
Learning Data Mining
Riccardo Guidotti

University of Pisa and ISTI-CNR Pisa
guidotti@di.unipi.it

Anna Monreale
University of Pisa
annam@di.unipi.it

Salvatore Rinzivillo
ISTI-CNR Pisa

rinzivillo@isti.cnr.it

Abstract—In the last decade the usage and study of data mining
and machine learning algorithms have received an increasing
attention from several and heterogeneous fields of research.
Learning how and why a certain algorithm returns a partic-
ular result, and understanding which are the main problems
connected to its execution is a hot topic in the education of data
mining methods. In order to support data mining beginners,
students, teachers, and researchers we introduce a novel didactic
environment. The Didactic Data Mining Environment (DDME)
allows to execute a data mining algorithm on a dataset and
to observe the algorithm behavior step by step to learn how
and why a certain result is returned. DDME can be practically
exploited by teachers and students for having a more interactive
learning of data mining. Indeed, on top of the core didactic
library, we designed a visual platform that allows online execution
of experiments and the visualization of the algorithm steps. The
visual platform abstracts the coding activity and makes available
the execution of algorithms to non-technicians.

I. INTRODUCTION

Nowadays, we are assisting to a more and more widespread
adoption of data mining and machine learning algorithms in
every discipline and in every aspect of everyday life [1].
Indeed, data mining algorithms are currently used in biology,
medicine, business and marketing, social science, robotics, etc.
but also in smart-phones and ordinary smart devices [2]. Such
popularity is certainly due to the predictive and descriptive
power that these algorithms have. Clustering methods are
used to group the population and understand which are the
typical subgroups. Associative rule learning is adopted for dis-
covering interesting relations between variables. Classification
algorithms are employed for identifying to which category an
observation belongs to, on the basis of a training set of data
containing observations whose category is known [3].

Undoubtedly, such pervasiveness has amplified the visibility
of data mining and machine learning algorithms making this
interesting but complex field one of the most widespread
among universities, academies and high education centers.
Given the exponential diffusion reached by data mining algo-
rithms, several tools have been developed in order to make
them usable by the largest possible number of users [4],
[5]. Data mining libraries and platforms are nowadays avail-
able for beginners and practitioners with any background:
mathematicians, physicists, engineers and computer scientists.
Furthermore, some graphical tools have been developed for
social scientists, biologists, economists, etc. Some of these
tools are adopted for educational purposes. However, the main
goal of all the existing tools is to allow the user to easily use
data mining algorithms and not to learn how they work.

To overcome these limitations we propose DDME, a Didactic
Data Mining Environment. The goal of this tool is twofold.
The first one is to provide a support to teachers for the
introduction and explanation of the data mining algorithms
during their lectures. The second one is to offer to students an
effective way to understand the details of the functionalities
and behavior of the data mining algorithms, and to test their
understanding and preparation. It is important to highlight that
the DDME is not suitable for auto-learning; in other words, for
students is not easy to understand the details of the algorithms
without knowing some important theoretical concepts.
DDME provides a collection of data mining algorithms

ranging from clustering to classification to association rules.
Every algorithm allows the user to tune the parameters mainly
affecting the algorithm behavior. DDME algorithms can be run
on custom datasets as well as on random datasets that can
be generated using functionalities offered by the library. The
innovative aspect of DDME is that running a data mining al-
gorithm in such environment provides the intermediate results
for each step of the algorithm execution. These results are
provided in an intelligible way using text or images, showing
the value of a formula or a particular assignment. In this way
the DDME user can learn how algorithms works and why a
result is returned with respect to certain parameters or settings.

In particular, the Didactic Data Mining Environment cur-
rently provides: K-Means which is a prototype-based clus-
tering algorithm, DBSCAN that is a density-based clustering
algorithm, and Single/Complete Linkage approaches for hier-
archical clustering. Moreover, it offers Apriori as association
rule learner, and Decision Tree Classifier as classification
algorithm. The DDME is organized in two layers: the Didactic
Data Mining library (DDMlib), and the Didactic Data Mining
visual platform (DDMvp). The DDMlib is a Python package
that allows to easily build custom experiments using a few
lines of an intuitive programming language. The execution of
an algorithm shows its internal state and the choices selected
for each step of the algorithm. The DDMvp is a web-based
visual platform that abstracts from the coding complexity and
allows the user to select a dataset and an algorithm with certain
parameters, to run the algorithm and study the behavior of the
algorithm in the specified conditions without writing any line
of code. The DDMvp was provided as an open source and
free tool to the students of the “Data Mining” course of the
University of Pisa for the academic year 2017-2018. Their
evaluation of the DDMvp collected by a survey show that it is
a valuable and usable tool for learning data mining.

The idea of learning how data mining algorithms work in
order to obtain a satisfactory level of algorithmic transparency
is compliant to the actual General Data Protection Regulation
(GDPR), recently adopted by the European Parliament1. A
crucial point of the GDPR is that every algorithmic decision-
making or profiling system must provide, to some extent, a
“meaningful explanations of the logic involved in the black
box” [6], [7]. Despite divergent opinions regarding the real
scope of these clauses [8]–[10], everybody agrees that the
need for such a principle is urgent, and that its implementation
represents today a huge open scientific challenge. Therefore,
providing to beginners a didactic environment to understand
(part of) the applications they use in their everyday life can
absolutely simplify the ways in which the logic involved in
these applications must be explained.

The rest of the paper is organized as follows. In Section II
we review some of the main tools available to use data mining
algorithms and to visualize the results of their execution.
Section III recalls basic aspects of the data mining algorithms
available in the DDME by exploiting for the explanation con-
tents of the DDME itself. Section IV provides the details of the
Didactic Data Mining Environment. First of all, we highlight
how the Python library is designed and how to use it. Then, we
describe a web-based visual platform that abstracts from the
coding complexity and allows the end user to setup, run and
learn how a data mining algorithm works without writing any
line of code. Section V discusses the survey results on the
tool evaluation, and finally, Section VI concludes the paper
underlining the advantages of the DDME and providing some
insights on the future evolution the framework.

