
Hoeffding Trees with nmin adaptation
Eva Garcı́a-Martı́n∗, Niklas Lavesson∗,†, Håkan Grahn∗, Emiliano Casalicchio∗,‡ and Veselka Boeva∗

∗ Blekinge Institute of Technology, Karlskrona, Sweden
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Abstract—Machine learning software accounts for a significant
amount of energy consumed in data centers. These algorithms are
usually optimized towards predictive performance, i.e. accuracy,
and scalability. This is the case of data stream mining algorithms.
Although these algorithms are adaptive to the incoming data, they
have fixed parameters from the beginning of the execution. We
have observed that having fixed parameters lead to unnecessary
computations, thus making the algorithm energy inefficient.

In this paper we present the nmin adaptation method for
Hoeffding trees. This method adapts the value of the nmin pa-
rameter, which significantly affects the energy consumption of the
algorithm. The method reduces unnecessary computations and
memory accesses, thus reducing the energy, while the accuracy
is only marginally affected. We experimentally compared VFDT
(Very Fast Decision Tree, the first Hoeffding tree algorithm)
and CVFDT (Concept-adapting VFDT) with the VFDT-nmin
(VFDT with nmin adaptation). The results show that VFDT-nmin
consumes up to 27% less energy than the standard VFDT, and
up to 92% less energy than CVFDT, trading off a few percent
of accuracy in a few datasets.

Index Terms—data stream mining, green artificial intelligence,
energy efficiency, hoeffding trees, energy aware machine learning

I. INTRODUCTION

Large-scale data centers account for a significant share of
the energy consumption in many countries [1]. The number of
data centers and the computational demand is rapidly increas-
ing due to the rate at which data is generated and processed.
Although machine learning algorithms are responsible for
some part of that computation, since they are introduced in
almost all application domains, they are seldom optimized
w.r.t. their energy consumption. State-of-the-art algorithms
that can have an impact on energy consumption are data
stream mining algorithms [2], since they are designed to run
continuously on embedded systems.

Although data stream mining algorithms adapt the decision
model based on the incoming data, i.e. concept drift adapta-
tion, the parameters of such algorithms are fixed from the
beginning of the execution. We have observed that having
fixed parameters leads to the algorithm making unnecessary
computations, thus increasing its energy consumption [3].

In this paper we propose dynamic parameter adaptation,
a method to reduce the energy consumption without sacri-
ficing accuracy. We illustrate this with the nmin adaptation
method to improve parameter adaptation in Hoeffding trees.
Hoeffding tree algorithms evaluate if nmin instances observed
at a node are enough to make a confident split. However,

the nmin parameter has a significant impact on the overall
energy consumption of the VFDT, visible in its energy model
(Section IV-B). Thus, having a fixed nmin value that does
not adapt to the incoming data leads to energy inefficiencies.
We propose nmin adaptation to adapt the value of nmin
depending on the incoming data, to ensure that the algorithm
calculates the best attributes only when there will be a split.
This reduces the amount of computation related to calculating
information gain of all the attributes, thus reducing its energy
consumption. This method has the following properties:

i) Adaptive to the characteristics of the data
ii) Unique value of nmin for each tree node

iii) Applicable to any Hoeffding Tree algorithm
We experimentally compare the VFDT (Very Fast Decision

Tree [4], the first Hoeffding tree algorithm), with the VFDT-
nmin (VFDT with nmin adaptation), and CVFDT (Concept-
Adapting Very Fast Decision Tree [5]) on 15 datasets. The
results show that VFDT-nmin reduces the energy consumption
significantly in comparison to VFDT and CVFDT, yielding an
average of 9.5% and up to 27% energy reduction compared to
the VFDT, and an average of 85% energy reduction in com-
parison to the CVFDT. The predictive performance, i.e. the
accuracy, is only decreased slightly by this energy reduction
(less than 1% average loss for VFDT-nmin in comparison to
VFDT).

The paper is organized as follows. The background and
related work are presented in Section II. The nmin adaptation
method and main contribution of this paper is presented in
Section III. Section IV profiles the energy consumption of the
VFDT presenting a theoretical energy model for such algo-
rithm. Section V presents the experimental design. Sections VI
and VII present the results and discussion. Section VIII
concludes the paper with the significance and impact of our
work.

II. BACKGROUND AND RELATED WORK

This section explains the fundamentals of the VFDT, and
finishes by explaining related studies in streaming data, green
computing, and resource-aware machine learning.

A. VFDT

Very Fast Decision Tree [4] is a decision tree algorithm that
builds a tree incrementally. The data instances are analyzed
sequentially and only once. The algorithm reads an instance,
sorts it into the corresponding leaf, and updates the statistics
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at that leaf. To update the statistics the algorithm maintains
a table for each node, with the observed attribute and class
values. Updating the statistics of numerical attributes is done
by saving and updating the mean and standard deviation
for every new instance. Each leaf also stores the instances
observed so far. After every nmin read instances at that leaf,
the algorithm calculates the information gain (G) from all ob-
served attributes. The difference in information gain between
the best and the second best attribute (∆G) is compared with
the Hoeffding Bound [6] (ε). If ∆G > ε, then that leaf is
substituted by a node, and there is a split on the best attribute.
That attribute is removed from the list of attributes available
to split in that branch. If ∆G < ε < τ , a tie occurs, splitting
on any of the two top attributes, since they have very similar
information gain values. The Hoeffding Bound (ε),

ε =

√
R2 ln(1/δ)

2n
(1)

states that the chosen attribute at a specific node after seeing
n number of examples, will be the same attribute as if the
algorithm has seen an infinite number of examples, with
probability 1− δ.

