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Abstract—Multivariate analysis of high-dimensional datasets
with multiple categorical variables (e.g. surveys, questionnaires)
is a challenging task but can reveal patterns of responses that
are masked from univariate analyses. In this paper we propose a
novel variational inference algorithm to cluster high-dimensional
categorical observations into latent classes. Variational inference
is an approximate Bayesian inference algorithm, which combines
fast optimization methods with the ability to propagate the
uncertainty to the clustering (soft clustering). The model is robust
to misspecification of the number of latent classes and can infer a
reasonable number from the data. We assess the performance on
synthetic and real world data and show that our algorithm has
similar performance to the best other tested method if the correct
number of classes is known and outperforms the other methods
if it the number of classes needs to be inferred. An R-package
implementing our algorithm is available at the Comprehensive R
Archive Network1.

Index Terms—High-dimensional, categorical variables, varia-
tional inference, Bayesian, clustering

I. INTRODUCTION

High-dimensional categorical datasets can be challenging to
handle because the correlation structure grows exponentially
with the number of variables. Consider a questionnaire which
has J questions, where each question has R different cate-
gories of response. If we collect the responses of I individuals,
which are stored in a matrix X with dimensions I × J and
every cell contains one categorical value (A,B,C, . . .), the
correlation structure (i.e. the contingency tensor ΠR1×...×RJ

)
grows exponentially with every additional question and be-
comes too complex to inspect manually for any dataset with
more than a handful of variables.

Clustering is a popular approach to identify low-dimensional
structures embedded within high-dimensional datasets, but
relatively few methods have been proposed to specifically
handle the clustering of categorical datasets in comparison
to the wealth of methods available for continuous data (for
example: [1]–[4]). Our work is motivated by analyses of
large-scale population studies such as the Young Lives study
[5], the OSMI Mental Health in Tech Survey [6], and the

1CRAN.R-project.org/package=mixdir Addional links for reproducing the
figures are available at cwcyau.github.io/publications.html

Fig. 1. Overview of MixDir algorithm. We have a high-dimensional dataset
with categorical values (e.g. the NCPES). We run our MixDir clustering
algorithm and obtain a soft clustering of the individuals into five classes.
Each class has a particular distribution of values for each question. But this
information can still be confusing, so to focus on the most telling response
we look can either look at the questions that best explain the clustering or
for responses r that maximize p(z|Xj = r). In the example above this
would for example be answer B for question 2 which is highly predictive for
an individual to be in class 3. But also answer B for question 3 is highly
predictive for class 1, although it is not the most common answer in class 1
for question 3.

UK National Cancer Patient Experience Survey (NCPES) [7],
where large collections of questionnaire data are available for
many thousands of individuals. The Young Lives study collects
data on childhood poverty over 15 years in four different
countries, the OSMI study collected data on the experience
with mental health issues in the tech sector, and the NCPES
has collected data on the experience and satisfaction of a
large number of British cancer patients with the treatment they
received by the UK National Health Service (NHS). These
studies use questionnaires that are predominantly composed of
categorical questions and the general ambition is to be able to
identify groups of individuals with similar response profiles.
In the case of NCPES, this would enable policy makers to
develop strategies to improve the quality of cancer care in the
UK.

At present, such analyses are typically performed using



univariate analyses [7] which attempt to associate responses
to individual questions with some outcome of interest. This
approach limits the ability to identify complex, multivariate
response patterns that may manifest as a joint probability
distribution over responses to a number of questions. In the
following, we first summarize the pre-existing approaches
for clustering of high-dimensional categorical data before
proposing a scalable Bayesian latent class model (which we
call MixDir) for modelling high-dimensional categorical data.
We will demonstrate the utility of the approach for the analysis
of the Young Lives, the OSMI and NCPES survey data.

II. EXISTING WORK

Existing approaches for clustering of high-dimensional cat-
egorical data can be grouped into three approaches: (i) multi-
variate clustering approaches, (ii) latent class models and (iii)
latent mixed membership models.

Multivariate clustering approaches adapt standard cluster-
ing techniques for continuous data by specifying similarity
distance measures developed for categorical data explicitly.
For example, k-mode [8] based methods are a variation of the
popular k-means clustering approach [9], where the Euclidean
distance is replaced by an alternative distance metric (for
example the Hamming distance) and the center of a cluster is
not the mean of its member but a vector with the most common
feature for each attribute (i.e. the mode of the members) [8].
ROCK (short for RObust Clustering using linKs) performs
agglomerative clustering [10]. Similarity is measured by the
number of common neighbors of a cluster and in each step
the two most similar clusters are merged, until a threshold is
reached.

Latent class models (LCM) [11]–[13] are mixture models
that assign the set of multivariate categorical observations to
a latent class z. The idea is that within each latent class the
observed variables are statistically independent. LCMs esti-
mate the class probabilities λ and the probability of observing
a particular response for a question conditioned on the latent
class. [13] proposed a nonparametric extension of the model,
where they use a Dirichlet Process prior [14] for the classes,
which they call mixture of product multinomial distributions.
Their model allows them to infer an appropriate number of
latent classes depending on the dataset. They fit their model
using a Gibbs Slice sampling algorithm, but this has two
disadvantageous for clustering: first MCMC algorithms do
not scale to large datasets and second they suffer from the
label switching problem [15]. To address those issues we have
developed a variational inference (VI) method to estimate the
parameters in the basic latent class model and its nonparamet-
ric extension. VI does not randomly sample from the posterior,
but solves an optimization problem of fitting the complex
posterior, by approximating it with a manageable distribution.
This is much faster and has the additional advantage that it
converges to a unique solution for clustering, where the labels
of the clusters are interchangeable. A recent work by [16]
demonstrated that the variational approximation of tempered

posteriors is consistent for mixtures of Gaussian and simple
multinomial distributions.

It is important to distinguish our model from the mixed
membership models [17], which are related but not identical
to our model. In text processing mixed membership models
are also called latent Dirichlet allocation (LDA) [18]. Mixed
membership models differ from latent class models because
they assume that every response from an individual can come
from different latent classes. In LCMs each response of one
individual must come from the same latent class. This means
that the mixed membership model is more flexible, which can
be helpful if for example a text document discusses multiple
topics, but on the other hand can complicate the interpretation,
because it sets the focus on the questions and not on the
individuals.