II. DATA MINING TOOLS

The increasing relevance of data mining algorithms has
fostered the development of different tools widely used in
leading companies as well as in university and academia.
These tools allow to easily perform data mining experiments
and to apply data mining algorithms in different contexts. To
the best of our knowledge, none of the tools currently available
provides learning support to teachers and students like the
DDME. However, since these tools are the most related to our
environment, we propose a review of the most used libraries
and visual tools for data mining. Our review will not cover
all the existing resources but only those that, in our opinion,
provide interesting facilities with a reasonable learning cost.

Python Scikit-learn. The most famous Python package
that provides a large set of the most important data min-
ing and machine learning algorithms is scikit-learn2.
Scikit-learn algorithms are provided with a quite effi-
cient implementation and are relatively easy to use. An algo-
rithm must be instantiated with a certain parameter setting. Af-
ter that, the algorithm can be run on a dataset (typically using
the fit method). Results are accessible as attributes of the algo-
rithm instance. In the DDME we use this very common usage

1http://ec.europa.eu/justice/data-protection/
2http://scikit-learn.org/

pattern. However, differently from DDME, scikit-learn
algorithms only provide the final results without showing
intermediate steps. Moreover, scikit-learn does not offer
any association rule mining algorithm. A Python library that
offers programming facilities and a visual platform allowing
the user to observe what happens along different time instants
is NDlib [11]. Indeed, NDlib provides access to network
diffusion simulation models. Yet in Python, it is worth to
mention the Tensorflow-Playground that provides a tiny neural
network library for educational visualization3. Tensorflow-
Playground visually shows how a deep neural network works
by using appropriate colors assignment for every internal node.

R is another open-source tool and programming language
offering various implementations of many data mining and
machine learning algorithms, besides statistical data visual-
izations methods. Differently from Python it does not have
a reference library like scikit-learn containing various
algorithms but every package is specialized for a specific task
(e.g. cluster for clustering, arules for association rules,
party for decision trees, etc.). Also these libraries do not
show why algorithms take certain decisions.

RapidMiner4 is an open-source platform that provides an
integrated environment for data preparation, machine learning,
text mining, and predictive analysis [12]. It offers a GUI
to design and execute analytical workflows without writing
code. The workflows are called processes and are composed
by different operators. Each operator executes a single task
within the process, and the output of each operator represents
the input of the next one. The engine can be called from other
programs or used as a Java API. RapidMiner is used for busi-
ness applications, research, education, and rapid prototyping.

WEKA5 is an open-source data mining platform developed
in Java [13]. It offers different implementations of data mining
algorithms. Also WEKA permits to specify dataflows using
connected visual components. WEKA is more oriented to-
wards classification and regression and less towards descriptive
statistics and clustering methods. The implemented algorithms
of WEKA can be used as API from other programs.

KNIME6 is an open-source data mining platform developed
in Java and based on the visual programming paradigm where
the user can model workflows, i.e., connected nodes that
process and transport data [14]. This platform enables simple
integration of new algorithms and tools.

Orange7 is a data mining tool developed in Python and can
be used either by Python scripting, or by a visual programming
interface [15]. The available algorithms in this platform are
limited with respect to RapidMiner or KNIME.

None of the nodes, workflows or processes of the aforemen-
tioned platforms show in any way how the algorithms work
and which are intermediate results and critical points useful
for learning the algorithms’ behaviors.

3https://playground.tensorflow.org/
4https://rapidminer.com/
5https://www.cs.waikato.ac.nz/∼ml/weka/
6https://www.knime.com/
7https://orange.biolab.si/

K-Means DBSCAN Hierarchical

Fig. 1. Execution of the DDME for clustering algorithms: K-Means (left), DBSCAN (center), Hierarchical (right).

III. DATA MINING ALGORITHMS

Data Mining is the most important part of the KDD process
(Knowledge Discovery in Databases) [16]. The goal of this
process is to transform raw data into useful information.

Data Mining blends data analysis methods with sophisti-
cated algorithms for processing large amount of data. The most
important data mining tasks are: clustering, association rule
mining and classification. They are all covered by the DDME.
In this section we recall the main concepts of the algorithms
available on the DDME exploiting some images of the DDME
itself in order to present how they work.

A. Clustering

Cluster analysis divides data into groups (clusters) of similar
points. This subdivision in groups is only based on informa-
tion found in the data that describes the objects and their
relationships. The main goal of this task is to obtain groups
where the points within a group are similar and different from
the points in other groups [16]. The greater the similarity
within a group and the greater the difference between groups,
the better the clustering. We can distinguish different types
of clustering. A common distinction is between partitional
and hierarchical clustering. The first one is a division of the
data points into non-overlapping subsets, while the second
one is a set of nested clusters organized as a tree. If points
are assigned to more than a cluster, then we obtain a partial
clustering instead of a complete clustering. The DDME provides
both partitional and hierarchical clustering algorithms, but only
deal with complete clustering algorithms. In the following
we provide relevant details highlighted by the DDME for the
clustering algorithms implemented.

K-Means [17], [18] is a prototype-based clustering algo-
rithm that represents each centroid as the average of all points
in the cluster. A centroid is a prototype representing the points
in its cluster. Given a user-specified number of clusters k,
this algorithm randomly selects k points as initial centroids.
Then, each point is assigned to the closest centroid based on a
distance measure. Finally, the centroids are updated iteratively
based on the points assigned to the clusters. The algorithm

stops when the centroids do not change. In Figure 1 (left) we
report an example of the last step for a run of the K-Means
algorithm on the DDME. The ten points are partitioned in two
groups (divided by the red line) and the centroids C0, C1 are
the prototypes of the two partitions.

