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Abstract

The design of neural network architectures for a new data

set is a laborious task which requires human deep learning

expertise. In order to make deep learning available for a

broader audience, automated methods for finding a neural

network architecture are vital. Recently proposed methods

can already achieve human expert level performances. How-

ever, these methods have run times of months or even years

of GPU computing time, ignoring hardware constraints as

faced by many researchers and companies. We propose the

use of Monte Carlo planning in combination with two differ-

ent UCT (upper confidence bound applied to trees) deriva-

tions to search for network architectures. We adapt the UCT

algorithm to the needs of network architecture search by

proposing two ways of sharing information between different

branches of the search tree. In an empirical study we are

able to demonstrate that this method is able to find com-

petitive networks for MNIST, SVHN and CIFAR-10 in just

a single GPU day. Extending the search time to five GPU

days, we are able to outperform human architectures and

our competitors which consider the same types of layers.

1 Introduction.

Deep learning methods are very successful in various ap-
plications such as machine translation [32], image and
speech recognition [7, 12, 34] or reinforcement learning
in general [1]. The reason for its success is the ability to
learn how to extract features from unstructured data.
Hence, we observe a shift from the laborious manual fea-
ture engineering task for audio, images and text to engi-
neering network components and architectures. While
achieving overall better performances, this still involves
a laborious, manual task which requires experts. Thus,
true end-to-end learning remains an important and ac-
tive topic of research.

Earliest work is based on neuro-evolution [31]. Mu-
tations and cross-over operations are used to adapt the
network structure and even learn the network weights.
This is a very computational expensive procedure. How-
ever, constraining the genetic algorithm to use only mu-
tations and learning the parameters with gradient-based
optimization methods, it is possible to discover good
network architectures if enough computational power is
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available [22].
Recently, various approaches using reinforcement

learning have been proposed. Some approaches are
based on recurrent neural networks, Q-Learning or
Monte Carlo planning which learn to select layer by
layer [3, 20, 36]. Others try to learn how to change an
existing architecture to improve the results [5]. Yet,
most of these approaches require a vast amount of
computational power.

In this work we propose a method that is computa-
tional feasible and still finds competitive networks. We
define the search problem as a Markov decision prob-
lem where the state-action graph is a tree. We propose
to search for network architectures by maximizing the
expected reward using Monte Carlo planning. In partic-
ular, we derive two different policies based on UCT [14]
and compare our method to the state-of-the-art in an
empirical evaluation on MNIST, SVHN and CIFAR-10.
We show in our empirical evaluation that our proposed
methods can find competitive network architectures in
just one GPU day with a minimal loss in accuracy.

2 Related Work.

Algorithm selection and hyperparameter optimization
are a very old problem [23] and not limited to machine
learning applications. Bayesian optimization [27] is of-
ten considered to be the state-of-the-art for automated
hyperparameter optimization. One of its drawbacks is
that it expects a fixed length encoding of the algorithm
and hyperparameter choice and that the validation score
function is smooth with respect to this encoding. While
Bayesian optimization was able to achieve state-of-the-
art results for a fixed architecture [27, 28], no encod-
ing for network architectures has been found which sat-
isfies this assumption. Nonetheless, some works ap-
ply Bayesian optimization to search for network archi-
tectures [18, 33]. Recently, various works have shown
that reinforcement learning and neuro-evolution can
find neural networks which achieve results similar to
human-engineered architectures [3, 5, 22,36].

The idea of using genetic algorithms in order to
adapt neural networks is a relatively old idea. Early
work only evolved the weights of a fixed architecture
[19], later work also evolved the architecture [31]. A
recent work based on neuro-evolution was able to find
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competitive convolutional neural networks for CIFAR-
10 [36]. The authors propose to adapt the network ar-
chitecture with random mutations. They do not use any
cross-over operations and estimate the network weights
using gradient-based optimization methods. However,
this optimization method remains computational very
expensive.

Several optimization methods based on reinforce-
ment learning have been proposed for the neural net-
work architecture search. Cai et al. propose to learn
a policy that is able to improve an existing network by
deepening or widening it [5]. Others address the task to
find architectures from scratch [3, 22]. They propose to
learn a policy which estimates the final architecture by
choosing layer by layer. These approaches have in com-
mon with neuro-evolution that they are computational
expensive.