We now discuss the computational complexity of the VFDT,
shown in lines 1-21 from Alg. 1. Suppose that n is the
number of instances and m is the number of attributes. The
algorithm is a loop over n iterations. Every step between 6
and 9 require execution time that is proportional to m. In the
worst case scenario the computational complexity of step 7 is
O(m) according to [4]. The function in step 7 traverses the
tree until it finds the corresponding leaf. Since the attributes
are not repeated for each branch, in the worst case scenario
the tree will have a depth of m attributes. Step 8 runs in
constant time. The computational complexity of this part can
be evaluated to O(n · m). The computational complexity of
the remainder part of the algorithm (from step 11 downwards)
depends on n/nmin. Moreover, the computational complexity
of steps 11 to 13 is equal to O(m), while steps 16 to 18 need
constant time, i.e. the computational complexity of this part
is O(n/nmin ·m). The total computational complexity of the
VFDT is O(n ·m) +O(n/nmin ·m) and n >> nmin, i.e. it
can be simplified to O(n ·m).

B. Related Work

Energy efficiency is an important research topic in computer
engineering [7]. Reams [8] provides a good overview of
energy-efficiency in computing for different platforms: servers,
desktops and mobile devices. The author also proposes an
energy cost model based on the number of instructions, power
consumption, the price per unit of energy, and the execution
time. While energy efficiency has mostly been studied in
computer engineering, during the past years green computing
has emerged. Green IT, also known as green computing, started
in 1992 with the launch of the Energy Star program by the US
Environmental Protection Agency (EPA) [9]. Green computing
is the study and practice of designing, manufacturing, using,
and disposing computers, servers, and associated systems

efficiently and effective with minimal or no environmental
impact [9]. One specific area is energy-efficient computing [8],
where there is a significant focus on reducing the energy
consumption of data centers [10].

In relation to big data, data centers, and cloud computing,
there have been several studies that design methods for energy-
efficient cloud computing [11], [12]. One approach was used
by Google Deep Mind to reduce the energy used in cooling
their data centers [13]. These studies focus on reducing the
energy consumed by data centers using machine learning to,
e.g., predict the load for optimization. However, we focus
on reducing the energy consumption of machine learning
algorithms.

Regarding machine learning and energy efficiency, there
has been a recent surge of interest towards resource-aware
machine learning. The focus has been on building energy
efficient algorithms that are able to run on platforms with
scarce resources [14]–[17]. Closely related is the work done
on building energy-efficient deep neural networks [18]. They
develop a model where the energy cost of the principal
components of a neural network is defined, and then used for
pruning a neural network without reducing accuracy.

Data stream mining algorithms analyze data aiming at
reducing the memory usage, by reading the data only once
without storing it. Examples of efficient algorithms are the
VFDT [4] and a KNN streaming version with self-adjusting
memory [19]. There have been extensions to these algo-
rithms for distributed systems, such as the Vertical Hoeffding
Tree [20], where the authors parallelize the induction of
Hoeffding Trees; and the Streaming Parallel Decision Tree
algorithm (SPDT). More focused on hardware approaches to
improve Hoeffding trees is the work proposed by [21], where
they parallelize the execution of random forest of Hoeffd-
ing trees, together with a specific hardware configuration to
improve induction of Hoeffding trees. Other work has been
done where the authors present the energy hotspots of the
VFDT [3]. Our proposed work in this paper focuses on a direct
approach to reduce the energy consumption of the VFDT by
dynamically adapting the nmin parameter based on incoming
data, introducing the notion of dynamic parameter adaptation
in data stream mining.

III. nmin ADAPTATION

The nmin adaptation method, the main contribution of
this paper, aims at reducing the energy consumption of the
VFDT while maintaining similar levels of accuracy. There are
many computations and memory accesses dependent on the
parameter nmin, observed in the energy model presented in
Section IV. However, the design of the original VFDT sets
the value of nmin to a fixed value from the beginning of
the execution. This is problematic, because there are many
functions that would be computed unnecessarily if nmin
instances are not enough to make a confident split (e.g.
calc entropy, calc hoeff bound, and get best att). Our
goal is to set nmin to the specific value that ensures a
split, so that the N

nmin values in (20) are only computed



when needed. nmin adaptation adapts the value of nmin to a
higher one, thus making N

nmin smaller. This approach reduces
computations, reduces memory accesses, and doesn’t affect the
final accuracy, since we are only computing those functions
when needed.

In another publication, the authors [3] already confirmed the
high energy impact of the functions involved in calculating
the best attributes. This matches with our energy model, and
motivates the reasons and objectives for nmin adaptation:

1) Reduce the number of computations and memory ac-
cesses by adapting the value of nmin to a specific value
that ensures a split.