DBSCAN [19] is a density-based technique that is able to
find clusters with any shape by discovering dense areas sur-
rounded by areas with low density, typically formed by noise
points. The algorithm measures the density of a certain region
with respect to a ε parameter (indicating “the radius”), and
then defining clusters as regions that exceed a certain density
threshold modeled as minimum number of points min pts .
The final clusters are obtained by connecting neighboring
dense regions. More in detail, as shown in Figure 1 (center),
DBSCAN identifies three different types of points:
• Core points which are in the interior of a cluster. A point

is a core point if the number of points within a given
ε-neighborhood around the point exceeds the specified
minimum number of points min pts threshold.

• Border points which fall within the ε-neighborhood of a
core point (i.e., their distance to a core is lower than ε).

• Noise points, i.e., any point that is neither a core point
nor a border point.

In summary, DBSCAN works as follows. First it labels all
points as core, border, or noise points. Then, it eliminates noise
points and puts an edge between all core points that are within
ε of each other and make each group of connected core points
into a separate cluster. Finally, it assigns each border point to
one of the clusters of its associated core points.

Hierarchical Clustering [20], [21]. In the literature, there
are two of strategies for this king of clustering: agglomerative
and divisive. The first one is a bottom-up approach which
starts considering each point as a cluster and then, merges
the pairs of closest clusters to generate the hierarchy. The
divisive strategy, instead, is a top-down approach which starts
with a situation where all points belong to one cluster, and
then, splits recursively the clusters for creating the hierarchy.
The DDME provides the two most famous agglomerative al-
gorithms: Single and Complete Linkage. In order to identify

Iteration 1
(’A’,) 0.60
(’B’,) 0.30
(’C’,) 0.20 X
(’D’,) 0.70
(’E’,) 0.30
(’F’,) 0.50

Iteration 2
(’A’, ’B’) 0.20 X
(’A’, ’D’) 0.40
(’A’, ’F’) 0.40
(’B’, ’D’) 0.30
(’B’, ’E’) 0.10 X
(’B’, ’F’) 0.10 X
(’D’, ’E’) 0.20 X
(’D’, ’F’) 0.30

Iteration 3
(’A’, ’D’, ’F’) 0.20 X

Rules
(’A’,) --> (’D’,) conf: 0.67 X
(’A’,) --> (’F’,) conf: 0.67 X
(’B’,) --> (’D’,) conf: 1.00 lift: 1.43
(’D’,) --> (’A’,) conf: 0.57 X
(’D’,) --> (’B’,) conf: 0.43 X
(’D’,) --> (’F’,) conf: 0.43 X
(’F’,) --> (’A’,) conf: 0.80 lift: 1.33
(’F’,) --> (’D’,) conf: 0.60 X

Fig. 2. Execution of the DDME for association rules: Apriori min sup = 0.3, min conf = 0.8

the closest clusters for generating the hierarchy they use a
different approach. Single Linkage defines cluster proximity
as the proximity between the closest two points in different
clusters, while Complete Linkage defines cluster proximity
as the proximity between the farthest two points in different
clusters. The returned clusters are represented with a dendro-
gram, i.e., a tree-like diagram which shows both the cluster-
subcluster relationships and the order in which the clusters
were merged/split. An example of dendogram for the Single
Linkage version is reported in Figure 1 (right).

B. Association Rule Mining

Association analysis allows to discover the most interesting
patterns describing relationships between features in the data
in an efficient manner [16].

The relationships that are hidden in the data can be ex-
pressed as a collection of association rules. Association rules
are derived from frequent itemsets.

Let B = {b1, . . . , bN} be a set of N transactions (or
baskets) and I = {i1, . . . , iD} a set of D items, a basket
bi is a subset of items such that ∅ ⊂ bi ⊆ I . A set of
items which are frequent in B is called itemset or pattern. An
itemset X is frequent if its support is higher than a min sup
parameter. The support over B of an itemset X is defined
as suppB(X) = |{bi ∈ B|X ⊆ bi}|/|B|. The problem of
finding the frequent itemset from a dataset of transactions
B requires to find in a set of transactions all the itemsets
having support greater or equal than min sup. The search
space of itemsets that need to be explored to find the frequent
itemsets is exponentially large (2D − 1). Thus, the set of all
possible itemsets forms a lattice structure and using a brute
force problem makes the problem intractable for large datasets.

Apriori [22] is the most famous algorithm for finding fre-
quent itemsets. Apriori proposes an effective way to eliminate
candidate itemsets without counting their support. This algo-
rithm is based on the principle that if an itemset is frequent,
then all of its subsets must also be frequent. This principle is
used for pruning candidates during the itemset generation. For
example in Figure 2, yet from the DDME, itemset (′C ′,) has a
support lower than min sup = 0.3. As consequence, it is not
considered in the itemset generation in next iteration.

An association rule is an implication rule of the form X →
Y , where X and Y are disjoint itemsets. X represents the
antecedent of the rule while Y the consequent. The confidence
of a rule expresses how frequently items in Y appear in trans-

actions containing X , i.e., conf(X → Y) = suppB(X∪Y)
suppB(X) .

Let min sup and min conf be the support and confidence
parameters, the problem of association rule mining consists in
finding all the rules X → Y such that suppB(X) ≥ min sup
and conf(X → Y) ≥ min conf . In Figure 2 two rules have
the confidence higher than min conf=0.8.

C. Classification

Given a dataset of records whose class membership is
known, classification is the task of identifying to which class a
new record belongs to. Classification requires two sequential
steps: (i) learning a model that assigns each record in the
training set to a class label, (ii) using the model to classify
new unknown records belonging to the test set [16]. Thus,
each record is a tuple 〈X, y〉 where X contains the attribute
values and y the class label (also known as category or target).
The performance of a classifier are evaluated by counting
the test records correctly and incorrectly classified by the
model. This information is obtained from the confusion matrix.
Typical evaluation metrics for predictive models derived by the
confusion matrix and also returned by the DDME are accuracy,
precision, recall and F1-score. In literature, there is a large set
of different algorithms to solve the classification problem [16].