Negrinho and Gordon [20] investigate various opti-
mization methods for our problem, among them UCT.
In order to make UCT feasible, they propose to combine
it with a bisection method to share information among
similar actions in the same state. In contrast to them,
we propose two different variants of UCT. One of them
shares information for the same action in similar states
and the other is sharing information between similar ac-
tions by predicting the final reward based on previously
chosen actions.

Our main difference to the current work is that we
are aiming at finding a competitive network architecture
within a time frame that is affordable for all researchers.
Hence, we will give our method the symbolic time
budget of just a single GPU day.

3 Problem Definition.

We define the search for neural network architectures
as a Markov decision problem described by the tuple
(S,A, P,R, γ). Each state of the state space S describes
the current network architecture and each action in the
action set A adds another layer. Thus, we can describe
a state by the actions taken so far and the state set
S is defined as a subset of all action permutations,
S ⊂ P (A). The initial state is the empty set, S0 = ∅,
and final states contain a termination action. In order to
allow a fair comparison to the work by Baker et al. [3],
we are defining an action space that is searching in a
very similar network architecture search space.

We define following 19 actions: twelve different
actions that are adding convolutional layers with square
kernel sizes 1, 3 or 5 with 64, 128, 256 or 512 filters each
with stride 1 and same zero padding. Three pooling
actions adding layers with square pooling sizes 2, 3 and
5 with strides 2, 2 and 3, respectively. Another three
actions adding fully connected layers with 128, 256 or

512 units and finally one termination action which adds
a softmax layer.

Not every action can be chosen in every state in
order to obtain legitimate network structures. As soon
as the termination action was chosen, a final state is
reached and no further actions are possible. Actions
adding convolutional layers are possible at any point
before the first addition of a fully connected layer.
Pooling actions are only allowed immediately after a
convolutional action. The first pooling action can be
chosen as soon as the first convolutional action with
kernel size greater than one has been selected. For
computational reasons, the first fully connected layer
can be selected as soon as the input dimension of the
feature map is smaller than eight. There can be at
most two consecutive fully connected actions whereas
the second fully connected layer can have at most as
many units as the first one.

This Markov decision process is fully deterministic
and hence the state transition probabilities P are either
zero or one. We define the reward function as
(3.1)

Ra (s, s′) =

{
acc (s′) if a is a terminal actions.

0 otherwise
,

where acc (s′) is the accuracy obtained when training
the network described by state s′ on the training split
and evaluating it on the validation split.

We set the discount factor γ = 1 because we do not
want to punish deeper architectures.

Our objective is to find the network architecture
with maximal accuracy on the validation split after
training on the training split,

(3.2) O (S) = arg max
s∈S

acc (s) .

To achieve this, we present in the upcoming section
various methods which maximize

(3.3) O (S) = arg max
π

∞∑
t=0

γtRπ(st) (st, st+1)

as a proxy objective by using an adaptive policy

(3.4) π : S → A .

4 Architecture Search with Monte Carlo
Planning.

In this section we are briefly reviewing Monte Carlo
planning and the UCT algorithm. Then, we show how
these methods can be applied for the task of finding
competitive neural network architectures and describe
necessary adaptions and our improvements. Finally, we
describe a transfer learning method which we are using
in order to speed up the search.



4.1 Monte Carlo Planning. Monte Carlo planning
is one approach to find optimal policies in large Markov
decision problems [25]. The most famous work in this
domain is the UCT algorithm [14] which led to big
advances in artificial intelligence for many games, in
particular the game of Go [8, 9]. The UCT algorithm
is designed for state-action spaces which have a tree
structure. It is a rollout-based algorithm that works as
follows. A part of the state-action tree is stored, starting
with the root only. In each rollout the algorithm follows
the tree policy as long as the current state is within
the stored tree. The tree policy is based on the UCB1
formula [2]

(4.5) πtree (s) = arg max
a∈A

Rs,a
ns,a

+ c

√
ln (na′,s)

ns,a
,

where Rs,a is the cumulative reward received when
selecting action a in state s, ns,a is the number of times
action a was chosen when being in state s and na′,s is
the total number of times an action a′ was considered
that leads to state s in a rollout. The constant c controls
the trade-off between exploration and exploitation.

