monitored on fine grained structural

and temporal granularity. In the discussion of related work on

the topic of forecasting, we showed that none of the existing

techniques adequately addresses all of the requirements. Our

new CSAR model combines the qualities of the cross-sectional

forecasting approach and the ARIMA model. Therefore, it is

able to handle large data sets in reasonable time while offering

adaptability to the analyzed data. Additionally, CSAR is robust

against noise and missing values of individual time series. Our

experimental evaluation showed, that CSAR achieves a higher

accuracy than other forecasting techniques and greatly benefits

from the increased adaptability. Furthermore, the creation of

one model for many time series ensures the timely creation

of forecasts, even for very large data sets, and makes our

model several orders of magnitude faster than for example

ARIMA. This work is part of an ongoing research process

and offers many interesting directions for future research. The

most relevant topics we will address next are the following:

Instantiation As our experimental study has shown, the

choice of the right metaparameters of the CSAR model has

a significant impact on the forecast accuracy. Right now, the

optimal model has to be found manually by trying different

sets of metaparameters which is very time consuming. There-

fore, a set of guidelines that helps to find the optimal model,

e.g., as it exists for ARIMA, is an important way to continue

our research in this direction.

Long Range Forecasting In this work we focused on

the calculation and evaluation of one-step ahead forecasts.

However, there are many domains, where forecasts for more

than one period are necessary to properly plan for future

developments. This is why the extension of CSAR to long

range forecasting will be a major goal of our future research.

Partitioning Currently, CSAR creates one model which

represents all time series of a whole data set. This is the

opposite extreme to univariate models like ARIMA where one

model only represents one single time series. For the future,

we plan to apply partitioning techniques before the actual

modeling takes place to divide the data set into partitions

of time series with similar characteristics and create one

CSAR model for every partition. In doing so, we expect a

further increase in the forecast accuracy by a model that better

represents all its underlying time series.
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