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Abstract—We examine two fundamental tasks associated
with graph representation learning: link prediction and semi-
supervised node classification. We present a novel autoencoder
architecture capable of learning a joint representation of both
local graph structure and available node features for the multi-
task learning of link prediction and node classification. Our
autoencoder architecture is efficiently trained end-to-end in a
single learning stage to simultaneously perform link prediction
and node classification, whereas previous related methods re-
quire multiple training steps that are difficult to optimize. We
provide a comprehensive empirical evaluation of our models
on nine benchmark graph-structured datasets and demonstrate
significant improvement over related methods for graph rep-
resentation learning. Reference code and data are available at
https://github.com/vuptran/graph-representation-learning.

Index Terms—network embedding, link prediction, semi-
supervised learning, multi-task learning

I. INTRODUCTION

A S the world is becoming increasingly interconnected,
graph-structured data are also growing in ubiquity. In

this work, we examine the task of learning to make predic-
tions on graphs for a broad range of real-world applications.
Specifically, we study two canonical subtasks associated with
graph-structured datasets: link prediction and semi-supervised
node classification (LPNC). A graph is a partially observed
set of edges and nodes (or vertices), and the learning task
is to predict the labels for edges and nodes. In real-world
applications, the input graph is a network with nodes repre-
senting unique entities, and edges representing relationships
(or links) between entities. Further, the labels of nodes and
edges in a graph are often correlated, exhibiting complex
relational structures that violate the general assumption of in-
dependent and identical distribution fundamental in traditional
machine learning [10]. Therefore, models capable of exploiting
topological structures of graphs have been shown to achieve
superior predictive performances on many LPNC tasks [23].

We present a novel densely connected autoencoder archi-
tecture capable of learning a shared representation of latent
node embeddings from both local graph topology and available
explicit node features for LPNC. The resulting autoencoder
models are useful for many applications across multiple do-
mains, including analysis of metabolic networks for drug-
target interaction [5], bibliographic networks [25], social net-
works such as Facebook (“People You May Know”), terrorist

networks [38], communication networks [11], cybersecurity
[6], recommender systems [16], and knowledge bases such as
DBpedia and Wikidata [35].

There are a number of technical challenges associated with
learning to make meaningful predictions on complex graphs:

• Extreme class imbalance: in link prediction, the number
of known present (positive) edges is often significantly
less than the number of known absent (negative) edges,
making it difficult to reliably learn from rare examples;

• Learn from complex graph structures: edges may be
directed or undirected, weighted or unweighted, highly
sparse in occurrence, and/or consisting of multiple types.
A useful model should be versatile to address a variety
of graph types, including bipartite graphs;

• Incorporate side information: nodes (and maybe edges)
are sometimes described by a set of features, called side
information, that could encode information complemen-
tary to topological features of the input graph. Such
explicit data on nodes and edges are not always readily
available and are considered optional. A useful model
should be able to incorporate optional side information
about nodes and/or edges, whenever available, to poten-
tially improve predictive performance;

• Efficiency and scalability: real-world graph datasets con-
tain large numbers of nodes and/or edges. It is essential
for a model to be memory and computationally efficient
to achieve practical utility on real-world applications.

Our contribution in this work is a simple, yet versatile au-
toencoder architecture that addresses all of the above technical
challenges. We demonstrate that our autoencoder models: 1)
can handle extreme class imbalance common in link prediction
problems; 2) can learn expressive latent features for nodes
from topological structures of sparse, bipartite graphs that
may have directed and/or weighted edges; 3) is flexible to
incorporate explicit side features about nodes as an optional
component to improve predictive performance; and 4) utilize
extensive parameter sharing to reduce memory footprint and
computational complexity, while leveraging available GPU-
based implementations for increased scalability. Further, the
autoencoder architecture has the novelty of being efficiently
trained end-to-end for the joint, multi-task learning (MTL)
of both link prediction and node classification tasks. To the
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Link Prediction
Link prediction attempts to answer the principal question: given two entities, should there be a link between them? One can view link prediction as a graph/matrix completion problem, where the goal is to predict missing links
using data from known, observed positive and negative links. We approach the task of link prediction through two stages of supervised machine learning: matrix factorization and linear (multiclass) classification. Matrix
factorization learns and extracts low dimensional latent features from the global topology of the graph. A linear classifier can combine latent features with observed features on graph nodes and edges to learn a decision
function that can predict link propensity for any pair of nodes in the graph.