As soon as a new state is reached, the tree is ex-
panded by this node. Actions are now chosen uniformly
at random until a leaf node is reached. The reward is
estimated and backpropagated.

The UCT algorithm has provable regret bounds
and converges against the optimal policy given enough
time [14]. Furthermore, it is trivially parallelizable and
can be stopped and continued at any time.

4.2 UCT for Architecture Search. Since the
state-action space as described in Section 3 is a tree, the
UCT algorithm can in principle be applied to our prob-
lem without any changes. However, this search space is
very large and one rollout is very time-consuming since
it involves training and testing a neural network. We
can only afford few hundreds of rollouts but then we
spend most of the time exploring the search space. The
reason for this is that according to the UCB1 formula
each action in a state has to be chosen at least once
before an action is considered a second time. This is
a general problem for UCT during the first rollouts.
Thus, Gelly et al. [8] proposed the rapid action value
estimation (RAVE) for UCT. They make the assump-
tion that it does not matter when an action is selected
but if. This allows sharing information between differ-
ent branches of the search tree but is limited to domains
where action sequences can be transposed. Obviously,
this is not the case for neural network architectures since
the order of layers is important. Thus, we propose an
alternative way of sharing information between different
tree branches. We combine the information for actions

happening at the same layer depth and in similar states.
We define the rapid action value estimation for neural
networks policy (RAVE4NN) as

πRAVE4NN (s) = arg max
a∈A

(
α
Rs,a
ns,a

+ β
RN (s),a

nN (s),a

)

+ c

√
ln
(
α · na′,s + β · na′,N (s)

)
α · ns,a + β · nN (s),a

(4.6)

where N (s) is the set of states being similar to state
s and α and β are abbreviations for the weighting
functions α

(
ns,a, nN (s),a

)
and β

(
ns,a, nN (s),a

)
, respec-

tively. Using the notation from Equation (4.5),

RN (s),a =
∑

s′∈N (s)

Rs′,a(4.7)

nN (s),a =
∑

s′∈N (s)

ns′,a(4.8)

na′,N (s) =
∑

s′∈N (s)

na′,s′ .(4.9)

Given are two state-action se-
quences (s0, a1,1, s1,1, a1,2, . . . , s1,t1 , . . .) and
(s0, a2,1, s2,1, a2,2, . . . , s2,t2 , . . .). We define the similar-
ity between two states as follows. If two states s1,t1
and s2,t2 are similar, s1,t1 ∈ N (s2,t2), then they are
representing a network part of the same depth, i.e.
t1 = t2. Furthermore, the output dimension of this
network part belongs to the same representation bin.
We distinguish three bins with the representation size
being in the interval [1, 4), [4, 8) or [8,∞). Finally,
the number of chosen fully connected actions is equal
before reaching the states s1,t1 and s2,t2 . Only for
softmax actions it is additionally required that the
action before to the current state is the same, at1 = at2 .

4.3 Contextual Reward Predictions. In this sec-
tion we propose to share information among search tree
branches by means of a prediction model. The predic-
tion model is forecasting the reward for taking an action
given a state. In contrast to the approach in the previ-
ous section, this enables us to predict rewards even in
cases where RAVE4NN cannot infer anything from simi-
lar cases. Furthermore, this also enables us to learn from
data sets investigated in previous experiments for a new
data set and learn policies across problems. However, in
this work we do not further investigate this possibility.

We define the contextual reward prediction policy
as

(4.10) πCRP (s) = arg max
a∈A

R̂ (s, a) + c

√
ln (nd)

nd,a
.