Decision Tree Classifier [23]–[25], that is one of the most
famous, is present in the DDME. It builds a decision tree
(see Figure 3 from DDME for an example) containing two
type of nodes: internal nodes representing a test on one of
the attributes (e.g., whether a variable has a value lower
than, equals to or grater than a threshold), and leaf nodes
representing a class label. The paths from the root to the leaves
leads to the class label to be associated to the test instance. The
most popular implementations of decision tree classifiers, such
as ID3 [23] (used in the DDME), C4.5 [24], and CART [25] are
based on Hunts algorithm. The learning algorithm starts with
a single root node associated with all the training records. The
tree is expanded using an attribute determined by a splitting
criterion. For each value of the selected attribute the algorithm
creates a child node and distributes the records of the parent
node to the children based on the different values. This step
is recursively applied to each child node until all records with
the same class are associated to a node. The measures used to
select the best splitting attribute are Entropy, Gini Index and
Misclassification Error. The DDME supports the last two.

Fig. 3. Execution of the DDME for Decision Tree Classifier.

IV. DIDACTIC DATA MINING ENVIRONMENT

The study of data mining and machine learning methods
is becoming more and more ubiquitous, and understanding
how and why these complex algorithms work is mandatory
for those wanting to use them. In this section we describe
the details of the Didactic Data Mining Environment (DDME),
that we propose as support for both teachers during the
explanation of data mining algorithms, and students during
their study and preparation. We arranged our environment in
two modules: the DDM core Python library (DDMlib), and
the DDM dynamic visual platform (DDMvp). In this section
we describe and discuss the main features of each of such
components, underlining the critical steps a beginner has to
understand for learning how every algorithm works.

Note that, both the DDMlib and DDMvp are made available
in different ways. We provide on GitHub the open-source code
of both the Python based library8 and the web application9.
This enables an easy and free extension of the tool with
new features, functionalities and algorithms. We also make
available the web application DDMvp ready for being used
by teachers and students from different level of education10.
Moreover, since the tool on its own is not suitable for auto-
learning, i.e., is does not to provide all the details necessary for
understanding the algorithms, on GitHub11 we also prepared
comprehensive slides for each one on of the algorithm that
explain the algorithms and together with the DDMvp offer a
complete way to learn all the procedures.

A. DDME - Python Library

DDMlib (Didactic Data Mining library) is a Python pack-
age at the core of the DDME built upon the facilities offered
by numpy, pandas and matplotlib libraries12. DDMlib
is available for Python 3.x, and is currently hosted on GitHub.
The available data mining algorithms are:
• Clustering: K-Means, DBSCAN, Hierarchical
• Association Rules: Apriori
• Classification: Decision Tree Classifier

8https://github.com/riccotti/DidacticDataMining
9https://github.com/rinziv/DDM
10http://kdd.isti.cnr.it/ddm/
11https://github.com/riccotti/DidacticDataMining/tree/master/slides
12http://www.numpy.org/, https://pandas.pydata.org/, https://matplotlib.org/

Fig. 4. K-Means with different initial centroids: P1, P9 (left), P1, P2 (right).

In the rest of the section we analyze how to create an experi-
ment for understanding how an algorithm works. Moreover, we
discuss the main parameters affecting the algorithm’s behavior,
and we analyze the critical steps explained by the DDME.

As anticipated above, DDMlib usage recalls the usage of
the sklearn Python library. Given a dataset, the DDMlib
requires to instantiate an algorithm with certain parameters,
and then to fit the algorithm on the dataset. The dataset can be
provided by the user, randomly generated or both depending
on the algorithm category. The fit function visually explains
through text and images the behavior of the algorithm besides
enabling additional functionalities. Details for each algorithm
are provided in the rest of the section.

Clustering Algorithms. The input dataset for clustering
algorithms is a list of points with two coordinates13. As
shown in the following, random datasets can be created using
the function create_dataset. The user can specify the
number of points (ten by default) and the minimum and
maximum values (respectively zero and ten by default).

1 import didactic_datamining as ddm
2

3 dataset = ddm.create_dataset(npoints=10)
4 ddm.print_dataset(dataset)
5 "P0 [8 1]
6 P1 [2 4]
7 P2 [6 9]
8 ..."

K-Means allows to set the number of clusters k (by default
k = 2), the indexes of the initial centroids (random by default)
and the distance function. The available distance functions
are Euclidean (set by default) and Manhattan [26] distances.
For each iteration of K-Means, the library shows (i) the
assignment of the points to each cluster using different colors
and shapes, (ii) the coordinates of the centroids, and (iii) the
bisecting lines dividing the plane between pairs of centroids
(see Figure 1 (left)). A crucial aspect of K-Means is to
understand how the final result is affected by the choice of
the initial centroids. This can be easily achieved with several
runs using different user specified initial centroids. Figure 4
shows exactly this effect reporting the final clustering with
different initial centroids: P1, P9 (left), P1, P2 (right).

13This constraint allows to simplify the visualization on a plane and a better
comprehension of the basic concepts of the algorithm.

Fig. 5. Hierarchical steps: dendogram construction for each merging step.

Fig. 6. DBSCAN steps: core, border, noise points and final clustering.

1 kmeans = ddm.DidatticKMeans(centroid_indexs=(0,1))
2 kmeans.fit(dataset)

DBSCAN allows to set the distance radius ε and the mini-
mum number of points min pts (respectively, 1.8 and 3 by
default). The radius is shown visually on the top left of the
plot (see Figure 1 (center)). For DBSCAN the library shows
the various points categorization into core, border and noise
(Figure 6) before presenting the final clustering assignment.