Out[9]:

# compute 10 community clusters using the Girvan-Newman edge betweenness community detection algorithm
community = g.community_edge_betweenness(clusters=10).as_clustering()
ig.plot(community, layout=layout, vertex_size=20, edge_arrow_width=0.75, edge_arrow_size=0.75)

Fig. 1. Schematic depiction of the Local Neighborhood Graph Autoencoder (LoNGAE) architecture. Left: A partially observed input graph with known
positive links (solid lines) and known negative links (dashed lines) between two nodes; pairs of nodes not yet connected have unknown status links. Middle: A
symmetrical, densely connected autoencoder with parameter sharing (tied weights) is trained end-to-end to learn node embeddings from the adjacency vector
for graph representation. Right: Exemplar multi-task output for link prediction and node classification.

best of our knowledge, this is the first architecture capable
of performing simultaneous link prediction and node classi-
fication in a single learning stage, whereas previous related
methods require multiple training stages that are difficult to
optimize. Lastly, we conduct a comprehensive evaluation of
the proposed autoencoder architecture on nine challenging
benchmark graph-structured datasets comprising a wide range
of LPNC applications. Numerical experiments validate the
efficacy of our models by showing significant improvement on
multiple evaluation measures over related methods designed
for link prediction and/or node classification.

II. AUTOENCODER ARCHITECTURE FOR LINK
PREDICTION AND NODE CLASSIFICATION

We now characterize our proposed autoencoder architecture,
schematically depicted in Figure 1, for LPNC and formalize
the notation used in this paper. The input to the autoencoder is
a graph G = (V, E) of N = |V| nodes. Graph G is represented
by its adjacency matrix A ∈ RN×N . For a partially observed
graph, A ∈ {1, 0, UNK}N×N , where 1 denotes a known
present positive edge, 0 denotes a known absent negative edge,
and UNK denotes an unknown status (missing or unobserved)
edge. In general, the input to the autoencoder can be directed
or undirected, weighted or unweighted, and/or bipartite graphs.
However, for the remainder of this paper and throughout the
numerical experiments, we assume undirected and symmetric
graphs with binary edges to maintain parity with previous
related work.

Optionally, we are given a matrix of available explicit
node features, i.e. side information X ∈ RN×F . The aim
of the autoencoder model h(A,X) is to learn a set of low-
dimensional latent variables for the nodes Z ∈ RN×D that can
produce an approximate reconstruction output Â such that the
error between A and Â is minimized, thereby preserving the
global graph structure. In this paper, we use capital variables
(e.g., A) to denote matrices and lower-case variables (e.g., a)

to denote row vectors. For example, we use ai to mean the
ith row of the matrix A.

A. Link Prediction

Research on link prediction attempts to answer the principal
question: given two entities, should there be a connection
between them? We focus on the structural link prediction
problem, where the task is to compute the likelihood that
an unobserved or missing edge exists between two nodes
in a partially observed graph. For a comprehensive survey
on link prediction, to include structural and temporal link
prediction using unsupervised and supervised models, see [33].

Link Prediction from Graph Topology Let ai ∈ RN be an
adjacency vector of A that contains the local neighborhood of
the ith node. Our proposed autoencoder architecture comprises
a set of non-linear transformations on ai summarized in two
component parts: encoder g(ai) : RN → RD, and decoder
f(zi) : RD → RN . We stack two layers of the encoder part
to derive D-dimensional latent feature representation of the
ith node zi ∈ RD, and then stack two layers of the decoder
part to obtain an approximate reconstruction output âi ∈ RN ,
resulting in a four-layer autoencoder architecture. Note that
ai is highly sparse, with up to 90 percent of the edges
missing at random in some of our experiments, and the dense
reconstructed output âi contains the predictions for the missing
edges. The hidden representations for the encoder and decoder
parts are computed as follows:

zi = g (ai) = ReLU
(
W · ReLU

(
Vai + b(1)

)
+ b(2)

)
Encoder Part,

âi = f (zi) = VT · ReLU
(
WTzi + b(3)

)
+ b(4)

Decoder Part,
âi = h (ai) = f (g (ai))

Autoencoder.
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The choice of non-linear, element-wise activation function
is the rectified linear unit ReLU(x) = max(0,x) [21].
The last decoder layer computes a linear transformation to
score the missing links as part of the reconstruction. We
constrain the autoencoder to be symmetrical with shared
parameters for {W,V} between the encoder and decoder
parts, resulting in almost 2× fewer parameters than an
unconstrained architecture. Parameter sharing is a powerful
form of regularization that helps improve learning and
generalization, and is also the main motivation for MTL, first
explored in [2] and most recently in [37]. Notice the bias units
b do not share parameters, and

{
WT, VT

}
are transposed

copies of {W, V}. For brevity of notation, we summarize the
parameters to be learned in θ =

{
W,V,b(k)

}
, k = 1, ..., 4.