R̂ is a prediction model predicting the reward based on
the action and the state. nd is the number of times a
state with d layers was reached and nd,a the number
of times action a was chosen at depth d. We encode
the state s′, reached by taking action a in state s,
by representing a network of depth d with a vector
x ∈ Rd+2. The first d entries of this vector contain
the log number of parameters per layer. There are two
more entries for the log number of total parameters and
the log representation size. Predictors for convolutional
actions have another entry for the number of filters
defined by action a. There exists one of these predictors
for each depth and for each action. Labeled examples
are collected during the search. For convolutional
actions, we share examples among actions with the
same kernel size to allow the predictors to learn across
different number of filters. We use a Gaussian process
with Matérn 5/2 kernel as a prediction model.

4.4 Gaining Speed with Net2Net. Obviously, the
more rollouts can be conducted, the closer we are to the
optimal policy. In order to speed up the rollouts, we
are using Net2Net [6]. Net2Net is a knowledge transfer
approach which widens layers, increases kernel sizes and
deepens networks without changing its predictions. The
changed network will converge in less epochs than the
same network initialized with random weights. During
our search we store all networks with parameters and
whenever a new network needs to be initialized, we
first compute the network edit distance to the networks
already investigated. We define this network edit
distance by

di,j =


di−1,j−1 if ai = aj

min

{
di,j−1 + cins (ai, aj)

di−1,j−1 + csub (ai, aj)

}
otherwise

where we define the costs for inserting or substituting a
layer by

cins (ai, aj) =



∞ if aj is pooling layer or has

less filters/units than ai

1 if ai and ajhave the same

number of filters/units

2 otherwise

and

csub (ai, aj) =



∞ if ai or aj is pooling layer or

aj has less filters/units than ai

2 if aj has a larger kernel size

and a larger number of filters

than ai

1 otherwise .

Not every edit operation is supported by Net2Net
such that the costs for an operation is infinity under
certain circumstances. This distance can be efficiently
computed with dynamic programming. We consider
networks only with a network edit distance of up to
two. If no candidate can be found, we initialize the
parameters at random.

5 Experimental Results.

In this section we summarize the results of our em-
pirical study. We first describe our direct competitor
methods, then the data sets we used for evaluation as
well as our post-processing. We provide insights into
how our proposed policies RAVE4NN (Section 4.2) and
CRP (Section 4.3) develop over time. Furthermore, we
compare our found network architecture to human pro-
posed network architectures which are also using only
convolutions and pooling layers. In our supplementary
material we provide an additional experiment where we
compare directly to human performance on the recently
released Fashion-MNIST data set.

5.1 Competitor Methods. We compare our ap-
proach to five recently proposed competitor methods.

5.1.1 Neural Architecture Search. Zoph and Le
[36] propose to learn a policy using a recurrent neu-
ral network. Trained with the REINFORCE rule by
Williams [35], the recurrent neural network is recom-
mending the number of filters and kernel size of a convo-
lution layer by layer. Furthermore, it is predicting skip
connections [12] between layers. Only convolutional lay-
ers are considered. After training 12,800 different archi-
tectures, trained concurrently on 800 GPUs, they found
the best network architecture. A final grid search opti-
mizes the learning rate, weight decay, batchnorm epsilon
and at what epoch to decay the learning rate. We re-
port the results achieved with their variant which uses
the least human intervention during the optimization.

5.1.2 Large-Scale Evolution. Real et al. [22] pro-
pose to use an evolutionary algorithm in order to search
for neural network architectures. Starting with the sim-
plest network, it keeps improving by mutation and se-
lection methods. Selection is achieved by selecting two
individua at random and keeping the better performing
one. A mutation is selected uniformly at random to gen-
erate a child. Mutations can alter the learning rate, add
or remove convolutional layers or skip connections and
alter other properties such as the kernel size or number
of filters. Similar to Neural Architecture Search, only
convolutional layers are considered. Their final search is
less computational expensive, using 250 GPUs for more



than 11 days.

5.1.3 MetaQNN. Baker et al. [3] propose to learn
a policy using Q-learning with ε-greedy strategy and
experience replay in order to learn how to create a
convolutional neural network layer by layer. In order
to allow a fair comparison, we selected the same action
space as we defined in Section 3.