2) Maintain similar levels of accuracy by removing only
unnecessary computations, thus developing the same tree
structure.

nmin adaptation sets nmin to the estimated number of
instances required to guarantee a split with confidence 1− δ.
The higher the value of nmin, the higher the chance to split.
However, setting nmin to a high value decreases accuracy, and
setting nmin to a lower value increases the accuracy at the
expense of energy, as it has to calculate the G of all attributes
even when there are not enough instances to make a confident
split. We have identified two scenarios that are responsible for
not splitting. We set nmin to a different value to address these
scenarios, depending on the incoming data. This nmin value is
unique for every leaf, since different instances reach different
leaves. This is a significant difference with the original VFDT,
where they set the same nmin for all leaves. The two scenarios
are the following:

Scenario 1 (∆G < ε and ∆G > τ ): Figure 1, left
plot. The attributes are not too similar, since ∆G > τ , but
their difference is not big enough to make a split, since
∆G < ε. The solution is to wait for more examples until ε
(green triangle) decreases and is smaller than ∆G (black star).

Following this reasoning, nmin =

⌈
R2·ln(1/δ)
2·(∆G)2

⌉
, obtained by

setting ε = ∆G in (1), to guarantee that ∆G ≥ ε will be
satisfied in the next iteration, creating a split.

Scenario 2 (∆G < ε and ∆G < τ but ε > τ ): The top
attributes are very similar in terms of information gain, but
ε is still higher than τ , as can be seen in Figure 1, right
plot. The algorithm needs more instances so that ε (green
triangle) decreases and is smaller than τ (red dot). Following

this reasoning, nmin =

⌈
R2·ln(1/δ)

2·τ2

⌉
, by setting ε = τ in (1)

. In the next iteration ε ≤ τ will be satisfied, forcing a split.
The pseudocode of VFDT-nmin is presented in Alg. 1. The

specific part of nmin adaptation is shown in lines 22-26,
where we specify how nmin is going to be adapted based
on the scenarios explained above. The idea is that, when those
scenarios occur, we adapt the value of nmin, so that they don’t
occur in the next iteration, thus ensuring a split. In relation to
the computational complexity of the nmin adaptation, we can
observe that this method does not add any overhead. Thus, the
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Fig. 1. Variation of ε (Hoeffding bound) with the number of instances.
nmin adaptation method for scenarios 1 and 2.

computational complexity of VFDT with nmin adaptation is
O(n ·m).

Algorithm 1 VFDT-nmin: Very Fast Decision Tree with nmin
adaptation

1: HT : Tree with a single leaf (the root)
2: X: set of attributes
3: G(·): split evaluation function
4: τ : hyperparameter set by the user
5: nmin: hyperparameter initially set by the user
6: while stream is not empty do
7: Read instance Ii
8: Sort Ii to corresponding leaf l using HT
9: Update statistics at leaf l

10: Increment nl: instances seen at l
11: if nmin ≤ nl then
12: Compute Gl(Xi) for each attribute Xi

13: Xa, Xb = attributes with the highest Gl
14: ∆G = Gl(Xa)−Gl(Xb)
15: Compute ε
16: if (∆G > ε) or (ε < τ ) then
17: Replace l with a node that splits on Xa

18: for each branch of the split do
19: New leaf lm with initialized statistics
20: end for
21: else
22: Disable attr {Xp|(Gl(Xp)−Gl(Xa)) > ε}
23: if ∆G ≤ τ then
24:

25: nmin =

⌈
R2·ln(1/δ)

2·τ2

⌉
26: else
27: nmin =

⌈
R2·ln(1/δ)
2·(∆G)2

⌉
28: end if
29: end if
30: end if
31: end while

Finally, we show an example of how nmin adaptation
works for two of the datasets used in the final experiments.
These datasets are described in Table I. Figure 2 shows the
nmin variation for the cases when nmin is initially set to
20, 200, 2000. So, after those instances, nmin will adapt to
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Fig. 2. Variation of nmin for nmin initially set to 20, 200, 2000
on poker and airline datasets (Table I). With a lower nmin, nmin
adaptation adapts nmin to a higher value more frequently. The peaks
on nmin = 2, 763 and nmin = 30, 491 is explained by Scenario 2,
since τ is a fixed hyperparameter.

a higher value depending on the data observed so far at that
specific leaf. The airline dataset shows many adaptations of
nmin when nmin is initially set to 20. This is expected,
since we are showing the adaptations per leaf, so at the
beginning all the leaves starting with nmin = 20 will adapt
that value to a much larger one. The same reasoning occurs
when nmin = 200 initially, since there will be less adaptations
because the leaves need to wait for more instances, and there
is a higher chance to split when more instances are read. The
poker dataset exhibits a different behavior, where nmin adapts
to a higher value, 30491. This occurs in Scenario 2, but since
the poker dataset has 10 classes, the range R of the Hoeffding
bound equation (1) is higher. Finally, looking at the cases
where nmin = 2000 (green), we observe how there is almost
no adaptation. VFDT-nmin either splits after 2000 instances,
or it adapts nmin = 2, 763 or nmin = 30, 491, because the
attributes are very similar.

IV. ENERGY CONSUMPTION OF THE VFDT

Energy consumption is a necessary measurement for today’s
computations, since it has a direct impact on the electricity bill
of data centers, and battery life of embedded devices. However,
measuring energy consumption is a challenging task. As has
been shown by researchers in computer architecture, estimat-
ing the energy consumption of a program is not straightfor-
ward, and is not as simple as measuring the execution time,
since there are many other variables involved [22].