Since our autoencoder learns node embeddings from local
neighborhood structures of the graph, we refer to it as
LoNGAE for Local Neighborhood Graph Autoencoder.

Link Prediction with Node Features Optionally, if a
matrix of explicit node features X ∈ RN×F is available,
then we concatenate (A,X) to obtain an augmented adjacency
matrix Ā ∈ RN×(N+F ) and perform the above encoder-
decoder transformations on āi for link prediction. We refer
to this variant as αLoNGAE. Notice the augmented adjacency
matrix is no longer square and symmetric. The intuition behind
the concatenation of node features is to enable a shared
representation of both graph and node features throughout the
autoencoding transformations by way of the tied parameters
{W,V}. This idea draws inspiration from recent work by
Vukotić et al. [32], where they successfully applied symmet-
rical autoencoders with parameter sharing for multi-modal
and cross-modal representation learning of textual and visual
features.

The training complexity of αLoNGAE is O((N + F )DI),
where N is the number of nodes, F is the dimensionality
of node features, D is the size of the hidden layer, and I
is the number of iterations. In practice, F , D � N , and I
are independent of N . Thus, the overall complexity of the
autoencoder is O(N), linear in the number of nodes.

Inference and Learning During the forward pass, or
inference, the model takes as input an adjacency vector ai
and computes its reconstructed output âi = h(ai) for link
prediction. The parameters θ are learned via backpropagation.
During the backward pass, we estimate θ by minimizing the
Masked Balanced Cross-Entropy (MBCE) loss, which only
allows for the contributions of those parameters associated
with observed edges, as in [24]. Moreover, ai can exhibit
extreme class imbalance between known present and absent
links, as is common in link prediction problems. We handle
class imbalance by defining a weighting factor ζ ∈ [0, 1] to be
used as a multiplier for the positive class in the cross-entropy
loss formulation. This approach is referred to as balanced
cross-entropy. Other approaches to class imbalance include
optimizing for a ranking loss [20] and the recent work on
focal loss by Lin et al. [18]. For a single example ai and

its reconstructed output âi, we compute the MBCE loss as
follows:

LBCE = −ai log (σ (âi)) · ζ − (1− ai) log (1− σ (âi)) ,

LMBCE =
mi � LBCE∑

mi
.

Here, LBCE is the balanced cross-entropy loss with weighting
factor ζ = 1− # present links

# absent links , σ(·) is the sigmoid function, � is
the Hadamard (element-wise) product, and mi is the boolean
function: mi = 1 if ai 6= UNK, else mi = 0.

The same autoencoder architecture can be applied to a row
vector āi ∈ RN+F in the augmented adjacency matrix Ā.
However, at the final decoder layer, we slice the reconstruction
h(āi) into two outputs: âi ∈ RN corresponding to the
reconstructed example in the original adjacency matrix, and
x̂i ∈ RF corresponding to the reconstructed example in
the matrix of node features. During learning, we optimize
θ on the concatenation of graph topology and side node
features (ai,xi), but compute the losses for the reconstructed
outputs (âi, x̂i) separately with different loss functions. The
motivation behind this design is to maintain flexibility to
handle different input formats; the input ai is usually binary,
but the input xi can be binary, real-valued, or both. In this
work, we enforce both inputs (ai,xi) to be in the range [0, 1]
for simplicity and improved performance, and compute the
augmented αMBCE loss as follows:

LαMBCE = LMBCE(ai,âi) + LCE(xi,x̂i),

where LCE(xi,x̂i) = −xi log (σ (x̂i))−(1−xi) log (1− σ (x̂i))
is the standard cross-entropy loss with sigmoid function σ(·).
At inference time, we use the reconstructed output âi for link
prediction and disregard the output x̂i.

B. Semi-Supervised Node Classification

The αLoNGAE model can also be used to perform efficient
information propagation on graphs for the task of semi-
supervised node classification. Node classification is the task
of predicting the labels or types of entities in a graph, such as
the types of molecules in a metabolic network or document
categories in a citation network.