III. MODEL

We now propose a variant of the LCM structure where we
want to cluster the individuals into K classes depending on
their answers. Our model can be summarized as follows:

λ|α ∼ Dirichlet(α) or DirichletProcess(α) (1)
zi|λ ∼ Multinomial(λ) (2)

Uj,k|β ∼ Dirichlet(β) (3)
Xi,j |Uj , zi = k ∼ Multinomial(Uj,k). (4)

α and β are hyper-parameters that are defined externally and
govern the sparsity of the model. Eq. 1 defines that the size
of the classes is governed by a Dirichlet (in the case of a
simple LCM) or by a Dirichlet Process (in the case of a
nonparametric LCM); for now we will describe the derivation
for the simple LCM and will later present how to extend it to
the nonparametric case. z is a vector that contains the latent
class assignment for each individual. U is a 3-way tensor of
size J × K × R and contains the probability for response r
from an individual from class k for question j. Eq. 4 specifies
that the response of an individual i that belongs to class k
is a draw from a Multinomial distribution according to the
probability vector Uj,k.

The joint distribution of the model is defined as follows

p(λ, z, U,X|α, β) =p(λ|α)

I∏
i=1

p(zi|λ)

J∏
j=1

K∏
k=1

p(Uj,k|β)

×
I∏
i=1

J∏
j=1

K∏
k=1

p(Xi,j |Uj,k)1(zi=k). (5)

and Figure 2 shows the plate notation of the model.
Finding the maximum likelihood solution would, for this

model result, in an EM algorithm similar to the one described
by [12], but to properly propagate uncertainty through the
model and to be able to infer an appropriate number of latent
classes, we develop a variational inference method that can
address those challenges.
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Fig. 2. The latent class model in plate notation. Each node represents a
random variable and X is shaded gray because it is the only variable which
is observed. The arrows represent the dependency structure and the plates
represent repeated values. K means that we have one Uk for each cluster 1
to K. Analogous we have one cluster assignment and the corresponding set
of observation for each individual 1 to I . λ is the cluster size proportion and
drawn from a Dirichlet(α).

A. Variational Inference

The idea of VI is to define a simplified probability model
q and tune its parameters to approximate the original model
p. We choose q as the mean field approximation of p, which
allows us to write down the variational distribution:
q(λ, z, U) = q(λ)q(z)q(U),

q(λ, z, U) = q(λ;ω)

I∏
i=1

q(zi; ζi)

K∏
k=1

J∏
j=1

q(Uj,k;φj,k)
(6)

where ω, ζ and φ are the free variational parameters, that are
subsequently optimized. We also define that

q(λ;ω) = Dirichlet(ω)

q(zi = k; ζi) = ζi,k

q(Uj,k;φj,k) = Dirichlet(φj,k).

(7)

Using this definition we can derive the update equations
for the variational parameters (Appendix A). We will measure
the approximation with the KL-divergence, which allows us
to maximize the evidence lower bound (ELBO). We find
that iterating between the following equations maximizes the
ELBO and thus also minimizes the KL divergence:

ωk = α+

I∑
i=1

ζi,k. (8)

ζi,k ∝ exp

(
ψ(ωk)− ψ

( K∑
k=1

ωk

)
+

J∑
j=1

[
ψ(φj,k,Xi,j

)− ψ
( Rj∑
r=1

φj,k,r

)])
, (9)

φj,k,r = β +

I∑
i=1

ζi,k1[Xi,j = r]. (10)

The eq. 8 and 10 have an intuitive interpretation. They
are just the weighted number of individuals per class and
the weighted number of observation with a particular feature,
respectively. Note that ψ(ωk) in eq. 9 is the digamma function.

B. Nonparametric extension

The strength of the latent class models is that it is straight-
forward to extend them to more complicated settings. For
example if the true number of latent classes K is not known,
one can use an approximation that assumes a potentially
infinite number of classes of which only a finite number is ever
observed for a finite number of observations. Mathematically
this is expressed with a Dirichlet Process.

A constructive interpretation of the Dirichlet Process is the
stick breaking process, which is very helpful as it allows us to
construct a truncated approximation where we stop after mak-
ing Kmax breaks [19]. We apply this truncated stick breaking
process as a prior for λ to give λk = vk

∏k−1
k′=1 (1− vk′).

As already mentioned each vk is drawn from a Beta
distribution q(vk;κk,1, κk,2) = Beta(κk,1, κk,2) where κk,1
and κk,2 are the variational parameters that are optimized in
the Dirichlet Process instead of the ωk in the simple Dirichlet
model.

The new joint distribution for this model thus is

p(λ, z, U,X|α, β) =

Kmax−1∏
k=1

p(vk|α)

I∏
i=1

p(zi|λ)

×
J∏
j=1

K∏
k=1

p(Uj,k|β)

×
I∏
i=1

J∏
j=1

K∏
k=1

p(Xi,j |Uj,k)1(zi=k),

(11)

which differs from eq. 5 in the sense that the first term has
been replaced with the truncated stick breaking formulation.

We derive the updates for the free variational parameters
(Appendix B) and find that iteratively running the following
equations maximizes the ELBO for the nonparametric model.

κk,2 = α2 +

I∑
i=1

Kmax∑
k′=k+1

ζi,k′ , κk,1 = α1 +

I∑
i=1

ζi,k, (12)

ζi,k ∝ exp

(
ψ(κk,1)− ψ(κk,1 + κk,2)

+

k−1∑
k′=1

[ψ(κk′,2)− ψ(κk′,1 + κk′,2)]

+

J∑
j=1

[
ψ(φj,k,Xi,j )− ψ

( Rj∑
r=1

φj,k,r

)])
(13)

The update equation for φj,k,r (eq. 10) does not differ
from the one in the parametric model, but the updates for
the Dirichlet Process parameters and ζi,k change.