In this section we first give a general background on
energy consumption and its relationship to software energy
consumption. We end the section with a more detailed view on
the energy consumption in particular for the VFDT algorithm,
presenting a theoretical energy model based on the number of
instances of the stream, and number of numerical and nominal
attributes.

A. General energy consumption

Energy efficiency in computing usually refers to a hardware
approach to reduce the power consumption of processors, or
ways to make processors handle more operations using the
same amount of power [23].

Power is the rate at which energy is being consumed. The
average power during a time interval T is defined as [24]:

Pavg =
E

T
(2)

where E, energy, is measured in joules (J), Pavg is measured
in watts (W), and time T is measured in seconds (s). We can
distinguish between dynamic and static power. Static power,
also known as leakage power, is the power consumed when
there is no circuit activity. Dynamic power, on the other hand,
is the power dissipated by the circuit, from charging and
discharging the capacitor [7]:

Pdynamic = α · C · V 2
dd · f (3)

where α is the activity factor, representing the percentage of
the circuit that is active. Vdd is the voltage, C the capacitance,
and f the clock frequency measured in hertz (Hz). Energy is
the effort to perform a task, and it is defined as the integral
of power over a period of time [7]:

E =

∫ T

0

P (t)dt (4)

In this study we focus on the measurement of energy con-
sumption, since it gives an overview of how much power is
consumed in an interval of time.

Finally, we conclude with an explanation of how programs
consume energy. The total execution time of a program is
defined as [7]:

Texe = IC × CPI × Tc (5)

where IC is the number of executed instructions, CPI (clock
cycles per instruction) is the average number of clock cycles
needed to execute each instruction, and TC is the clock cycle
time of the processor. The total energy consumed by a program
is:

E = IC × CPI × EPC (6)

where EPC is the energy per clock cycle, and it is defined as

EPC ∝ C · V 2
dd (7)

The value CPI depends on the type of instruction, since
different instructions require different number of clock cycles
to complete. However, measuring only time does not give a
realistic view on the energy consumption, because there are
instructions that can consume more energy due to a long delay
(e.g. memory accesses), or others that consume more energy
because of a high requirement of computations (floating point
operations). Both could obtain similar energy consumption
levels, however, the first one would have a longer execution
time than the last one.

B. VFDT energy model

The energy model of the VFDT is based on the energy
consumption of the main functions of the algorithm. These
functions are taken from the pseudocode of the VFDT [4].
Alg. 1 shows the pseudocode for the VFDT algorithm with the



nmin adaptation functionality added, but the main functions
can also be observed there. The main functions are the
following:

• Sort instance to leaf. When an instance is read, the first
step is to traverse the tree based on the attribute values
of that instance, to reach the correspondent leaf.

• Update attributes: Once the leaf is reached, the informa-
tion at that leaf is updated with the attribute/class infor-
mation of the instance. The update process is different
if the attribute is numerical or nominal. For nominal
attributes a simple table with the counts is needed.
For updating the numerical attribute the mean and the
standard deviation are updated.

• Update instance count: After each instance is read the
counter at that leaf is updated.

• Calculate entropy: Once nmin instances are observed
at a leaf, the entropy (information gain in this case) is
calculated for each attribute.

• Get best attribute: The attributes with the highest infor-
mation gain are chosen.

• Calculate Hoeffding Bound: We then compare the dif-
ference between the best and the second best attribute
with the Hoeffding bound, calculated with (1).

• Create new node: If there is a clear attribute to split on,
we split on the best attribute creating a new node.

Based on the information provided above, we present the
energy consumption of the VFDT in the following model:

EV FDT = Ecomp + Ecache tot + Ecache miss tot, (8)

where Ecomp is the energy consumed on computations,
Ecache tot is the energy consumed on cache accesses, and
Ecache miss tot is the energy consumed on cache misses. They
are defined as follows:

Ecomp = nFPU · EFPU + nINT · EINT , (9)

where nFPU is the number of floating point operations, EFPU
is the average energy per floating point operation, nINT is the
number of integer operations, and EINT is the average energy
per integer operation.

Ecache tot = ncache · Ecache, (10)

where ncache is the number of accesses to cache, and Ecache
is the average energy per access to cache. Finally,

Ecache miss tot = ncache miss · (Ecache miss + EDRAM ),
(11)

where ncache miss is the number of cache misses, Ecache miss
is the average energy per cache miss, and EDRAM is the
average energy per DRAM access.

The next step is to map these nFPU , nINT , ncache, and
ncache miss to the VFDT algorithm’s functions, explained at
the beginning of this section.

nFPU = ncomp(updating numerical atts)

+ ncomp(calc entropy)

+ ncomp(calc hoeff bound) (12)
+ ncomp(get best att)

nINT = ncomp(updating nominal atts)

+ ncomp(updating instance count), (13)

where ncomp(fi) refers to the number of computations re-
quired by function fi.

ncache = nacc(updating atts) (14)

ncache miss = nacc(sorting instance to leaf)

+ nacc(updating atts)

+ nacc(calc entropy)

+ nacc(calc hoeff bound) (15)
+ nacc(new node),

where nacc(fi) represents the number of accesses to mem-
ory or cache in order to execute function fi. The number
of cache and memory accesses of updating the attributes
(updating atts) will depend on the block size of the cache.
If the block size is big enough, then we would have one cache
miss to update the information of the first attribute, and then
cache hits for the rest of the attributes. However, if there are
many attributes, thus not fitting on the block size B, then there
will be a cache miss for every attribute that exceeds the block
size. We also consider the presence of a cache miss every time
a node of the tree is traversed, and every time we calculate
the entropy and Hoeffding bound values.