For a given augmented adjacency vector āi, the autoencoder
learns the corresponding node embeddings zi to obtain an op-
timal reconstruction. Intuitively, zi encodes a vector of latent
features derived from the concatenation of both graph and
node features, and can be used to predict the label of the ith
node. For multi-class classification, we can decode zi using the
softmax activation function to learn a probability distribution
over node labels. More precisely, we predict node labels via
the following transformation: ŷi = softmax(z̃i) = 1

Z exp(z̃i),
where Z =

∑
exp(z̃i) and z̃i = U · ReLU

(
WTzi + b(3)

)
+

b(5).
In many applications, only a small fraction of the nodes

are labeled. For semi-supervised learning, it is advantageous
to utilize unlabeled examples in conjunction with labeled
instances to better capture the underlying data patterns for im-
proved learning and generalization. We achieve this by jointly
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training the autoencoder with a masked softmax classifier to
collectively learn node labels from minimizing their combined
losses:

LMULTI-TASK = −MASKi
∑
c∈C

yic log(ŷic) + LMBCE,

where C is the set of node labels, yic = 1 if node i belongs
to class c, ŷic is the softmax probability that node i belongs
to class c, LMBCE is the loss defined for the autoencoder,
and the boolean function MASKi = 1 if node i has a label,
otherwise MASKi = 0. Notice in this configuration, we can
perform multi-task learning for both link prediction and semi-
supervised node classification, simultaneously.

III. RELATED WORK

The field of graph representation learning is seeing a resur-
gence of research interest in recent years, driven in part by
the latest advances in deep learning. The aim is to learn a
mapping that encodes the input graph into low-dimensional
feature embeddings while preserving its original global struc-
ture. Hamilton et al. [9] succinctly articulate the diverse set
of previously proposed approaches for graph representation
learning, or graph embedding, as belonging within a unified
encoder-decoder framework. In this section, we summarize
three classes of encoder-decoder models most related to our
work: matrix factorization (MF), autoencoders, and graph
convolutional networks (GCNs).

MF has its roots in dimensionality reduction and gained
popularity with extensive applications in collaborative filtering
(CF) and recommender systems [16]. MF models take an
input matrix M, learn a shared linear latent representation
for rows (ri) and columns (cj) during an encoder step, and
then use a bilinear (pairwise) decoder based on the inner
product ricj to produce a reconstructed matrix M̂. CF is
mathematically similar to link prediction, where the goal is
essentially matrix completion. Menon and Elkan [20] proposed
an MF model capable of incorporating side information about
nodes and/or edges to demonstrate strong link prediction
results on several challenging network datasets. Other recent
approaches similar to MF that learn node embeddings via some
encoder transformation and then use a bilinear decoder for the
reconstruction include DeepWalk [22] and its variants LINE
[30] and node2vec [8]. DeepWalk, LINE, and node2vec do
not support external node/edge features.

Our work is inspired by recent successful applications
of autoencoder architectures for collaborative filtering that
outperform popular matrix factorization methods [24], [28],
[17], and is related to Structural Deep Network Embedding
(SDNE) [34] for link prediction. Similar to SDNE, our models
rely on the autoencoder to learn non-linear node embeddings
from local graph neighborhoods. However, our models have
several important distinctions: 1) we leverage extensive pa-
rameter sharing between the encoder and decoder parts to
enhance representation learning; 2) our αLoNGAE model can
optionally concatenate side node features to the adjacency
matrix for improved link prediction performance; and 3) the

αLoNGAE model can be trained end-to-end in a single stage
for multi-task learning of link prediction and semi-supervised
node classification. On the other hand, training SDNE requires
multiple steps that are difficult to jointly optimize: i) pre-
training via a deep belief network; and ii) utilizing a separate
downstream classifier on top of node embeddings for LPNC.

Lastly, GCNs [14] are a recent class of algorithms based
on convolutional encoders for learning node embeddings. The
GCN model is motivated by a localized first-order approx-
imation of spectral convolutions for layer-wise information
propagation on graphs. Similar to our αLoNGAE model, the
GCN model can learn hidden layer representations that encode
both local graph structure and features of nodes. The choice
of the decoder depends on the task. For link prediction, the
bilinear inner product is used in the context of the variational
graph autoencoder (VGAE) [15]. For semi-supervised node
classification, the softmax activation function is employed.
The GCN model provides an end-to-end learning framework
that scales linearly in the number of graph edges and has
been shown to achieve strong LPNC results on a number
of graph-structured datasets. However, the GCN model has a
drawback of being memory intensive because it is trained on
the full dataset using batch gradient descent for every training
iteration. We show that our models outperform GCN-based
models for LPNC while consuming a constant memory budget
by way of mini-batch training.

IV. EXPERIMENTAL DESIGN

In this section, we expound our protocol for the empirical
evaluation of our models’ capability for learning and general-
ization on the tasks of link prediction and semi-supervised
node classification. Secondarily, we also present results of
the models’ representation capacity on the task of network
reconstruction.