5.1.4 Reinforcement Learning with Neural
Network Transformation. The reinforcement learn-
ing approach by Cai et al. [5] starts from an existing
network and learns a policy that learns how to widen
and deepen networks. They start with an eight layer
convolutional neural network with a reasonable archi-
tecture. While the authors argue that their network is
performing poor, the main reason is that there are too
few parameters per layer. Only widening the starting
layers will result into a well performing network already.
Similar to us, they use Net2Net knowledge transfer to
improve the speed. In contrast to our setup, they can
always profit from this knowledge transfer.

5.1.5 DeepArchitect. Negrinho and Gorden [20] in-
vestigate how the performance of Random Search [4],
Bayesian Optimization [27] and UCT compares for op-
timizing the neural network architecture. They also rec-
ognize that using vanilla UCT will not work for this task
due to the limitations discussed above. Therefore, they
propose to combine UCT with bisection. This method
will trade the width of the search tree for depth and
basically shares knowledge of similar actions. However,
they have a very strict definition of similar actions, re-
quiring that the network before two similar actions is
identical. In conclusion, this approach still spends most
of its time exploring the state space. In our experiments
we denote with DeepArchitect the results obtained with
UCT with bisection which is the best performing ap-
proach in their paper.

5.2 Implementation Details. Our Monte Carlo
planning approach uses following hyperparameters in-
dependently on the investigated data set. We set the
exploration-exploitation trade-off in Equation (4.5) to
c = 0.5. To make better use of the Net2Net knowl-
edge transfer, we start with a maximum allowed network
depth of three and increase it by one every 50 rollouts.
In case we revisit a network architecture we evaluated
already, we do not train it again but use the previously
computed classification accuracy. As proposed by Baker
et al. [3], dropout layers are added after every second
layer and each fully connected layer with linear increas-
ing dropout rate to 0.5. We set the batch size to 128

and used the Adam optimizer [13] with an initial learn-
ing rate 0.001, β1 = 0.9, β2 = 0.999, ε = 10−8 and
no decay. If the model is not significantly better than
a random predictor after the first epoch, we decrease
the learning rate by a factor of 0.4. We repeat this
at most five times. If it is possible to initialize with
Net2Net knowledge transfer, we train for just a single
epoch. Otherwise, we use the Glorot uniform initializa-
tion [10] and train for five epochs.

5.3 Post-Processing. We searched for architectures
on the following image classification data sets with
the setup described above. Since only five epochs of
training are not sufficient, we apply a similar, however
simpler, post-processing as done by Baker et al. [3]. For
example, we are not optimizing the hyperparameters
but select those as chosen by Baker et al. instead. The
network with the best score on the validation is selected,
reinitialized and trained according to following policies.

5.3.1 MNIST. The MNIST data set [16] contains
ten different classes, 60,000 training and 10,000 testing
28 × 28 grayscale images. The task is to identify
handwritten digits. We subtracted the global mean of
each image and trained the final model for 40 epochs
using the Adam optimizer settings described above.
However, we decrease the learning rate by a factor of
0.2 every five epochs.

5.3.2 Street View House Numbers (SVHN).
The task of the SVHN data set [21] is similar to the
MNIST data set, i.e. identifying digits. However,
this data set is larger and more difficult since many
of the images contain distracting digits at the sides of
the digit of interest. It contains 73,257 32 × 32 RGB
images in the training set and 26,032 in the testing set.
Furthermore, it has a set of additional 531,131 images.
During the search we only use the training set, for the
final training we make use of the additional examples
as well. We optimize the parameters with stochastic
gradient descent with an initial learning rate of 0.025
and momentum of 0.9 for 40 epochs. We decrease the
learning rate by a factor of 0.5 after 5 epochs, after
10 epochs by another 2−7 and finally after 30 epochs
by 2−11. The weight decay was set to 0.0005. We
preprocess each image by subtracting each channel’s
mean and divide it by the standard deviation.

5.3.3 CIFAR-10/CIFAR-100. The CIFAR-10 [15]
data set is a subset of the 80 million tiny images
data set and its task is to identify one of ten different
objects in 32 × 32 RBG images. The training split
contains 50,000 examples, the testing split 10,000. The
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Figure 1: The search progress for the three different policies on MNIST, SVHN and CIFAR-10. CRP is clearly
outperforming the other policies. We report the validation performance of the best network so far and the mean
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Figure 2: The fraction of models above a given
threshold after the experiment on CIFAR-10. Not only
the best model found by our methods is better than
random but they also find better models on average.