The last step is to express these number of accesses and
computations based on the number of instances (N ), the nmin
value, the number of numerical attributes (Af ), the number of
nominal attributes (Ai), and the block cache size B. We then
obtain the following:

nFPU = N ·Af +
N

nmin
· (Af +Ai)

+
N

nmin
+

N

nmin
· (Af +Ai) (16)

= N ·Af + 2 · N

nmin
· (Af +Ai) +

N

nmin

Updating numerical attributes is one access per instance per
numerical attribute; calculating the entropy is one access per
attribute (thus the sum of nominal and numerical attributes)
every nmin instances; calculating the Hoeffding bound is one
access every nmin instances; and calculating the best attribute
is the same as calculating the entropy.

nINT = N ·Ai +N (17)



Updating nominal attributes is, as before, one access per
instance per nominal attribute; and one access per instance
for updating the counter.

ncache = N · (Af +Ai −
Af +Ai

B
) (18)

To update the attributes, we consider one cache hit per all
attributes per instance, minus all the attributes that don’t fit on
the block size B and create cache misses.

ncache miss = N · (Af +Ai +
Af +Ai

B
)

+
N

nmin
+

N

nmin
+

N

nmin
(19)

= N · (Af +Ai +
Af +Ai

B
) + 3 · N

nmin

To calculate the number of accesses of sorting an instance
to a leaf we assume that we need to access one level per
attribute, which is the worst case scenario. So the total number
of accesses in this case is one per instance per attribute. To
update the attributes, as was explained before, it’s one miss
per all attributes that exceed the block size B, per instance.
Finally, to access the needed values to calculate the entropy,
the Hoeffding bound, and to split, we consider one access
every nmin instances.

Based on (8), (9), (10), (11), (16), (17), (18), and (19), our
final energy model equation is the following:

EV FDT = EFPU · (N ·Af + 2 · N

nmin
· (Af +Ai)

+
N

nmin
) + EINT · (N ·Ai +N)

+ Ecache · (N · (Af +Ai −
Af +Ai

B
))

+ (Ecache miss + EDRAM ) · (N · (Af +Ai

+
Af +Ai

B
) + 3 · N

nmin
) (20)

This is a general and simplified model of how the VFDT
algorithm consumes energy. The energy values (i.e. Ecache,
EFPU , EINT , EDRAM , and Ecache miss) will vary depending
on the processor and architecture, although there is a lot of
research that ranks these operations based on their energy con-
sumption [25]. For instance, a DRAM instruction consumes
three orders of magnitude more energy than an ALU operation.
We can see the importance of the number of attributes in the
overall energy consumption of the algorithm. Since EFPU is
significantly higher than EINT , numerical attributes have a
higher impact on energy consumption than nominal attributes.

V. EXPERIMENTAL DESIGN

We have designed an experiment that compares VFDT,
VFDT-nmin, and CVFDT (Concept-Adapting Very Fast De-
cision Tree [5]). The goal of this experiment is to compare
the energy consumption and accuracy of all algorithms. Since
CVFDT is designed for concept drift scenarios, we also
analyze the possible trade-off between accuracy and energy

consumption. Namely, how much more energy is CVFDT
consuming to be able to achieve a higher accuracy in concept
drift scenarios. We have a set of concept drift datasets to test
this phenomenon.

We run the experiments on a machine with an 3.5 GHz Intel
Core i7, with 16GB of RAM, running OSX. To estimate the
energy consumption we use Intel Power Gadget1, that accesses
the performance counters of the processor, together with Intel’s
RAPL interface to obtain energy consumption estimations. The
implementation of VFDT-nmin together with the scripts to
conduct the experiments are available online2.

A. Datasets

We used real and artificial datasets, inspired by the work
from [26]. The datasets are described in Table I. There are
a total of 15 datasets, 12 artificial datasets generated with
Massive Online Analysis (MOA) [27], and 3 real world
datasets. The artificial datasets are the following:

TABLE I
DATASETS USED IN THE EXPERIMENT TO COMPARE VFDT,

VFDT-nmin, AND CVFDT. Ai AND Af REPRESENT THE NUMBER
OF NOMINAL AND NUMERICAL ATTRIBUTES, RESPECTIVELY. THE

DETAILS OF EACH DATASET IS PRESENTED IN SECTION V-A

Dataset Train Test Ai Af Class

HYP(0.0001) 670,000 330,000 0 10 5
HYP(0.001) 670,000 330,000 0 10 5
LED(1) 670,000 330,000 24 0 10
LED(2) 670,000 330,000 24 0 10
RBF(10,0) 670,000 330,000 0 10 5
RBF(10,0.0001) 670,000 330,000 0 10 5
RBF(10,0.001) 670,000 330,000 0 10 5
RBF(50,0) 670,000 330,000 0 10 5
RBF(50,0.0001) 670,000 330,000 0 10 5
RBF(50,0.001) 670,000 330,000 0 10 5
SEA(10) 670,000 330,000 0 3 2
SEA(20) 670,000 330,000 0 3 2
airline 361,387 177,996 4 3 2
electricity 30,359 14,953 1 6 2
poker 555,564 273,637 5 5 10