A. Datasets and Baselines

We evaluate our proposed autoencoder models on nine
graph-structured datasets, spanning multiple application
domains, from which previous graph embedding methods
have achieved strong results for LPNC. The datasets are
summarized in Table I and include networks for Protein
interactions, Metabolic pathways, military Conflict
between countries, the U.S. PowerGrid, collaboration
between users on the BlogCatalog social website, and
publication citations from the Cora, Citeseer, Pubmed,
Arxiv-GRQC databases. {Protein, Metabolic,
Conflict, PowerGrid} are reported in [20]. {Cora,
Citeseer, Pubmed} are from [25] and reported in [14],
[15]. And {Arxiv-GRQC, BlogCatalog} are reported
in [34].

We empirically compare our autoencoder models against
four strong baselines summarized in Table II, which were
designed specifically for link prediction and/or node classi-
fication. We begin our empirical evaluation with the SDNE
[34] baseline, where we compare the representation capacity
of our models on the network reconstruction task using the
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TABLE I
SUMMARY STATISTICS OF DATASETS USED IN EMPIRICAL EVALUATION.

THE NOTATION |O+|:|O−| DENOTES THE RATIO OF OBSERVED PRESENT
(POSITIVE) EDGES TO ABSENT (NEGATIVE) EDGES AND IS A MEASURE OF
CLASS IMBALANCE. LABEL RATE IS DEFINED AS THE NUMBER OF NODES

LABELED FOR TRAINING DIVIDED BY THE TOTAL NUMBER OF NODES.

Dataset Nodes Average |O+|:|O−| Node Node Label
Degree Ratio Features Classes Rate

Pubmed 19,717 4.5 1 : 4384 500 3 0.003
Citeseer 3,327 2.8 1 : 1198 3,703 6 0.036
Cora 2,708 3.9 1 : 694 1,433 7 0.052
Protein 2,617 9.1 1 : 300 76 – –
Metabolic 668 8.3 1 : 80 325 – –
Conflict 130 2.5 1 : 52 3 – –
PowerGrid 4,941 2.7 1 : 1850 – – –
Arxiv-GRQC 5,242 5.5 1 : 947 – – –
BlogCatalog 10,312 64.8 1 : 158 – – –

TABLE II
SUMMARY OF BASELINES USED IN EMPIRICAL EVALUATION. ACRONYMS:

AUC – AREA UNDER ROC CURVE; AP – AVERAGE PRECISION.

Baseline Task Metric
SDNE [34] Reconstruction Precision@k
MF [20] Link Prediction AUC
VGAE [15] Link Prediction AUC, AP
GCN [14] Node Classification Accuracy

Arxiv-GRQC and BlogCatalog datasets. For the MF
baseline, we closely follow the experimental protocol in [20],
where we randomly sample 10 percent of the observed links
for training and evaluate link prediction performance on the
other disjoint 90 percent for the {Protein, Metabolic,
Conflict} datasets. For PowerGrid, we use 90 percent
of observed links for training and evaluate on the remaining
10 percent. And for the VGAE and GCN baselines, we use
the same train/validation/test segments described in [15] and
[14] for link prediction and node classification, respectively,
on the {Cora, Citeseer, Pubmed} citation networks.

B. Implementation Details

We implement the autoencoder architecture using Keras [4]
on top of the GPU-enabled TensorFlow [1] backend, along
with several additional details. The diagonal elements of the
adjacency matrix are set to 1 with the interpretation that
every node is connected to itself. We impute missing or UNK
elements in the adjacency matrix with 0. Note that imputed
edges are not observed elements in the adjacency matrix and
hence do not contribute to the masked loss computations
during training. We are free to impute any values for the
missing edges, but through cross-validation we found that the
uniform value of 0 produces the best results.

Hyper-parameter tuning is performed via cross-validation or
on the available validation set. Key hyper-parameters include
mini-batch size, dimensionality of the hidden layers, and the
percentage of dropout regularization. In general, we strive
to keep a similar set of hyper-parameters across datasets to

highlight the consistency of our models. In all experiments,
the dimensionality of the hidden layers in the autoencoder
architecture is fixed at N -256-128-256-N . For reconstruction
and link prediction, we train for 50 epochs using mini-batch
size of 8 samples. For node classification, we train for 100
epochs using mini-batch size of 64 samples. We utilize early
stopping as a form of regularization in time when the model
shows signs of overfitting on the validation set.

We apply mean-variance normalization (MVN) after each
ReLU activation layer to help improve link prediction perfor-
mance, where it compensates for noise between train and test
instances by normalizing the activations to have zero mean
and unit variance. MVN enables efficient learning and has
been shown effective in cardiac semantic segmentation [31]
and speech recognition [12].