CIFAR-100 data set is very similar to CIFAR-10 but
with 10 times more classes. We preprocess the image
using global contrast normalization. We use the same
SGD optimizer as used for the SVHN. However, we
increased the number of epochs to 300. We also use
the same weight decay and reduce the learning rate in
the same scheme but now after epochs 40, 80 and 240.
Additionally, we moderately augment the data by using
random horizontal flips and random translation of up
to 5 pixels.

We do not apply our search method on CIFAR-100.
Instead, we report the results obtained when training
the best CIFAR-10 network architecture on CIFAR-100.

5.4 Results. We present the search progress of the
different policies for the data sets MNIST, SVHN and

CIFAR-10 in Figure 1. We report the validation perfor-
mance of the best found model (solid lines) as well as
the mean validation performance of the top five mod-
els (dashed lines). CRP quickly finds good performing
network architectures, clearly outperforming the ran-
dom policy. In many cases the top five performance is
even able to outperform our proposed RAVE4NN pol-
icy. The reason is that our reward prediction based on
the current network structure allows us to learn good
combinations of layers. We see that this methods tends
to start networks often with similar layer combinations.
Many of the networks for the CIFAR-10 data set start
with a convolutional layer with kernel size 3×3, followed
by a pooling layer. In many cases the next two layers
are convolutional before adding another pooling layer.

The RAVE4NN policy needs some more time to
converge against good network architectures because it
has less information about the previous layers when de-
ciding the next layer. However, it is still outperforming
the random policy and given enough time can catch up
with the CRP policy.

Figure 2 gives an insight whether our proposed
policies are providing indeed some useful improvements
over the random policy. It presents what fraction of
neural networks achieves a validation accuracy above a
threshold and provides insight into the policies’ regret.
Both, RAVE4NN and CRP, are better than the random
policy and are able to detect bad architectures and focus
on more promising ones. The results on the other data
sets look similar and are moved to the supplementary
material due to space constraints.

The network architecture with highest validation
score is selected and retrained on the full training data



Table 1: Comparison of different automatic neural network architecture search methods. Results are reported in
accuracy percent, duration in GPU days. Our method is able to find competitive network architectures in just a
single GPU day. Results with asterisk (*) are obtained using the best architecture for CIFAR-10.

Method Duration (days) MNIST SVHN CIFAR-10 CIFAR-100

Neural Architecture Search [36] 10,000 - - 94.5 -
Large-Scale Evolution [22] 2,700 - - 94.6 77.0
MetaQNN [3] 100 99.56 97.72 93.08 72.86*
RL with Network Transformation [5] 10 - - 93.26 -
DeepArchitect [20] 1.33 - - 87.47 -

Monte Carlo Planning (Random) 1 99.48 96.73 84.97 61.09*
Monte Carlo Planning (RAVE4NN) 1 99.69 96.89 90.23 66.84*
Monte Carlo Planning (CRP) 1 99.51 97.24 91.20 69.75*
Monte Carlo Planning (CRP) 5 - - 93.55 -

Table 2: Human proposed networks which use the same
types of layers that we consider during our search.

Method CIFAR-10 CIFAR-100

Maxout [11] 90.62 61.43
Network in Network [17] 91.19 64.32
FitNet [24] 91.61 64.96
HighWay Network [30] 92.28 -
All-CNN [29] 92.75 66.29
VGG [26] 92.75 -

set according to the description in Section 5.3. We
compare the obtained results on the testing data set
against different state-of-the-art network architecture
search methods in Table 1. We select a search budget of
just a single GPU day to demonstrate that our method
can be used also in case of limited hardware. Thus, the
duration is sometimes orders of magnitudes smaller than
the one used by the competitor methods. We did not
reconduct the experiments for the competitor methods
but report the results as in the corresponding papers.

DeepArchitect is the competitor method with the
shortest searching time, approximately the time we
gave our method. However, both RAVE4NN and CRP
are clearly outperforming its performance. The test
accuracy for DeepArchitect was not reported in the
paper but the authors made this information available
on their website [20].