HYP(v): Hyperplane dataset. This dataset is generated
by creating a set of points that satisfy

∑d
i=1 wixi = w0

,where xi is the coordinate for each point. Then, examples that
satisfy

∑d
i=1 wixi ≥ x0 are labeled as positive, and examples

that satisfy
∑d
i=1 wixi < x0 are labeled as negative. Drift is

introduced to each weight (wi), and the amount of change is
represented by v. More details are given in [5].

LED(x): LED dataset with x attributes with drift. The
goal is to predict the digit on a LED display with seven
segments, where each attribute has a 10% chance of being
inverted [28].

RBF(x, v): The radial based function (RBF) artificial
dataset has 10 numerical attributes. The generator creates x
number of centroids, each with a random center, class label
and weight. Each new example randomly selects a center,

1https://software.intel.com/en-us/articles/intel-power-gadget-20
2https://github.com/egarciamartin/hoeffding-nmin-adaptation

https://software.intel.com/en-us/articles/intel-power-gadget-20
https://github.com/egarciamartin/hoeffding-nmin-adaptation


considering that centers with higher weights are more likely
to be chosen. The chosen centroid represents the class of the
example. Drift is introduced by moving the centroids with
speed v. More details are given by [26].

SEA(v): The SEA artificial dataset was first introduced
by [29] to test abrupt concept drift. The v value represents the
percentage of noise introduced. It has 3 numerical attributes
with a range between 0 and 10. For each example, the first
two attributes are summed and compared against a threshold
value (θ).

The explanations above have been based on the work
by [26], where they use a similar set of datasets to compare
different machine learning frameworks.

We also tested three real datasets, all available from the
MOA official website [30]. The poker dataset is a normalized
dataset available from the UCI repository. Each instance
represents a hand consisting of five playing cards, where each
card has two attributes; suit and rank.

The electricity dataset is originally described in [31], and is
frequently used in the study of performance comparisons. Each
instance represents the change of the electricity price based on
different attributes such as day of the week, represented by the
Australian New South Wales Electricity Market.

Finally, the airline dataset is provided by Elena
Ikonomovska [32] and the task is to predict if a given
flight will be delayed based on attributes such as airport of
origin and airline.

B. Algorithms and setups

We compare VFDT, VFDT-nmin, and CVFDT under the
mentioned datasets. The initial value of nmin has been set to
200, which was the default value used by the original authors.
We evaluate all algorithms based on the following measures:
accuracy (% of correctly classified instances), energy con-
sumed by the processor, and energy consumed by the DRAM.
We evaluate the accuracy by having a training set and a test
set that is different from the training set, as can be observed
in Table I. We have not performed yet prequential evaluation
as with this method, however that is planned for future works.

VI. RESULTS

The results of the experiments are shown in Table II.
These results are obtained from running the algorithms VFDT,
VFDT-nmin, and CVFDT under the datasets shown in Table I.
We have evaluated the accuracy (percentage of correctly
classified instances) and the energy consumption of 10 runs,
and averaged the results. We have measured the total energy
consumption as the sum of the energy consumed by the
processor and the energy consumed by the DRAM, since that
is the output given by the tool.

In order to have a better understanding of the results, we
have created Table III, where we compute the difference in
accuracy and energy between VFDT and VFDT-nmin, and
between VFDT-nmin and CVFDT. The difference in accuracy
is measured by subtracting the accuracy of VFDT-nmin, minus
the accuracy of VFDT (or CVFDT depending on the column).

Thus, a positive value in such column shows that VFDT-
nmin obtained a higher accuracy than the compared algorithm.
The difference in energy represents the percentage of energy
reduced between VFDT-nmin and the compared algorithm. A
negative value represents that we reduced the energy by that
percentage. For instance, VFDT-nmin consumed 20.49% less
energy than VFDT in the HYP(0.0001) dataset.

VII. DISCUSSION

The discussion of the results is focused, first, on the energy
comparison between the CVFDT and VFDT to VFDT-nmin.
Then, we analyze the difference in accuracy between the
mentioned algorithms. We conclude the discussions with an
analysis of the impact of the number of numerical attributes
in the overall energy consumption, linking the results to the
energy model proposed in Section IV-B.