C. Handling missing data

We can reformulate the joint distribution of eq. 5 to incor-
porate missing data

p(λ, z, U,X|α, β) =p(λ|α)

I∏
i=1

p(zi|λ)

J∏
j=1

K∏
k=1

p(Uj,k|β)

×
K∏
k=1

∏
(i,j)∈So

p(Xo
i,j |Uj,k)1(zi=k)

×
K∏
k=1

∏
(i,j)∈Sm

p(Xm
i,j |Uj,k, zi = k)

where So is the set answer that were observed and Sm is the
set of answers that are missing for each individual.

If we assume that the data is missing completely at random
(MCAR), which means that the chance of missing a value is
unrelated to the latent class, the unobserved answer or any
other previous answer, then p(Xm

i,j |Uj,k, zi = k) = const.
The estimation of the free variational parameters is thus
independent of the missing values and they can be skipped
during the variational updates. To impute the missing values,
one would simply draw a latent class based on the observed
data and draw replacements for the missing values from
p(Xm

i,j |Uj,k, zi = k). If on the other hand we believe that
the missingness of a data point contains useful information
for the inference, it is best recoded as an additional possible
response r.

IV. APPLICATIONS

In this section we first want to analyze the performance
of our proposed algorithm using a simulation study and then
we used the temporal consistency of the inferred clusters of
the Young Lives survey as a real-world example. Lastly, we
apply our model to analyze the latent structure of the OSMI
Mental Health in Tech and the 2015 UK National Cancer
Patient Experience survey.

A. Simulation study

To demonstrate that that our algorithm is able to identify
latent structure in a high-dimensional dataset and to give an
idea how it performs compared to other clustering algorithms
for categorical data, we generated a dataset with a known latent
structure. First, we generate four latent classes and for each
class a prototypical list pk of length 5. Then we assign each
individual randomly to one of the four classes. Each element
in this list pk is a vector of length R, which contains the
proportions to draw response r if an individual belongs to
class k. Most of the entries have a roughly equal chance for
each response or just a slight bias, but a few of them are
highly specific for one class. Those are the ones that need to
be picked up by a methods to produce a good clustering result.
In each experimental run we vary the signal to noise ratio
of the dataset, to test the performance with a range different
settings.

Fig. 3. Performance comparison on a synthetic dataset of the k-mode,
ROCK, the EM algorithm for the latent class model (poLCA) and our
implementation with a Dirichlet Process prior (mixdir DP) and the simple
Dirichlet prior (mixdir). The performance is measured with the adjusted Rand
index (ARI) that calculates the overlap between the inferred clustering and
the ground truth on the synthetic dataset. The significance test is a two-sided
paired Wilcoxon rank sum test and NS. indicates a p-value > 0.05, one star
indicates p > 0.01. two stars p > 0.001 and three stars indicate p < 0.001.
The red box shows the mean and the bootstrapped confidence limits. The
algorithms are tested in two settings one where K is the correct number of
latent classes in the model (A) and one where K is an overestimate of the
number of latent classes (B).

We compared the parametric and nonparametric variants of
MixDir algorithm using the Dirichlet and Dirichlet Process
priors respectively (the latter we refer to as MixDir-DP)
with three other algorithms: the ROCK algorithm [20], one
for k-mode [21] and an EM inference implementation of
the latent class model [12] called poLCA. We chose these
three algorithms, because they were all readily available as
packages for the popular and widely used R statistical com-
puting platform [22], which is also the platform we used for
implementing our algorithm. This should be kept in mind when
comparing for example the runtimes of the algorithms, where
a bad performance could just be explained by an inefficient
implementation. In terms of time complexity with respect
to the number of observations n ROCK has a worst case
time complexity of O(n2 log(n)). The k-mode algorithm is
linear to n, as are the three latent class models. Interestingly
although ROCK has the worst theoretical time complexity of
the compared methods, it consistently ran the fastest.

We measure the performance of the clustering algorithms
using the adjusted Rand index (ARI) [23], which is a popular
measure for comparing two clustering results. In our case
we compare the proposed clustering of each algorithm to the
ground truth. The ARI is 0 when the proposed clustering is as
good as random and 1 if the algorithm recovered the ground
truth. It is important to note that our algorithm produces a
probabilistic output for each observation to belong to each
class (also called soft clustering). For comparison with the
other methods we assign each individual to the latent class
for which it has the highest probability.

Figure 3 shows the performance on 100 differently initial-



Fig. 4. Run-time analysis of the k-mode, ROCK, the EM algorithm for the
latent class model (poLCA) and our implementation with a Dirichlet Process
prior (mixdir DP) and the simple Dirichlet prior (mixdir) on a dataset with
1000 observations for 5 questions with 5 to 15 categories each. The red box
shows the mean and the bootstrapped confidence limits. The runtime was
measured on a 4 year old laptop with a Intel Core i7-3635QM processor.

ized datasets for all five clustering methods with varying signal
to noise ratios. We tuned the signal to noise ratios such that
we cover the whole range of results for the methods ranging
from cases where all methods achieve a decent clustering to
cases where none of the methods is able produce a clustering
better than random. In Figure 3A we can see that if K is
set to the correct number of latent classes the three LCMs
outperform k-mode and ROCK and that there is no significant
difference between our methods and poLCA. Only if we mis-
specify K (Figure 3B), something that can easily happen on
a real world dataset, we see that our models outperform the
other approaches. When we actually look into the inferred
clusters we can see that for high performing examples of
MixDir with the Dirichlet Process prior the method is able
to recover the correct number of four classes even if K = 8.
Figure 4 shows that the increased performance comes at the
cost of an increased runtime.

A particular challenge with the ROCK algorithm is that it
relies on a user-defined parameter θ that defines the minimum
similarity so that two elements are considered a neighbor. The
resulting clustering strongly depends on this parameter, but
there is little guidance to choosing it, so we simply used the
suggested value of θ = 0.5 in all of the above examples. Our
method also has hyper-parameters (we used α = 1 and β =
0.1), but they have less of an effect on the result, especially
when a lot of data is provided. The hyper-parameters serve
as pseudo-counts in eq. 8 and 10 and thus usually need to be
within the same magnitude as the number of observations per
latent class and category, respectively, to affect the clustering.