The method by Cai et al. [5] is the method with
shortest running time that is outperforming our results.
However, their method does not start its search from
scratch but rather start with a network of depth eight.
It is well structured, containing pooling, convolutional
and fully connected layers. While the authors claim that
the network has a poor performance (73.1% validation

accuracy), we want to highlight that this is due to few
parameters. Since their reinforcement approach aims
with its actions to add more filters for each layer, this
is actually a very good starting point. Thus, it is not
surprising that our method which starts from scratch
provides slightly worse results.

We consider MetaQNN [3] to be our closest com-
petitor. This method is learning network architectures
from scratch and we designed our action space to match
exactly their setup. They report a test accuracy of
93.08% within 100 days for CIFAR-10 which is two
orders of magnitudes more time than we needed for
91.2%. Their top five architectures achieve test accu-
racies from 88.37% to 93.08%. The mean test accuracy
of the top five architectures is 90.91%, the standard de-
viation 1.68%. In comparison, our top five architec-
tures for CRP achieve test accuracies between 89.16%
and 92.07%, a mean of 90.80% and a standard devia-
tion of 1.10%. Thus, our method’s best solution is not
as good as the one by MetaQNN but the top networks
provide consistent good test accuracies. For this reason,
an ensemble of the top five architectures improves the
accuracy to 92.49% while Baker et al. report a loss in
accuracy to 92.68% for MetaQNN [3].

Neural Architecture Search [36] and Large-Scale
Evolution [22] achieve remarkable results. However, the
computation time is beyond anything most researchers
and practitioners can afford.

An important question to answer is how good are
the competitor methods when given less search time.
Real et al. report a test accuracy on CIFAR-10 of less
than 30% after one GPU day [22]. Similarly, the Neural
Architecture Search needs more than 800 model eval-
uations (much more than a GPU day) to show an im-
provement over a random policy [36]. MetaQNN uses
more than 50% of its search time with random explo-



ration [3]. This means, their results after more than 50
GPU days is as good as a random policy. However, if we
adapt their ε schedule to consider a maximum running
time of one day instead of one hundred, only about 27
different networks will be evaluated. 15 of these network
architectures are chosen completely at random, only for
six architectures the actions are chosen according to the
policy with a probability of more than 60%. Thus, it
is very unlikely that this method finds a useful network
in a single GPU day. Cai et al. report an accuracy of
about 87% for their reinforcement learning method after
the first half of networks was sampled [5]. In conclusion,
our methods are indeed outperforming its competitors
given a time budget of a single GPU day.

We conducted another experiment on CIFAR-10
giving our search method a five times higher time bud-
get to see whether we can achieve equal performance if
more time is invested. During our one day experiment
we noticed that our search algorithm converges against
a policy that mainly chooses network architectures of
depth seven. The reason for this is that it learns to
choose many pooling layers such that the representa-
tion size is reduced quickly. In order to focus on deeper
networks, we applied following changes. First, pooling
layers are constrained to be selected after at least three
convolution layers. Second, we slowly increase the min-
imum number of layers during the search. Finally, we
selected the network architecture with highest valida-
tion score and more than twelve layers. This network
was trained according to the previously described proto-
col on the full training data set and achieves an accuracy
of 93.55%. Thus, we achieve very similar performance
to the state-of-the-art in a fraction of the search time.

Further results and the found network architectures
are reported in the supplementary material.

6 Conclusions.

We addressed the challenge of automating the neural
network architecture engineering task in order to make
deep learning accessible to a broader audience. In par-
ticular, we were aiming at speeding up this procedure
in order to make true end-to-end learning feasible for
everyone. As a solution, we proposed the use of Monte
Carlo planning in combination with two different UCT
derivations to search for network architectures. To
speed up the search, we adapted the UCT algorithm
in order to share information between similar network
architectures and made use of the Net2Net knowledge
transfer. In an empirical study we demonstrated that
this method is able to find competitive networks for
MNIST, SVHN and CIFAR-10 in just a single GPU
day. Extending the search time to five days, we can
outperform the existing automated approaches and hu-

man proposed architectures which use the same types
of layers.
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