1 dbscan = ddm.DidatticDbscan(eps=1.8, min_pts=3)
2 dbscan.fit(dataset)

Hierarchical clustering offers a large set of options. It
implements both Single and Complete linkage algorithms (sin-
gle by default) and allows to observe the results either using
distances (Euclidean by default or Manhattan) or similarities
which is obtained as (1 − d)/maxd, where d is a distance
value and maxd is the maximum distance value in the matrix
distance between all couples of points. For each merging step
the procedure shows the following important aspects: (i) the
distance/similarity matrix, (ii) the merging distance/similarity
selected as the minimum (or maximum value depending on
Single or Complete Linkage), (iii) the step-by-step dendogram

showing which points/clusters have been merged. Figure 5
reports an example of the dendogram evolution which ends
in the final results already shown in Figure 1 (right).

1 hier = ddm.DidatticHierarchical()
2 hier.fit(dataset, link_criteria=’min’)

Association Rules Algorithm. The input dataset for as-
sociation rule algorithms is a list of transactions. Also in
this case random datasets can be created using the func-
tion create_transactional_dataset. The user can
specify the number of transactions, the number of items and
the minimum and maximum transactions length. By changing
these parameters can be created denser or sparser transactional
datasets in which itemsets and rules may be discovered using
different values of min sup and min conf .

1 transactions = ddm.create_transactional_dataset(
2 num_transaction=10, num_items=6, max_len=4)
3 ddm.print_transactions(transactions)
4 "[’A’, ’B’, ’F’],
5 [’A’, ’E’],
6 [’D’, ’F’],
7 ..."

As shown in the following, the call to the Apriori fit
function returns the itemsets that are considered as possible
candidates together with their support. Candidate itemsets with
a support lower than the min sup threshold are marked with
a cross X. The final result of Apriori are the valid itemsets
with a support equal or greater than the min sup threshold
along the various steps. For the example in Figure 2 we have
the following valid itemsets: (′A′,), (′B′,), (′D′,), (′E′,),
(′F ′,), (′A′,′D′,), (′A′,′ F ′,), (′B′,′D′,), (′D′,′ F ′,).

1 apriori = ddm.DidatticApriori(min_sup=0.3)
2 apriori.fit(transactions)
3 "Apriori - Iteration 1
4 (’A’,) 0.40
5 (’B’,) 0.40
6 (’C’,) 0.30
7 ...
8

9 Apriori - Iteration 2
10 (’A’, ’B’) 0.20 X
11 (’A’, ’C’) 0.30
12 ...
13

14 Apriori - Iteration 3
15 (’A’, ’C’, ’E’) 0.20 X
16 (’B’, ’C’, ’E’) 0.40"

The Apriori module allows also to extract from the valid
itemsets the association rules with a confidence greater or
equal than min conf as shown in the following. Besides the
confidence value, for the valid rules is also reported the lift
coefficient. Beginners can play with min sup and min conf
observing which itemsets and rules become valid or not and
how the search space changes according to them.

1 apriori.extract_rules(min_conf=0.8)
2 "(’A’,) --> (’C’,) conf: 0.75 X
3 (’B’,) --> (’C’,) conf: 1.00 lift: 1.11
4 (’B’,) --> (’E’,) conf: 0.90 lift: 1.33
5 ..."

The Apriori Python library only displays its steps
through a textual visualization. A more appealing and possibly
intuitive visualization of Apriori is realized in the DDMvp.

Classification Algorithm. As formalized in Section III, the
input dataset for classification algorithms is set of records of
the form 〈X, y〉 where X contains the attribute values and y
the class label. In the DDMlib this data format is modeled
using a pandas dataframe. Two dataframes are necessary to
accomplish the classification task: a training set and a test set.
The datafrems can be read from existing csv files (as in the
code reported) or converted directly from a list of Python lists
or from a list of Python dictionaries identically formatted. The
dataframes appear like those displayed in Figure 7.

1 import pandas as pd
2 train = pd.read_csv(’train.csv’, sep=’,’)
3 test = pd.read_csv(’test.csv’, sep=’,’)

For the Decision Tree Classifier is possible to
choose the splitting criterion function between Misclassifica-
tion Error (by default) and Gini Index besides the minimum
number of records in a leaf and in an internal node (re-
spectively one and two by default). The learning phase that
builds the tree is realized by the fit function that takes in
input the train dataframe and the name of the class to predict
(’Churn’ in the example). This function, besides internally
building the classification model, shows the necessary and
performed calculus of the splitting criterion for each attribute
and recursively for each node. At the end of the execution,
it displays the learned decision tree as the one in Figure 3.
In the following we report the calculus printed out by the fit
function for the first split of the root node. For each attribute,

...

Fig. 7. Dataframes: training and test sets for the Decision Tree Classifier.

i.e., ’Contract’, ’Sex’ and ’Minutes’ in the example, and for all
the possible splits, the algorithm calculates the ’Delta Gain’
indicating the improvement with respect to the node purity,
and selects the split providing the highest improvement.

1 tree = ddm.DidatticClassificationTree()
2 tree.fit(train, target=’Churn’)
3 "Root Gain: 1 - 5/10 = 5/10
4

5 Contract# [’Travel-Classic’, ’Young’]
6 Travel-Classic 7: NO, 3/7, YES, 4/7
7 1 - 4/7 = 3/7
8 Young 3: NO, 2/3, YES, 1/3
9 1 - 2/3 = 1/3
10 Gain: (3/7 * 7/10) + (1/3 * 3/10) = 4/10
11 Delta Gain: 5/10 - 4/10 = 1/10
12

13 Contract# [’Classic’, ’Young-Travel’]
14 Classic 3: YES, 3/3
15 1 - 3/3 = 0.0/3
16 Young-Travel 7: NO, 5/7, YES, 2/7
17 1 - 5/7 = 2/7
18 Gain: (0/3 * 3/10) + (2/7 * 7/10) = 2/10
19 Delta Gain: 5/10 - 2/10 = 3/10
20 ...
21 Sex [’F’, ’M’]
22 F 5: NO, 3/5, YES, 2/5
23 1 - 3/5 = 2/5
24 M 5: NO, 2/5, YES, 3/5
25 1 - 3/5 = 2/5
26 Gain: (2/5 * 5/10) + (2/5 * 5/10) = 4/10
27 Delta Gain: 5/10 - 4/10 = 1/10
28