The above test is to a certain extend self serving, because
we use the same model to generate the data that we also use to
classify it. So it is important to see how the model behaves if
the model is misspecified. We will test the performance of our
model on data generated from a mixed membership model,
which also emphasizes how our model differs. We generate

Fig. 5. Clustering of mixed-membership data using mixdir, poLCA and
mixedMem. The data consist of 2000 individuals with 40 features which are
assigned to one of two classes. The top row shows the percentage for each
individual how many of its features are assigned to class A.

a dataset of 2000 individuals with 40 features that can take
one out of three different values. We have two latent classes
A and B, but instead of assigning each individual to one of
the classes, each feature of every individual is assigned to a
class. This means that an individual can be truly a 50/50 mix
of class A and B, namely when 20 features are from A and
20 from B. This is the generative model that is assumed by
mixed membership models. We cluster this data using MixDir,
poLCA and an R implementation for fitting mixed membership
models (mixedMem) [24].

Unsurprisingly the mixed membership model performs best
in the classification task and is able to recover for nearly every
individual the correct fraction of membership in class A and
B (Fig. 5). In contrast, the latent class models (poLCA and
MixDir) assume that every individual belongs exclusively to
class A or B. They are still able to classify most individuals
correctly whether they are mostly from class A or B, but
for individuals with mixed response profiles, poLCA makes
some classification errors due to the hard assignments it
reports. However, the probabilistic output of MixDir means
that individuals with a mixed response profile will receive an
uncertain posterior class assignment. This is a good example
where the probabilistic nature of our clustering algorithm can
be an helpful indicator of model mis-specification.

B. Young Lives

Next, we consider performance using a real-world data set
from The Young Lives Survey. This survey is an international
study of childhood poverty. It follows children in Ethiopia, In-
dia, Peru and Vietnam over 15 years tracking indicators about
the health of the children, literacy, wealth of the household
and many more indicators. So far four rounds of surveys have
been conducted (in 2002, 2006, 2009 and 2013) following
the same children from birth to their teens. Initially, we
focused on the Ethiopian dataset and specifically the younger
cohort with children aged 1, 5, 8 and 12 years in the rounds
respectively. We took several steps to clean the data: removal
of unique identifiers, binning of continuous variables, removal



Fig. 6. Performance comparison on the Young Lives Ethiopia datasets.
The performance is the adjusted Rand index (ARI) between the clusterings
of the four rounds and the algorithms were run 25 times on 20% randomly
sampled individuals. The significance test is a two-sided paired Wilcoxon
rank sum test, NS. indicates a p-value > 0.05 and the stars indicate p-values
of > 0.01, > 0.001 and < 0.001. The red box shows the mean and the
bootstrapped confidence limits. We once set K to a small number of latent
classes (A) and once we to an overestimate of the number of latent classes
(B).

of children that dropped out and removal of columns without
any variation. In the end we worked with a dataset of about
1200 children, 52 questions and a median 4.5 different answers
per question.

We then wanted to compare the temporal consistency of the
clusters that different algorithms identify in the four rounds.
We use the ID of the children as ground truth and calculate the
adjusted Rand index (ARI) [23] between the first and second,
first and third, first and fourth, second and third, second
and fourth, and third and fourth rounds. To have sufficient
statistical power to detect performance differences and ensure
consistent results, we repeat the procedure 25 times and each
time randomly sample 20% of the individuals. The assumption
in this analysis is that the groupings of children across the
years do not change dramatically.

Since only MixDir-DP provides a means for automatically
selecting the number of latent classes, we first considered
an analysis where we prefix the number of latent classes
to fixed values (K = 5 and 25) for all algorithms. With a
smaller number of classes, we find that the latent class methods
(poLCA, mixdir and mixdir DP) outperform k-mode and
ROCK (Figure 6A). With a larger number of classes (i.e.
K = 25) we find that our algorithm outperforms all other
methods including poLCA (Figure 6B). To ensure that our
result is reproducible we also ran the same experiment on the
datasets from India, Peru and Vietnam (Figure 7A,B). In terms
of the runtime, we find that on the Young Lives dataset our
method outperforms the others (except for ROCK, but which
had the worst performance) (Figure 7C,D).

C. OSMI Mental Health in Tech Survey 2016

Open Sourcing Mental Illness (OSMI) is a non-profit cor-
poration that is dedicated to mental wellness in the technology

Fig. 7. Cluster consistency and runtime for all algorithms on all four
countries. The performance of each method is the adjusted Rand index (ARI)
between the clustering of the first and second, first and third, first and fourth,
second and third, second and fourth, and third and fourth round. The process
was run 25 times on 20% randomly sampled individuals. The methods are
ordered by mean ARI. The red boxes show the mean and the bootstrapped
confidence limits. We compare two different settings K = 5 (A, C) and
K = 25 (B, D), which are likely under- and overestimations of the true
number of latent classes in the data. To ensure that ROCK divides the dataset
into more than one cluster we had to set θ = 0.1.

industry. Part of this effort is the collection of data on the state
of mental health in the technology sector, including a survey
from 2016 with responses of 1,400 individuals. The survey
consists of a questionnaire with 63 different questions [6]. We
applied MixDir to explore latent structure within this survey
data.

Before running the clustering algorithm we needed to clean
the data: we removed free-form answers, filtered out self-
employed individuals, who were asked different questions,
and summarized the responses which mental health disorder
individuals had into single consistent values. In the end we
worked with a dataset of 1,146 individuals with responses for
46 different questions and about 4% missing values.

The number of latent classes is unknown and our inference
of this quantity will be determined by our prior beliefs. We
therefore explored a range of hyperparameters for the Dirichlet
Process prior with an increasingly penalization on the creation
of new classes by setting α1 to 1, 10, 100 and 1000. We always
set Kmax = 25 which is enough to not hamper the fitting but
keeps the algorithm tractable. Figure 8A shows an alluvial plot
tracing how each individual’s class assignment changes as a
function of increasing α1 - the smaller classes are merged as
this parameter grows. This visualisation provides a very useful
means of understanding how the clustering structures alters as
a function of our prior beliefs (encoded in the hyperparameter
α1) allowing us to partially objectify otherwise subjective
beliefs about the number of latent classes. We decided to
use α1 = 100 for the subsequent analysis because it capture



Fig. 8. Analysis of the 2016 OSMI Mental Health in Tech Survey. A is an alluvial plot that shows the effect of clustering the data with an increasing level
of α1. If a mental health disorder has been diagnosed the band is colored green, if not purple. Flows with less than 10 individuals are suppressed to reduce
the visual clutter. Individuals that were assigned to classes bigger than E are summarized in the ”Other” block. The red rectangle highlights the parameter
setting α1 = 100 that was used in the other plots B-E for the more detailed analysis. B shows the class assignment probabilities for each individual. C is a
bar plot that shows how many individuals in the first 4 classes have a diagnosis of a mental disorder. D is a bar plot that shows how many individuals in the
first 4 classes answered the question ”Do you think that discussing a mental health disorder with your employer would have negative consequences?”. E is
a plot of the contingency table for the questions ”If a mental health issue prompted you to request a medical leave from work, asking for that leave would
be:” and ”Do you think that discussing a mental health disorder with your employer would have negative consequences?”.

the main structure of the data, with the majority of survey
participants grouped into five main classes. Note that this is
not a statement that there are in fact five latent classes.