During training, we apply dropout regularization [27]
throughout the architecture to mitigate overfitting, depending
on the sparsity of the input graph. For link prediction, dropout
is also applied at the input layer to produce an effect similar to
using a denoising autoencoder. This denoising technique was
previously employed for link prediction in [3]. We initialize
weights according to the Xavier scheme described in [7]. We
do not apply weight decay regularization.

We employ the Adam algorithm [13] for gradient descent
optimization with a fixed learning rate of 0.001. As part of our
experimental design, we also performed experiments without
parameter sharing between the encoder and decoder parts of
the architecture and found severely degraded predictive perfor-
mance. This observation is consistent with prior findings that
parameter sharing helps improve generalization by providing
additional regularization to mitigate the adverse effects of
overfitting and enhance representation learning [32], [37].

C. Results and Analysis

Reconstruction Results of the reconstruction task for the
Arxiv-GRQC and BlogCatalog network datasets are illus-
trated in Figure 2. In this experiment, we compare the results
obtained by our LoNGAE model to those obtained by the
related autoencoder-based SDNE model [34]. The evaluation
metric is precision@k, which is a rank-based measure used
in information retrieval and is defined as the proportion of
retrieved edges/links in the top-k set that are relevant. We
use precision@k to evaluate the model’s ability to retrieve
edges known to be present (positive edges) as part of the
reconstruction.

In comparison to SDNE, we show that our LoNGAE model
achieves better precision@k performance for all k values,
up to k = 10, 000 for Arxiv-GRQC and k = 100, 000 for
BlogCatalog, when trained on the complete datasets. We
also systematically test the capacity of the LoNGAE model
to reconstruct the original networks when up to 80 percent of
the edges are randomly removed, akin to the link prediction
task. We show that the LoNGAE model only gets worse
precision@k performance than SDNE on the Arxiv-GRQC
dataset when more than 40 percent of the edges are missing
at random. On the BlogCatalog dataset, the LoNGAE
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Fig. 2. Comparison of precision@k performance between our LoNGAE model and the related autoencoder-based SDNE model for the reconstruction task
on the Arxiv-GRQC and BlogCatalog network datasets. The parameter k indicates the total number of retrieved edges.

TABLE III
COMPARISON OF AUC PERFORMANCE BETWEEN OUR AUTOENCODER MODELS AND THE BEST PREVIOUS MATRIX FACTORIZATION MODEL FOR LINK

PREDICTION. NUMBER FORMAT: MEAN VALUE (STANDARD DEVIATION). ∗THESE RESULTS INCORPORATED ADDITIONAL edge features FOR LINK
PREDICTION, WHICH WE LEAVE FOR FUTURE WORK.

Method Node Features Protein Metabolic Conflict PowerGrid
LoNGAE (this work) No 0.798 (0.004) 0.703 (0.009) 0.698 (0.025) 0.781 (0.007)
Matrix Factorization [20] No 0.795 (0.005) 0.696 (0.001) 0.692 (0.040) 0.754 (0.014)
αLoNGAE (this work) Yes 0.861 (0.003) 0.750 (0.011) 0.699 (0.021) –
Matrix Factorization [20] Yes 0.813 (0.002) ∗0.763 (0.006) ∗0.890 (0.017) –

model achieves better precision@k performance than SDNE
for large k values even when 80 percent of the edges are
missing at random. This experiment demonstrates the superior
representation capacity of our LoNGAE model compared to
SDNE.

Link Prediction Table III shows the comparison between our
autoencoder models and the matrix factorization (MF) model
proposed in [20] for link prediction with and without node
features. Recall that our goal is to recover the statuses of the
missing or unknown links in the input graph. As part of the
experimental design, we pretend that a randomly selected set
of elements in the adjacency matrix are missing and collect
their indices to be used as a validation set. Our task is to
train the autoencoder to produce a set of predictions, a list of
ones and zeros, on those missing indices and see how well
the model performs when compared to the ground-truth. The
evaluation metric is the area under the ROC curve (AUC).
Results are reported as mean AUC and standard deviation over
10-fold cross-validation. The datasets under consideration for
link prediction exhibit varying degrees of class imbalance.

For featureless link prediction, our LoNGAE model
marginally outperforms MF on {Protein, Metabolic,
Conflict} and is significantly better than MF on
PowerGrid. Consistent with MF results, we observe that
incorporating external node features provides a boost in link
prediction accuracy, especially for the Protein dataset where

we achieve a 6 percent increase in performance. Metabolic
and Conflict also come with external edge features, which
were exploited by the MF model for further performance
gains. We leave the task of combining edge features for future
work. Each node in Conflict only has three features, which
are unable to significantly boost link prediction accuracy.
PowerGrid does not have node features so there are no
results for the respective rows.