29 Minutes# [’<=50’, ’>50’]
30 <=50 2: YES, 2/2
31 1 - 2.0/2 = 0.0/2
32 >50 8: NO, 5/8, YES, 3/8
33 1 - 5/8 = 3/8
34 Gain: (0/2 * 2.0/10) + (3/8 * 8/10) = 3/10
35 Delta Gain: 5/10 - 3/10 = 2/10
36

37 Minutes# [’<=60’, ’>60’]
38 <=60 3: NO, 1/3, YES, 2/3
39 1 - 2/3 = 1/3
40 >60 7: NO, 4/7, YES, 3/7
41 1 - 4/7 = 3/7
42 Gain: (1/3 * 3/10) + (3/7 * 7/10) = 4/10
43 Delta Gain: 5/10 - 4/10 = 1/10
44 ...
45

46 --> Split By Contract#Young-Travel&Classic
47

48 ..."

After that the tree has been learned using the fit function, we
are enabled by the Decision Tree Classifier to use
the predict and the evaluate functions. The predict function
takes in input the test dataframe and predicts a class label for
each record in the test set. The predict function assigns the
label to a record X by following the splitting condition of
the tree according to the values of the attributes in X . This
function returns the list of predicted labels for each record. We
add this list to the test dataframe in the attribute ’Predicted’
in order to compare them with the real values y.

1 test[’Predicted’] = tree.predict(test)

Once a test set have been classified by the Decision
Tree Classifier, we can evaluate its performance using

the evaluate function. This function compares the ’Predicted’
attribute values in the test dataframe with the values of the
target class ’Churn’. It reports the confusion matrix from
which accuracy, precision, recall and F1-score are computed.

1 tree.evaluate(test)
2 "R\P |NO |YES |
3 NO |3 |1 |
4 YES |2 |2 |
5

6 Precision: 0.67
7 Recall: 0.5
8 F1-measure 0.57
9 Accuracy: 0.63"

B. DDME - Visual Platform

The DDMvp is a web visual interactive platform that enables
the user to study how the data mining algorithms behave
without the need of writing any line of code but yet with the
possibility of playing with all the parameters available in the
DDMlib library. In particular, the user is enabled to explore
the result of the fit function for each family of algorithms
implemented in the DDMlib library with some additional
intuitive visual functionalities.

From a conceptual point of view, the resulting model learned
by an algorithm of the DDMlib can be described as a discrete
sequence of updates: starting from the input dataset, that can
be either a set of points, transactions or records, the mining
algorithm begins from an initial configuration of the model and
then updates it through several iterations. The DDMvp provides
functionalities to present to the user the model learned from
the dataset and, through user-interaction, allows to explore the
different steps that were evaluated to create the final results.

For each algorithm implemented in the DDMlib, the visual
platform DDMvp proposes the following general schema: a
graphical widget to select a step iteration i of the mining
process, and a visualization of the status of the model at step
i, possibly showing the relation of the model with the original
dataset similarly to the images produced by the DDMlib.
Even though this general schema is instantiated for each
algorithm of the DDMlib, in order to enhance the algorithms
peculiarities to study, it is implemented in the DDMvp through
a specialized visualization for the different algorithms.

To facilitate the diffusion and the use of the library, the
visual interface is built for the web. It consists of a single-page
web applications developed in HTML, SVG, and Javascript,
using the most recent libraries for DOM (Document Object
Model) manipulation, like D3.js and Vue.js. In the rest of
this section we describe the detailed layout of two completely
different algorithms14, namely K-Means and Apriori.

K-Means. As accurately discussed in Section IV, the K-
Means algorithm iteratively updates k centroids and distributes
the points in the dataset to the closest centroid. Given a set
of k centroids, we can provide a geometrical interpretation
of this assignment by dividing the plane into Voronoi cells
[27] starting from the position of the centroids. The resulting

14We do not discuss all the others for the sake of space.

Voronoi tessellation is a complete partition of the space into
convex polygons: all the points associated with centroid j are
contained in the polygon generated by j.

As shown in Figure 8, we exploit the interpretation through
Voronoi tessellation for presenting to the user the configuration
of the the K-Means algorithm at a specific iteration i. We
recall that, in order to simplify visualization and relative
distance perception for the user, the input dataset consists of
two-dimensional points that are visualized into a Cartesian
space. During the execution of the K-Means algorithm, at each
iteration i, we need two show two pieces of information: (i)
the position of the centroids at step i, and (ii) the association
of each data point to its centroid. For an effective visualization
of this information we map each centroid to a color in a
categorical color scheme and its position in the space is
highlighted with a larger marker15. To represent the assignment
of each data point p to its centroid ci at step i, we assign
to p the color of ci with an opacity of 40%. Exploiting the
geometrical interpretation based on Voronoi cells, we also
draw the cell corresponding to the centroid filled with the
color of the corresponding centroid and an opacity of 10%.

An example of this interactive evolution is reported in
Figure 8. We can immediately notice that the interactive
visualization of DDMvp contributes to improve more and more
the comprehension of the behavior of K-Means algorithm,
that was already made enough clear by DDMlib. The figure
shows a series of screenshots of the visualization. However,
the web platform implements a transition of visual appearance
of the different elements, to better highlight what properties
are changing from one state to the successive one.

Apriori. This method to extract frequent itemsets from a list
of transactional tuples, is based on the principle that if a given
item is not frequent, any other itemset containing this item can
not be frequent. The visual interface to present the algorithm
is aimed at explaining this principle. The interface follows
the general schema of the DDMvp platform: the iteration
slider allows the user to select the step of the execution plan
and to evaluate how the status of the algorithm is updated.
For this specific algorithm, however, at each iteration i we
need also reference to the status of previous iterations. For
this reason, the visualization explaining the algorithm is built
incrementally. When the user choose a specific iteration i, the
visual presentation shows all the steps up to iteration i, in
order to explain the effect of pruning at a given time.