The results show that VFDT-nmin consumes significantly
less energy than VFDT in most of the datasets (11/15),
with a maximum energy reduction of 27% of energy
(RBF(50,0.0001) dataset). If we compare VFDT-nmin to
CVFDT, this difference is considerably larger. On average,
VFDT-nmin consumes 85% less energy than CVDFT. This is
visible in Figures 3 and 4. Figure 3 shows the energy consump-
tion of VFDT and VFDT-nmin for all datasets. We can observe
how VFDT-nmin either obtains a lower energy consumption
than VFDT, or a very similar value. Figure 4 shows the
comparison on percentage of energy reduction between the
three algorithms. This last comparison portrays the large en-
ergy savings from VFDT-nmin compared to CVFDT. We also
observe that VFDT-nmin obtains higher energy consumption
than VFDT in two of the three real world datasets (electricity
and poker). Although this difference in energy consumption
is minimal (2.78% in the electricity dataset and 0.87% in the
poker dataset), we plan to investigate this further with more
real world datasets.
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Fig. 3. VFDT and VFDT-nmin total energy comparison. We observe
that VFDT-nmin obtains a lower energy consumption in 11 out of 15
datasets.

The next variable to analyze is accuracy. We would expect
CVFDT to obtain higher accuracy at the expense of the



TABLE II
ENERGY CONSUMPTION AND ACCURACY RESULTS. ALGORITHMS: VFDT, VFDT-nmin, AND CVFDT. MEASUREMENTS: ACCURACY, TOTAL ENERGY,

PROCESSOR ENERGY, DRAM ENERGY. TOTAL ENERGY = PROCESSOR ENERGY + DRAM ENERGY. HIGHER ACCURACY AND LOWER TOTAL ENERGY
CONSUMPTION VALUES FOR EACH DATASET ARE PRESENTED IN BOLD.

Dataset Accuracy (%) Total Energy(J) Proc Energy (J) DRAM Energy(J)

VFDT-nmin CVFDT VFDT VFDT-nmin CVFDT VFDT VFDT-nmin CVFDT VFDT VFDT-nmin CVFDT VFDT

HYP(0.0001) 77.57 73.81 78.46 423.86 4766.54 533.11 407.58 4530.18 509.51 16.27 236.36 23.60
HYP(0.001) 67.74 66.69 69.59 411.77 4842.61 473.28 395.56 4619.29 454.57 16.21 223.32 18.72
LED(1) 73.01 70.67 71.31 246.65 1010.25 234.59 237.37 985.05 225.48 9.28 25.19 9.11
LED(2) 73.01 70.67 71.31 233.51 1006.40 227.26 223.98 981.64 218.06 9.53 24.76 9.19
RBF(10,0) 72.90 62.71 76.19 453.23 4173.32 539.79 436.59 3985.00 519.64 16.63 188.33 20.15
RBF(10,0.0001) 67.96 60.66 70.56 479.64 3483.51 537.97 462.53 3352.17 518.05 17.11 131.34 19.92
RBF(10,0.001) 68.77 61.18 69.49 477.99 3912.56 541.28 460.83 3746.63 520.60 17.16 165.92 20.68
RBF(50,0) 72.90 62.71 76.19 475.70 4068.16 544.64 458.65 3883.77 524.35 17.05 184.39 20.30
RBF(50,0.0001) 33.45 25.82 33.71 429.16 4001.94 520.61 412.47 3830.61 500.11 16.69 171.33 20.50
RBF(50,0.001) 30.55 28.20 30.71 438.46 5876.57 600.89 419.91 5576.47 575.06 18.55 300.10 25.83
SEA(10) 88.77 88.13 88.87 184.90 1862.83 200.14 177.74 1783.54 192.40 7.16 79.29 7.74
SEA(20) 79.16 78.78 79.25 187.88 1968.82 218.77 180.34 1891.36 209.48 7.53 77.46 9.29
airline 67.01 55.04 66.94 88.01 520.11 90.73 85.21 498.03 87.85 2.80 22.07 2.89
electricity 76.23 71.13 72.91 7.32 22.70 7.12 7.13 21.95 6.91 0.19 0.75 0.21
poker 75.44 58.46 72.27 134.97 581.77 133.81 129.73 567.20 128.65 5.25 14.57 5.16

TABLE III
DIFFERENCE IN ACCURACY (∆ACC) AND ENERGY CONSUMPTION

(∆ENERGY) BETWEEN VFDT AND VFDT-NMIN; AND VFDT-NMIN AND
CVFDT. A POSITIVE NUMBER IN ACCURACY MEANS THAT VFDT-NMIN

OBTAINED A HIGHER ACCURACY. A NEGATIVE NUMBER IN ENERGY
MEANS THAT THE VFDT-NMIN REDUCED THE ENERGY CONSUMPTION BY

THAT PERCENTAGE. HIGHER ACCURACY AND LOWER ENERGY
CONSUMPTION OF THE VFDT-nmin ARE PRESENTED IN BOLD

VFDT-nmin vs VFDT VFDT-nmin vs CVFDT

Dataset ∆Acc (%) ∆Energy(%) ∆Acc (%) ∆Energy(%)

HYP(0.0001) -0.90 -20.49 3.75 -91.11
HYP(0.001) -1.85 -13.00 1.05 -91.50
LED(1) 1.70 5.14 2.34 -75.59
LED(2) 1.70 2.75 2.34 -76.80
RBF(10,0) -3.28 -16.04 10.20 -89.14
RBF(10,0.0001) -2.60 -10.84 7.30 -86.23
RBF(10,0.001) -0.72 -11.69 7.59 -87.78
RBF(50,0) -3.28 -12.66 10.20 -88.31
RBF(50,0.0001) -0.27 -17.57 7.63 -89.28
RBF(50,0.001) -0.15 -27.03 2.36 -92.54
SEA(10) -0.09 -7.61 0.64 -90.07
SEA(20) -0.10 -14.12 0.37 -90.46
airline 0.07 -3.00 11.97 -83.08
electricity 3.32 2.78 5.10 -67.75
poker 3.17 0.87 16.98 -76.80