Table IV summarizes the performances between our au-
toencoder models and related graph embedding methods for
link prediction with and without node features. Following
the protocol described in [15], we report AUC and average
precision (AP) scores for each model on the held-out test
set containing 10 percent of randomly sampled positive links
and the same number of negative links. We show mean
AUC and AP with standard error over 10 runs with random
weight initializations on fixed data splits. Results for the
baseline methods are taken from Kipf and Welling [15],
where we pick the best performing models for comparison.
Similar to the MF model, the graph embedding methods that
can combine side node features always produce a boost in
link prediction accuracy. In this comparison, we significantly
outperform the best graph embedding methods by as much as
10 percent, with and without node features. Our αLoNGAE
model achieves competitive link prediction performance when
compared against the best model presented in [15] on the
Pubmed dataset.
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TABLE IV
COMPARISON OF AUC AND AP PERFORMANCES BETWEEN OUR AUTOENCODER MODELS AND RELATED GRAPH EMBEDDING METHODS FOR LINK

PREDICTION. NUMBER FORMAT: MEAN VALUE (STANDARD DEVIATION). §DENOTES THE BEST PERFORMING MODEL PRESENTED IN [15].

Method Node Cora Citeseer Pubmed
Features AUC AP AUC AP AUC AP

LoNGAE (this work) No 0.896 (0.003) 0.915 (0.001) 0.860 (0.003) 0.892 (0.003) 0.926 (0.001) 0.930 (0.002)
Spectral Clustering [29] No 0.846 (0.01) 0.885 (0.00) 0.805 (0.01) 0.850 (0.01) 0.842 (0.01) 0.878 (0.01)
DeepWalk [22] No 0.831 (0.01) 0.850 (0.00) 0.805 (0.02) 0.836 (0.01) 0.844 (0.00) 0.841 (0.00)
VGAE§ [15] No 0.843 (0.02) 0.881 (0.01) 0.789 (0.03) 0.841 (0.02) 0.827 (0.01) 0.875 (0.01)
αLoNGAE (this work) Yes 0.943 (0.003) 0.952 (0.002) 0.956 (0.003) 0.964 (0.002) 0.960 (0.003) 0.963 (0.002)
VGAE§ [15] Yes 0.914 (0.01) 0.926 (0.01) 0.908 (0.02) 0.920 (0.02) 0.964 (0.00) 0.965 (0.00)

Node Classification Results of semi-supervised node classi-
fication for the {Cora, Citeseer, Pubmed} datasets are
summarized in Table V. In this context of citation networks,
node classification is equivalent to the task of document classi-
fication. We closely follow the experimental setup of Kipf and
Welling [14], where we use their provided train/validation/test
splits for evaluation. Accuracy performance is measured on the
held-out test set of 1,000 examples. We tune hyper-parameters
on the validation set of 500 examples. The train set only
contains 20 examples per class. All methods use the complete
adjacency matrix, and available node features, to learn latent
embeddings for node classification. For comparison, we train
and test our αLoNGAE model on the same data splits over
10 runs with random weight initializations and report mean
accuracy. Kipf and Welling [14] report their mean GCN and
ICA results on the same data splits over 100 runs with
random weight initializations. The other baseline methods
are taken from Yang et al. [36]. In this comparison, our
αLoNGAE model achieves competitive performance when
compared against the GCN model on the Cora dataset, but
outperforms GCN and all other baseline methods on the
Citeseer and Pubmed datasets.

TABLE V
COMPARISON OF ACCURACY PERFORMANCE BETWEEN OUR αLONGAE

MODEL AND RELATED GRAPH EMBEDDING METHODS FOR
SEMI-SUPERVISED NODE CLASSIFICATION.

Method Cora Citeseer Pubmed
αLoNGAE (this work) 0.783 0.716 0.794
GCN [14] 0.815 0.703 0.790
Planetoid [36] 0.757 0.647 0.772
ICA [19] 0.751 0.691 0.739
DeepWalk [22] 0.672 0.432 0.653

Multi-task Learning Lastly, we report LPNC results
obtained by our αLoNGAE model in the MTL setting over 10
runs with random weight initializations. In the MTL scenario,
the αLoNGAE model takes as input an incomplete graph
with 10 percent of the positive edges, and the same number
of negative edges, missing at random and all available node
features to simultaneously produce predictions for the missing
edges and labels for the nodes. Table VI shows the efficacy
of the αLoNGAE model for MTL when compared against the

best performing task-specific link prediction and node classi-
fication models, which require the complete adjacency matrix
as input. For link prediction, multi-task αLoNGAE achieves
competitive performance against task-specific αLoNGAE, and
significantly outperforms the best VGAE model from Kipf and
Welling [15] on Cora and Citeseer datasets. For node
classification, multi-task αLoNGAE is the best performing
model across the board, only trailing behind the GCN model
on the Cora dataset.