We focus on the four biggest classes (A, B, C and D)
which together cover 88% of the individuals (Figure 8B). We
find that two groups (B and D) mainly consist of individuals
that answered the question ”Have you been diagnosed with
a mental health condition by a medical professional?” with
”Yes” and two groups (A and C) with individuals that mainly
answered the question with ”No” (Figure 8C). It is of course
interesting that the algorithm creates two groups (A and C
vs. B and D) for the major phenotypic characteristic. To find
out what is the main difference between A and C, and B and
D, we look at the predictive features for each of the classes
(the question-answer pairs that maximize the probability for
class k: argmaxXj=r p(z = k|Xj = r)). We notice that for
group C and D answering the question ”Do you think that
discussing a mental health disorder with your employer would
have negative consequences?” with ”No” is a predictive feature
(p = 41% and p = 29%, respectively), whereas answering
with ”Yes” is predictive for group A and B (p = 35% and
p = 56%, respectively) (Figure 8D). This suggests, that there
are differences between the individuals who expect that being
open about their mental health disorder will have negative
consequences.

We looked for other features about the employer that differ
by the expectation of discussing mental health and found,

for example, that people are less likely to expect negative
consequences if the employer has mental health care under the
employer-provided coverage (Chi-squared test p = 0.0061).
We also found that people have more negative expectations
about asking for mental health-related leave, if their general
expectations about discussing mental health with their em-
ployer is negative (Wilcoxon rank-sum test p < 2.2× 10−16,
Figure 8E).

Interestingly post-traumatic stress disorder (PTSD) is also
a predictive feature for group B. This leads us to propose the
hypothesis that individuals who are affected by PTSD, might
have a more negative expectation about the consequences of
discussing it with their employer. We check the hypothesis
with a Fisher’s exact test and reject the null hypothesis
that individuals with PTSD have the same expectation as
individuals with other mental disorder (p = 0.0417). On the
other hand having a diagnosis for attention deficit hyperactivity
disorder (ADHD) is a predictive feature for group D, but we
did not find a significant relation of ADHD with having less
negative expectations (Fisher’s exact test p = 0.6341). This
is a good example how the unsupervised clustering can help
uncover interesting underlying structures, but on the other
hand one must be careful not to over-interpret the data and
check if trends can be confirmed with the whole dataset.



Fig. 9. Defining features plot of the NCPES dataset, with the questions
that are most informative for distinguishing the inferred clusters. The area
of each square indicates the fraction of individuals in a group that answered
the question a specific way. The sum of the area of all squares in each column
is 1. In the original questionnaire the answers for the question 14, 15, 21, 49
and 54 differed slightly in their formulation, so we grouped them into common
categories. The vertical bars have no additional meaning and only serve to
enhance the visual clarity of the plot.

D. 2015 National Cancer Patient Experience Survey (NCPES)

Lastly, we wanted to analyze the 2015 NCPES [7] to
demonstrate the usefulness of our algorithm on a big dataset.
The NCPES is an annual survey that has been conducted since
2010 and is commissioned by the British National Health
Service (NHS) to monitor the state of care for cancer patients.
The data consists of the responses from 71,186 individuals and
has additional data about the gender, the tumor and the age of
the patient. The data available from the questionnaire consists
of 67 questions, of which all but three are categorical single
choice questions. Those three that are not, were ignored in
the subsequent analysis. The dataset also has a considerable
number of missing values, in total more than 16% of all entries
are not available. The NCPES is an interesting example of a
high-dimensional categorical dataset, but so far most of the
analysis has focused predominantly on univariate features of
the dataset. Researchers have looked on the distribution of
responses for individual questions (e.g. ”87% of respondents
said that, overall, they were always treated with dignity and
respect while they were in hospital.” [7]).

Ideally we would want to infer an adequate number of latent
classes on this dataset, but due to its inherent complexity and
size, this would lead to too many classes for any manual
downstream analysis (Figure 10). For brevity in this paper,
we decided for the sake of simplicity and interpretability
to analyze the dataset using the simple Dirichlet prior with
K = 5. We run our algorithm multiple times to check if the
clusterings are consistent and find that the average agreement
between ten iterations is ARI = 0.998.

The challenge with this dataset is that it contains such a
large number of questions, which makes it difficult to decide
which are the interesting variables that are important for
the clustering. To find a manageable number of questions,
we reduce the dimensionality of the dataset. We iteratively
remove variables and test how much this affects the predicted
clustering. We measure the loss of information using the

Fig. 10. Challenges of inferring the number of classes on the NCPES data.
A shows the number of realized clusters for the MixDir model with a Dirichlet
or a Dirichlet Process prior, depending on the maximum number of possible
clusters. B shows the adjusted Rand index between the relicates depending
on the maximum number of available clusters. The blue line shows a linear
and an inverse Gaussian model. D shows an alluival plot demonstrating the
effect of increasing α1 with a Dirichlet Process prior.

Jensen-Shannon divergence on the predicted and the original
class probability matrix at each step and remove the variable
that least affects the clustering. This way we can narrow down
the original set of 63 questions to five which are the most
informative for distinguishing the clusters (Figure 9).