Average -0.22 -9.50 5.99 -85.10

higher energy consumption, since CVFDT is meant to perform
better in concept drift datasets. However, the results show that
CVFDT obtained lower accuracy compared to the other two
algorithms, even for datasets with concept drift. In all cases,
VFDT and VFDT-nmin obtained higher values of accuracy.
Figure 5 shows the accuracy comparison between VFDT,
VFDT-nmin, and CVFDT. We observe that the accuracy of
VFDT and VFDT-nmin is very similar, VFDT obtaining 0.22%
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Fig. 4. VFDT vs VFDT-nmin percentage of reduced energy. Lower
is better, since it means a higher energy reduction from VFDT-nmin.
For instance, VFDT-nmin reduced the energy consumption by 20%
for the HYP(0.0001) dataset. We observe how VFDT-nmin reduces
the energy consumption by a high percentage in comparison to the
CVFDT algorithm.

higher accuracy on average.
Figure 6 shows the relationship between accuracy and

energy consumption. The optimal data points lie at the bottom
right of the figure, representing low energy consumption and
high accuracy. Almost all VFDT-nmin executions lie in the
low energy consumption / high accuracy range. However,
we can observe how the points representing the CVFDT
executions are predominant towards high energy consumption
and low accuracy areas (top left). Although the figure shows no
apparent trade-off between accuracy and energy consumption,
the results in Table II show that those datasets where VFDT-
nmin obtained a higher accuracy (LED, electricity, and poker),
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Fig. 5. Comparison in accuracy between VFDT, VFDT-nmin, and
CVFDT. VFDT and VFDT-nmin obtain very similar levels of accu-
racy. CVFDT obtain significantly lower accuracy values.

it obtained also lower energy consumption. This suggests a
trade-off between accuracy and energy consumption, where in
order to achieve a higher accuracy, more energy needs to be
spent.
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Fig. 6. Relationship between accuracy and energy consumption, for all
datasets and all algorithms The optimal scenario is at the right bottom,
with a low energy consumption and high accuracy. We can observe
how CVFDT consumes significantly more energy in comparison to
VFDT and VFDT-nmin, without increasing accuracy.

Finally, regarding numerical attributes, we can observe
that the number of numerical attributes directly affects the
energy consumption significantly more than nominal attributes
(energy model in Section IV-B). The reason is that the av-
erage energy per floating point operation (EFPU ) is signifi-
cantly higher than the average energy per integer instruction
(EINT ) [25]. Moreover, storing the statistics of floating values
(numerical values) takes up more space than storing the
statistics of integer values (nominal attributes). If we take a
look at Table II, at datasets LED and HYP (independent of
the particular parameters), we can observe how, with the same
number of instances, LED consumes approximately half of the
energy of HYP. LED has 24 nominal attributes (Table I) and

HYP has 10 numerical attributes. The interesting phenomena
is that even though LED has more than double the number
of attributes, HYP still consumes double the energy because
of the high energy consumption impact of having numerical
attributes. This result opens a new direction for future works,
to implement a more energy efficient approach to handle
numerical attributes for streaming scenarios.

In summary, VFDT-nmin consumes 9.50% less energy than
VFDT, while only sacrificing less than 1% of accuracy. The
highest energy reduction occurs for the dataset RBF(50,0.001),
where VFDT-nmin consumes 27% less energy than VFDT,
sacrificing 0.15% of accuracy. These results show that VFDT-
nmin is able to obtain competitive results in terms of accuracy,
while being able to significantly reduce its energy consump-
tion.

VIII. CONCLUSIONS

In this paper we introduced nmin adaptation for Hoeffd-
ing trees to reduce their energy consumption. We compared
VFDT-nmin (VFDT with nmin adaptation) to the standard
VFDT and CVFDT, under 15 datasets. The results showed
that VDFT-nmin consumes up to 27% less energy, affecting
accuracy at most by a 3%, in comparison with the standard
VFDT. In comparison to CVFDT, VFDT-nmin consumes 85%
less energy, obtaining 6% higher accuracy values, on average.

We have shown a way to reduce the energy consumption
of the VFDT, by first identifying the source of unnecessary
computations with a theoretical energy model of the VFDT.
Based on that information, we have reduced the amount of
unnecessary computations, thus reducing the overall energy
consumption, while only marginally affecting accuracy. We
believe that this study presents a significant contribution to
the field of data stream mining. We illustrate a method
that can change the way we currently design this class of
algorithms, with a new focus on energy efficiency and dynamic
parameter adaptation. Algorithms with low energy consump-
tion are necessary for embedded systems and other resource
constrained devices; and desirable for platforms that require
many computations, such as data centers.

For future work, we aim to evaluate further the nmin adap-
tation method on other Hoeffding tree algorithms, such as the
Hoeffding Adaptive Tree ( [33]). As was already mentioned,
we plan to investigate more energy efficient ways to handle
numerical attributes in streaming scenarios.
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