TABLE VI
COMPARISON OF LINK PREDICTION AND NODE CLASSIFICATION
PERFORMANCES OBTAINED BY THE αLONGAE MODEL IN THE

MULTI-TASK LEARNING SETTING. LINK PREDICTION PERFORMANCE IS
REPORTED AS THE COMBINED AVERAGE OF AUC AND AP SCORES.

ACCURACY IS USED FOR NODE CLASSIFICATION PERFORMANCE.

Method Cora Citeseer Pubmed
Link Prediction

Multi-task αLoNGAE 0.946 0.949 0.944
Task-specific αLoNGAE 0.948 0.960 0.962
Task-specific VGAE [15] 0.920 0.914 0.965

Node Classification
Multi-task αLoNGAE 0.790 0.718 0.804
Task-specific αLoNGAE 0.783 0.716 0.794
Task-specific GCN [14] 0.815 0.703 0.790

V. DISCUSSION

In our experiments, we show that a simple autoencoder
architecture with parameter sharing consistently outperforms
previous related methods on a range of challenging graph-
structured benchmarks for three separate tasks: reconstruc-
tion, link prediction, and semi-supervised node classification.
For the reconstruction task, our LoNGAE model achieves
superior precision@k performance when compared to the
related SDNE model. Although both models leverage a deep
autoencoder architecture for graph representation learning, the
SDNE model lacks several key implementations necessary for
enhanced representation capacity, namely parameter sharing
between the encoder-decoder parts and end-to-end training of
deep architectures.

For link prediction, we observe that combining available
node features always produces a significant boost in predictive
performance. This observation was previously reported in [20],
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[15], among others. Intuitively, we expect topological graph
features provide complementary information not present in the
node features, and the combination of both feature sets should
improve predictive power. Although explicit node features
may not always be readily available, a link prediction model
capable of incorporating optional side information has broader
applicability.

Our αLoNGAE model also performs favorably well on
the task of semi-supervised node classification. The model is
capable of encoding non-linear node embeddings from both
local graph structure and explicit node features, which can
be decoded by a softmax activation function to yield accurate
node labels. The efficacy of the proposed αLoNGAE model
is evident especially on the Pubmed dataset, where the label
rate is only 0.003. This efficacy is attributed to parameter
sharing being used in the autoencoder architecture, which
provides regularization to help improve representation learning
and generalization.

Our autoencoder architecture naturally supports multi-task
learning, where a joint representation for both link prediction
and node classification is enabled via parameter sharing. MTL
aims to exploit commonalities and differences across multiple
tasks to find a shared representation that can result in improved
performance for each task-specific metric. In this work, we
show that our multi-task αLoNGAE model improves node
classification accuracy by learning to predict missing edges at
the same time. Our multi-task model has broad practical utility
to address real-world applications where the input graphs may
have both missing edges and node labels.

Finally, we address one major limitation associated with
our autoencoder models having complexity scale linearly in
the number of nodes. Hamilton et al. [9] express that the
complexity in nodes may limit the utility of the models
on massive graphs with hundreds of millions of nodes. In
practice, we would implement our models to leverage data
parallelism [26] across commodity CPU and/or GPU resources
for effective distributed learning on massive graphs. Data par-
allelism is possible because our models learn node embeddings
from each row vector of the adjacency matrix independently.
Nevertheless, the area of improvement in future work is to
take advantage of the sparsity of edges in the graphs to scale
our models linearly in the number of observed edges.

VI. CONCLUSION

In this work, we presented a new autoencoder architecture
for link prediction and semi-supervised node classification, and
showed that the resulting models outperform related methods
in accuracy performance on a range of real-world graph-
structured datasets. The success of our models is primarily
attributed to extensive parameter sharing between the en-
coder and decoder parts of the architecture, coupled with the
capability to learn expressive non-linear latent node repre-
sentations from both local graph neighborhoods and explicit
node features. Further, our novel architecture is capable of
simultaneous multi-task learning of both link prediction and
node classification in one efficient end-to-end training stage.

Our work provides a useful framework to make accurate and
meaningful predictions on a diverse set of complex graph
structures for a wide range of real-world applications.
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