We find interesting distinct groups: cluster A is the second
largest group and contains individuals that answered very
positively throughout all 5 questions, cluster B is still mostly
positive, but the answers are more nuanced, cluster C is the
largest cluster and is defined by somewhat positive responses
(e.g. ”Yes, to some extent” or ”Yes, some of the time”),
cluster D is more negative and is also defined by individuals
answering ”Don’t know”, lastly, cluster E is the smallest
cluster and the most negative with people answering the
questions more often negative than positive. To validate that
the overall satisfaction is a major driver of the clustering, we
look at question 59, which asks the individuals to rate their
overall experience from 1 to 10. We removed this question
during the data cleaning, because it is not categorical, and can
thus use it to demonstrate that we were nonetheless able to



recover this information. We perform an Wilcoxon rank sum
test on the ratings comparing that ratings(A) > ratings(B) >
ratings(C) > ratings(D) > ratings(E), which is in all four
cases highly significant (p < 2.2× 10−16).

An important feature of our method is that it produces
probabilistic assignments of individuals to the latent classes.
As we just described in the case of the NCPES we find
that the latent classes have a linear relationship, so one can
easily imagine that some individuals might be in between
two classes, but are rarely considered a mix of more than
two classes. Accordingly we find that less than 4% of the
individuals have more than 10% probability for at least three
classes.

When we focus on question 49 which asks about the
involvement of the family and/or friends, we can see that
they were less involved in clusters C, D and E. To see if
indeed missing involvement of the family leads to less overall
satisfaction, we test if overall individuals which answered
”Yes” or ”Yes, to some extend” were more satisfied than
individuals that answered ”No” or ”No family or friends were
involved” (Wilcoxon rank sum test p < 2.2× 10−16). On the
other hand this needs to be qualified because individuals that
deliberately decided against involvement of their family are
overall more satisfied than individuals that just stated their
social network was not involved (Wilcoxon rank sum test
p < 2.2 × 10−16). This underlines the importance of social
networks during cancer treatment, but on the other hand which
role the ability to make deliberate choices can play.

To summarize, we are able to cluster the large NCPES
dataset and uncover interesting latent structure. We identify
the overall satisfaction as a major underlying feature of the
dataset and show how it can be related to the support patients
get from their family and friends. This demonstrates that our
algorithm can be a useful tool for handling large and high-
dimensional categorical datasets.

V. DISCUSSION

There is no universally best clustering technique without
context, but we find that our method has several desirable
features. It can deal with large datasets of more than 70,000
observations, it has a principled approach to handle missing
data thanks to the Bayesian framework and it can handle
datasets where the true number of latent classes is not known.
We developed two related versions of the algorithm, one for a
finite number of classes and the nonparametric version where
we assume that the number of latent classes keeps increasing
as long as gather more observations. One limitation is that
for the analysis of the performance of the different methods
using simulations, we only quantified it using data generated
from a model that has the same independence assumptions
as the model we developed here. Another limitation could be
that for the nonparametric extension we use a Dirichlet Process
prior, which has the known problem of overestimating the true
number of latent classes [25]. This issue should be kept in
mind, but in our experience this has not been a problem for
the datasets we looked at.

In this paper we have presented a variational inference algo-
rithm for Bayesian latent class models and their nonparametric
extension. We demonstrate on high-dimensional categorical
data that our clustering algorithm is able infer good results
on synthetic and real world datasets. We also show that its
performance is comparable to the best competitor (poLCA)
if the correct number of latent class is known a priori, and
actually outperforms the other methods if the number of
classes is not known, which is a common problem.

ACKNOWLEDGMENT

The authors acknowledge the support of the UK Medical
Research Council Grant No. MR/P02646X/1. Some of the data
used in this study comes from Young Lives, a 15-year study of
the changing nature of childhood poverty in Ethiopia, India,
Peru and Vietnam (www.younglives.org.uk). Young Lives is
funded by UK aid from the Department for International
Development (DFID). The views expressed here are those of
the author(s). They are not necessarily those of Young Lives,
the University of Oxford, DFID or other funders. This paper
provides a secondary analysis of data obtained through the UK
Data Service for the Young Lives Study (7483) and NCPES
(8163) data.

REFERENCES

[1] D. Arthur and S. Vassilvitskii, “K-Means++: the Advantages of Careful
Seeding,” Proceedings of the eighteenth annual ACM-SIAM symposium
on Discrete algorithms, vol. 8, pp. 1027–1025, 2007.

[2] D. Comaniciu and P. Meer, “Mean shift: A robust approach toward
feature space analysis,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 24, no. 5, pp. 603–619, 2002.

[3] C. M. Bishop, Pattern recognition and machine learning. springer,
2006.

[4] T. Zhang, R. Ramakrishnan, and M. Livny, “BIRCH: An Efficient
Data Clustering Databases Method for Very Large,” ACM SIGMOD
International Conference on Management of Data, vol. 1, pp. 103–114,
1996.

[5] J. Boyden, T. Woldehanna, S. Galab, A. Sanchez, M. Penny, and L. Duc,
“Young Lives: an International Study of Childhood Poverty: Round 4,
2013-2014.” UK Data Service, 2016.

[6] Open Sourcing Mental Illness Ltd., “OSMI Mental Health in Tech
Survey,” 2016. [Online]. Available: https://osmihelp.org/research

[7] NHS England Quality Health, “National Cancer Patient Experience
Survey, 2015,” pp. –, 2017.

[8] Z. Huang, “Extensions to the k-Means Algorithm for Clustering Large
Data Sets with Categorical Values,” Data Mining and Knowledge
Discovery, vol. 2, no. 3, pp. 283–304, 1998. [Online]. Available:
http://link.springer.com/article/10.1023/A:1009769707641

[9] J. Macqueen, “Some methods for classification and analysis of multi-
variate observations,” Proceedings of the Fifth Berkeley Symposium on
Mathematical Statistics and Probability, vol. 1, no. 233, pp. 281–297,
1967.

[10] S. Guha, R. Rastogi, and K. Shim, “ROCK: A Robust Clustering
Algorithm for Categorical Attributes,” Information Systems, vol. 25,
no. 5, pp. 345–366, 2000.

[11] P. Lazarsfeld and N. Henry, Latent structure analysis. Houghton Mifflin,
Boston, 1968.