The visualization presents three different objects: the tuples
of the input dataset, the itemsets built at each time step, and
the rules extracted from the frequent itemsets. To simplify the
perception of the rationale behind the algorithm, each item is
represented as visual box associated with a categorical color.
The color of each item is kept coherent through all the other
steps. This helps also the visual evaluation of support of single
items, since it is more effective for the observer to find the
occurrences of a specific item. During the execution of the
algorithm a set of items is formed by combining single items

15In our design a circle two times bigger than the dataset points

Fig. 8. K-Means clustering complete run on the DDMvp.

Fig. 9. Apriori run on the DDMvp: 3rd iteration (top), rules (bottom).

(see Section IV for details). For each iteration i we show
a list of candidate itemset computed up to step i. For each
candidate itemset, the visualization reports the list of contained
items (using the same visual metaphor described above) and a
measure of support for the item. The visual appearance of each
itemset is themed accordingly to the measure being above (or
below) a minimum threshold support. If the candidate itemset
is frequent, the visual widget is presented with a background
color and a symbol indicating the validity of the candidate. On
the contrary, if the itemset is not frequent, it is presented with
the same visual schema, but with desaturated colors. In this last
case, the single items are presented with their original colors,
to allow the observer to trace the frequency of the candidate
item that is being discarded. At the successive iteration the
disabled itemsets are not used to generate the new candidates.
When no more candidates can be generated the sequence of
iterations is interrupted and a set of rules is generated.

This last step is showed at the end of the visual widget and
represents the set of rules extracted from the frequent itemsets.
Each candidate rule presents a visual representation of head
and body of the rule, recalling the arrow notation of association
rules. Each item has a visual representation consistent with the

other widgets. For each rule a set of measures are reported,
namely confidence and lift. If a rule does not meet the
minimum threshold for confidence, it is presented in disabled
mode, with desaturated colors. Otherwise, the rules above the
threshold are highlighted with a saturated color background
for the box and the evaluation of lift measure.

The didactic support of DDME. The DDME, especially with
its visual platform, is useful for supporting teachers during
the explanation of DM algorithms by dynamically running
the algorithms on examples. For instance, with the execution
flow in Figure 8 a teacher can enrich her explanation showing
the evolution of centroids and the convergence of K-Means.
Instead, with respect to Apriori, using the execution flow in
Figure 9, a teacher can show in each iteration i how to compute
the frequent itemsets with length i and how to derive the rules.
It is important to note that, to ease a visual support in the
understanding of the algorithms, visual executions are enriched
also in the library with functionality like the circle to represent
the ε-radius in DBSCAN (Figure 1), or the mapping of points
to the color representing the assigned cluster in K-Means.

V. ACADEMIC SURVEY

The DDMvp was provided as an open source and free tool to
the students of the “Data Mining” course of the master degree
at the Department of Computer Science of the University
of Pisa for the academic year 2017-2018. We collected the
student’s opinions on the DDMvp for evaluating the utility and
usability of the tool for learning data mining.

The survey requests the evaluation of each data mining
algorithm by providing a score from 1 (low) to 4 (high) and
to answer the following three questions:
Q1: How much did you use DDMvp for the exam preparation?
Q2: Is DDMvp useful for studying how the algorithms work?
Q3: Is DDMvp a useful tool for the exam preparation?

We collected the evaluation of DDMvp from 34 students
through a survey after the students passed the exam. Analyzing
the answers to question Q1 we discovered that only 6% of
these students never used the tool for their preparation, while
about 20.6% used it “few times”, 44% “occasionally” and
29.4% used the tool “a lot”. The survey results for questions
Q2 and Q3 are related only to students who have used the
DDMvp (i.e., 32 students). Answers to question Q2 highlight
that the DDMvp is considered useful for understanding how the
data mining algorithms work step by step. Indeed, we have that
46.87% of students considers it “very useful”, 40.62% “quite

TABLE I
EVALUATION OF DATA MINING ALGORITHM IN DDMVP

Algorithm Score
1 2 3 4

K-Means 0.0% 14.7% 52.9% 32.4%
DBSCAN 0.0% 14.7% 58.8% 26.5%

Hierarchical 2.9% 20.6% 44.1% 32.4%
Apriori 2.9% 23.5% 32.4% 41.2%

Decision Tree 2.9% 26.5% 41.2% 29.4%

useful” and only 12.5% “useless”. Instead, question Q3 allows
us to verify the utility of the tool in terms of exam preparation.
The answers to Q3 are in line with the results of Q2. We have
43.75% of the students who consider the tool “very useful”
for the exam preparation, 40.62% “quite useful” and 15.63%
“useless” who did not appreciate it for studying for the exam.

The evaluation of the different algorithms in terms of how
intermediate results are presented step by step is reported in
Table I. We observe that in general the evaluation is good.
Indeed, only a very low number of students provided a very
negative evaluation (score equals to 1), while for each data
mining algorithm we received a positive evaluation (score
equals to 3 or 4) from about 80-85% of the students in case
of clustering algorithms, and from around 70% of students for
Decision Tree Classifier and Apriori.

VI. CONCLUSION

We have presented the Didactic Data Mining Environment
a two module-tool consisting of the DDMlib Python library
and the DDMvp visual platform. The DDME allows to support
data mining beginners and students, as well as teachers, in the
study of data mining and machine learning algorithms. Indeed,
executions of the algorithms in DDME displays in an intuitive
and user-friendly way the internal status and steps performed
by the algorithms to learn how and why a certain result is re-
turned. The visual platform DDMvp abstracts the programmatic
interface and makes available the execution of the algorithms
also to non-technicians. We have proved the effectiveness of
the DDMvp in the Data Mining Course for the academic year
2017-2018 at University of Pisa. A survey conducted on the
students proved that the DDME was considered a valuable and
useful tool not only for understanding the algorithms but also
for studying and train their-self the exam.