[12] D. A. Linzer and J. B. Lewis, “poLCA: An R Package for Polytomous
Variable Latent Class Analysis,” Journal of Statistical Software, vol. 42,
no. 10, pp. 1–29, 2011.

[13] D. B. Dunson and C. Xing, “Nonparametric Bayes Modeling of
Multivariate Categorical Data,” Journal of the American Statistical
Association, vol. 104, no. 487, pp. 1042–1051, 2009. [Online]. Available:
http://www.tandfonline.com/doi/abs/10.1198/jasa.2009.tm08439

[14] T. S. Ferguson, “A Bayesian Analysis of Some Nonparameteric Pro-
lems,” Annals of Statistics, vol. 1, no. 2, pp. 209–230, 1973.



[15] M. Stephens, “Dealing with label switching in mixture models,”
Journal of the Royal Statistical Society: Series B (Statistical
Methodology), vol. 62, no. 4, pp. 795–809, 2000. [Online]. Available:
http://doi.wiley.com/10.1111/1467-9868.00265
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APPENDIX A
VARIATIONAL INFERENCE DERIVATION

In this section we want to give a short introduction to
variational inference (VI) and the explicit derivation of the
updates for the variational parameters.

VI is an approximate method to do inference in Bayesian
models [3], [26]. It is an alternative to the well known
MCMC algorithms that randomly sample from the model until
the stationary distribution of the samples correspond to the
posterior of the model and the data. Instead VI converts the
inference problem into an optimization problem, which can be
solved much more efficiently.

In the Bayesian framework we are interested in learning
about the distribution of the parameters given the observed
data. Mathematically this can be written as

p(z|x) =
p(z,x)

p(x)
, (14)

where z are all the parameters of the model and x is the data.
This is just a reformulation of the famous Bayes rule and
means that the conditional distribution equals the joint distri-
bution of data and parameters divided by the marginal p(x).
Calculating this marginal is the big challenge in Bayesian
inference because to calculate the probability of observing a
particular dataset x one would need to consider all possible

configurations of the parameters z. Or again in mathematical
notation

p(x) =

∫
p(z,x) dz. (15)

Only for very simple models it is possible to calculate this
integral analytically, for complex models it is necessary to
find approximations for this integral for example with MCMC
or VI.

In VI we choose a family F of distributions, which is easier
to handle, and try to find a setting where our approximate
distribution q(z) ∈ F is as close as possible to the posterior
p(z|x). The closeness is measured with the Kullback-Leibler
(KL) divergence

KL(q(z)‖p(z|x)) =

∫
q(z) log

q(z)

p(z|x)
dz

= E[log q(z)]− E[log p(z|x)]

(16)

where all expectations E are taken with respect to q(z). The
KL divergence is not symmetric and favors q(z) to be smaller
and to underestimate the variance of p(z|x), but on the other
hand it is has nice mathematical properties that makes it useful
for approximating complex models.

As discussed earlier the term p(z|x) in eq. 16 is usually
not available, but we can re-arrange the equation so that it is
not needed:

KL(q(z)‖p(z|x)) = E[log q(z)]− E[log p(z,x)]

+ log p(x)

− KL(q(z‖p(z|x)) + log p(x) = E[log p(z,x)]− E[log q(z)]

ELBO[q] = E[log p(z,x)]− E[log q(z)]

ELBO[q] = E[log p(z,x)] + H[q(z)],
(17)

where ELBO is short for evidence lower bound and H is the
entropy of a function (H[p] = −

∫
p(x) log p(x) dx). Looking

at eq. 17 we can see that maximizing the ELBO is equivalent
to minimizing the KL divergence up to an additive constant.
So the goal of VI is to find q∗(z) such that

q∗(z) = argmin
q(z)∈F

KL(q(z)‖p(z|x)) = argmax
q(z)∈F

ELBO[q]. (18)

In theory all kind of distributions F could be applicable here,
but in practice the one that is most commonly chosen in VI is
the so called mean field variational family. It assumes that the
latent variables are all independent, so that q(z) factorizes to

q(z) =

m∏
j=1

qj(zj) (19)

and each density qj(zj) can be chosen independently to
maximize the ELBO. Our factorization of q(z) is provided in
eq. 6.



Now we can start to derive the update equations. First we
will write down the expectation of the joint E[log p(z,x)] from
eq. 17

E [log p(z,x)] =E [log p(λ|α)]

+

I∑
i=1

E [log p(zi|λ)]

+

J∑
j=1

K∑
k=1

E[log p(Uj,k|β)]

+

I∑
i=1

J∑
j=1

K∑
k=1

E[log p(Xi,j |Uj,k, zi = k)]

(20)
The first line of equation eq. 20 is simply the expectation

of a log Dirichlet distribution, which we can look up in [18]
as

E [log p(λ|α)] = log Γ

(∑
k

αk

)
−
∑
k

log Γ(αk)

+
∑
k

(αk − 1)
(
ψ(ωk)− ψ

(∑
k

ωk

))
(21)

where ψ(ωk) is the digamma function.
The expectation in the second line of eq. 20 we can again

look up in [18] as

E[log p(zi|λ)] =

K∑
k=1

ζi,k Eq[log λk]

=

K∑
k=1

ζi,k

(
ψ(ωk)− ψ

(∑
k

ωk

))
.

(22)

The expectation in the third line of eq. 20 is again just a
log Dirichlet

E[log p(Uj,k|β)] = log Γ

(∑
r

βr

)
−
∑
r

log Γ(βr)

+
∑
r

(
(βr − 1)ψ(φj,k,r)− ψ

(∑
r

φj,k,r

))
.

(23)
The expectation in the fourth line of eq. 20 is not readily

available, so we will have to derive it

E[log p(Xi,j |Uj,k, zi = k)] = E
[
1[zi = k] log p(Xi,j |Uj,k)

]
= E

[
1[zi = k]]E[log p(Xi,j |Uj,k)]

]
= ζi,k

( Rj∑
r=1

1[Xi,j = r]

×
(
ψ(φj,k,r)− ψ

(∑
r

φj,k,r

))).

(24)

Now that we have all the necessary expectations to calculate
E[p(z,x)], we can derive the Entropies for H[q] (the later half
of eq. 17).