As future work we would like to extend the set of available
algorithms. In particular, we would like to extend the associa-
tion rule algorithms with FP-Growth [28] and ECLAT [29] that
use a different appraoch from Apriori for finding the frequent
itemsets. On the other hand, for classification algorithms we
would like to introduce simple models such as K-NN [16] and
Naive Bayes Classifier [30], which, together with the Decision
Tree Classifier, are at the basis of all the most complex
classifiers such as SVM, Neural Networks, etc. Finally, we
would like to provide an easy procedure for extending both
the DDMlib and the DDMvp.

ACKNOWLEDGMENT

This work is partially supported by the European Commu-
nity H2020 Program under the funding scheme “INFRAIA-1-
2014-2015: Research Infrastructures” grant agreement 654024
SoBigData, http://www.sobigdata.eu.

REFERENCES

[1] M. Nanni, C. Thanos, F. Giannotti, and A. Rauber, “Big data analytics:
towards a european research agenda,” ERCIM NEWS, pp. 9–10, 2015.

[2] F. Provost and T. Fawcett, Data Science for Business: What you need to
know about data mining and data-analytics. ”O’Reilly Media.”, 2013.

[3] X. Wu, V. Kumar, J. R. Quinlan, J. Ghosh et al., “Top 10 algorithms in
data mining,” KAIS, vol. 14, no. 1, pp. 1–37, 2008.

[4] R. Mikut and M. Reischl, “Data mining tools,” WIREs: Data Mining
and Knowledge Discovery, vol. 1, no. 5, pp. 431–443, 2011.

[5] F. Serban, J. Vanschoren, J.-U. Kietz, and A. Bernstein, “A survey of
intelligent assistants for data analysis,” CSUR, vol. 45, p. 31, 2013.

[6] R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, D. Pedreschi, and
F. Giannotti, “A survey of methods for explaining black box models,”
ACM computing surveys (CSUR), 2018.

[7] R. Guidotti, J. Soldani et al., “Helping your docker images to spread
based on explainable models,” in ECML-PKDD. Springer, 2018.

[8] G. Comandè, “Regulating algorithms regulation? first ethico-legal prin-
ciples, problems, and opportunities of algorithms,” in Transparent Data
Mining for Big and Small Data. Springer, 2017, pp. 169–206.

[9] C. Carter et al., “The credit card market and regulation: In need of
repair,” NC Banking Inst., vol. 10, p. 23, 2006.

[10] S. Wachter, B. Mittelstadt, and L. Floridi, “Why a right to explanation of
automated decision-making does not exist in the general data protection
regulation,” IDPL, vol. 7, no. 2, pp. 76–99, 2017.

[11] G. Rossetti, L. Milli, S. Rinzivillo, A. Sirbu et al., “Ndlib: Studying
network diffusion dynamics,” in DSAA. IEEE, 2017, pp. 155–164.

[12] M. Hofmann and R. Klinkenberg, RapidMiner: Data mining use cases
and business analytics applications. CRC Press, 2013.

[13] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten, “The weka data mining software: an update,” ACM SIGKDD
explorations newsletter, vol. 11, no. 1, pp. 10–18, 2009.

[14] M. R. Berthold et al., “Knime-the konstanz information miner: version
2.0 and beyond,” KDD Newsletter, vol. 11, no. 1, pp. 26–31, 2009.

[15] J. Demšar et al., “Orange: data mining toolbox in python,” The Journal
of Machine Learning Research, vol. 14, no. 1, pp. 2349–2353, 2013.

[16] P.-N. Tan, S. Michael, and K. Vipin, Introduction to data mining.
Pearson Education India, 2006.

[17] S. Lloyd, “Least squares quantization in pcm,” IEEE transactions on
information theory, vol. 28, no. 2, pp. 129–137, 1982.

[18] J. MacQueen et al., “Some methods for classification and analysis of
multivariate observations,” in Proceedings of the fifth Berkeley sympo-
sium on MSAP, vol. 1, no. 14. Oakland, CA, USA, 1967, pp. 281–297.

[19] M. Ester, H.-P. Kriegel, J. Sander, X. Xu et al., “A density-based
algorithm for discovering clusters in large spatial databases with noise.”
in Kdd, vol. 96, no. 34, 1996, pp. 226–231.

[20] R. Sibson, “Slink: an optimally efficient algorithm for the single-link
cluster method,” The computer journal, vol. 16, no. 1, pp. 30–34, 1973.

[21] D. Defays, “An efficient algorithm for a complete link method,” The
Computer Journal, vol. 20, no. 4, pp. 364–366, 1977.

[22] R. Agrawal, R. Srikant et al., “Fast algorithms for mining association
rules,” in VLDB, vol. 1215, 1994, pp. 487–499.

[23] J. R. Quinlan, “Induction of decision trees,” Machine learning, vol. 1,
no. 1, pp. 81–106, 1986.

[24] ——, “C4. 5: programs for machine learning,” 2014.
[25] L. Breiman, Classification and regression trees. Routledge, 2017.
[26] M. M. Deza and E. Deza, “Encyclopedia of distances,” in Encyclopedia

of Distances. Springer, 2009, pp. 1–583.
[27] F. Aurenhammer, “Voronoi diagramsa survey of a fundamental geomet-

ric data structure,” CSUR, vol. 23, no. 3, pp. 345–405, 1991.
[28] J. Han, J. Pei, and Y. Yin, “Mining frequent patterns without candidate

generation,” in ACM sigmod record, vol. 29. ACM, 2000, pp. 1–12.
[29] M. J. Zaki, “Scalable algorithms for association mining,” TKDE, vol. 12,

no. 3, pp. 372–390, 2000.
[30] S. J. Russell and P. Norvig, Artificial intelligence: a modern approach.

Malaysia; Pearson Education Limited,, 2016.