H [q(λ, z, U ;ω, ζ, φ)] =H [q(λ;ω)]

+

I∑
i=1

H [q(zi; ζi)]

+

J∑
j=1

K∑
k=1

H[q(Uj,k;φj,k)]

(25)

The first line of eq. 25 is just the entropy of a Dirichlet
distribution which we can look up as

H [q(λ;ω)] =− log Γ
(∑

k

ωk

)
+
∑
k

log Γ(ωk)

−
∑
k

(ωk − 1)
(
ψ(ωk)− ψ

(∑
k

ωk

))
.

(26)

The second line of eq. 25 is the entropy of a multinomial:

H [q(zi; ζi)] = −
∑
k

ζi,k log ζi,k (27)

Analogous to the entropy in eq. 26, we can write down the
entropy for the third line of eq. 25

H[q(Uj,k;φj,k)] =− log Γ
(∑

r

φr

)
+
∑
r

log Γ(φr)

−
∑
r

(φr − 1)
(
ψ(φr)− ψ

(∑
r

φr

))
(28)

Now we have all elements in place to actually optimize the
free variational parameters ω, ζ and φ to maximize the ELBO.
One approach would to apply a general purpose optimizer like
BFGS, but the number of parameters in our model can grow
very quickly, so that this approach becomes inefficient. Instead
we will use a coordinate ascent strategy (CAVI [3]), where we
iteratively optimize each single free parameter while the other
are hold constant until the ELBO has converged. To achieve
efficient updates, we will derive analytical updates for each
of the parameters, by taking the derivative of the ELBO and
setting it to zero.

First we will derive the update for latent group mixture
parameter ωk. This step is equivalent to the derivation of the
updates of γi in the LDA model described in the appendix



A.3.2 of [18].
∂ ELBO

∂ωk
=

∂

∂ωk

(∑
k

(αk − 1)
(
ψ(ωk)− ψ

(∑
k

ωk

))
+
∑
k

∑
i

ζi,k

(
ψ(ωk)− ψ

(∑
k

ωk

))
− log Γ

(∑
k

ωk

)
+ log Γ(ωk)

−
∑
k

(ωk − 1)
(
ψ(ωk)− ψ

(∑
k

ωk

)))
=

∂

∂ωk

(
ψ(ωk)(αk +

∑
i

ζi,k − ωk)

− ψ
(∑

k

ωk

)∑
k

(αk +
∑
i

ζi,k − ωk)

− log Γ
(∑

k

ωk

)
+ log Γ(ωk)

)
= ψ′(ωk)(αk +

∑
i

ζi,k − ωk)

− ψ′
(∑

k

ωk

)∑
k

(αk +
∑
i

ζi,k − ωk)

(29)
If we assume that all αk are equal, because our prior is

symmetric, we can see that the whole term is zero when (α+∑
i ζi,k − ωk) = 0 and thus we can conclude that the ELBO

is maximized when ωk is set to

ωk = α+
∑
i

ζi,k. (30)

We will now derive the update for ζi,k in a similar fashion:

∂ ELBO

∂ζi,k
=

∂

ζi,k

(
ζi,k

(
ψ(ωk)− ψ

(∑
k

ωk

))
+ ζi,k

J∑
j=1

(
ψ(φj,k,Xi,j )− ψ

(∑
r

φj,k,r

))
− ζi,k log ζi,k

)
= ψ(ωk)− ψ

(∑
k

ωk

)
+

J∑
j=1

(
ψ(φj,k,Xi,j

)

− ψ
(∑

r

φj,k,r

))
− log(ζi,k)− 1

(31)
Setting this to zero and solving for ζi,k we find that

ζi,k ∝ exp

((
ψ(ωk)− ψ

(∑
k

ωk

))
+

J∑
j=1

(
ψ(φj,k,Xi,j

)− ψ
(∑

r

φj,k,r

)))
,

(32)

where the solution is only correct up to a proportional constant,
because of the constraint that

∑
k ζi,k = 1.

Finally we will derive the update for φj,k,r:

∂ ELBO

∂φj,k,r
=

∂

∂φj,k,r

(∑
r

(βr − 1)
(
ψ(φj,k,r)− ψ

(∑
r

φj,k,r

))
+
∑
r

I∑
i=1

ζi,k1[Xi,j = r]

×
(
ψ(φj,k,r)− ψ

(∑
r

φj,k,r

))
− log Γ

(∑
r

φj,k,r

)
+
∑
r

log Γ(φj,k,r)

−
∑
r

(φj,k,r − 1)
(
ψ(φj,k,r)− ψ

(∑
r

φj,k,r

)))
=

∂

∂φj,k,r

(
ψ(φj,k,r)

× (βr +

I∑
i=1

ζi,k1[Xi,j = r]− φj,k,r)

− ψ
(∑

r

φj,k,r

)
×
∑
r

(βr +

I∑
i=1

ζi,k1[Xi,j = r]− φj,k,r)

− log Γ
(∑

r

φj,k,r

)
+
∑
r

log Γ(φj,k,r)

)

= ψ′(φj,k,r)(βr +

I∑
i=1

ζi,k1[Xi,j = r]− φj,k,r)

− ψ′
(∑

r

φj,k,r

)
×
∑
r

(βr +

I∑
i=1

ζi,k1[Xi,j = r]− φj,k,r)

(33)
When we set this to zero and solve for φj,k,r we

can again see that the whole term is zero when (βr +∑I
i=1 ζi,k1[Xi,j = r]− φj,k,r) = 0 and if we again assume

that all βr are equal, that thus

φj,k,r = β +

I∑
i=1

ζi,k1[Xi,j = r]. (34)

APPENDIX B
NONPARAMETRIC EXTENSION

In this section we want to derive the update equation of the
variational parameters for the nonparametric model.

The first term of the ELBO that obviously changes is the
expectation of the Dirichlet, which now is the expectation of
the Dirichlet Process

E[log p(v|α)] =

Kmax−1∑
k=1

E[log p(vk|α)]

=

Kmax−1∑
k=1

(
(α1 − 1)(ψ(κk,1)− ψ(κk,1 + κk,2))

+ (α2 − 1)(ψ(κk,2)− ψ(κk,1 + κk,2))
).

(35)



The second line of eq. 20 we can look up in [19]

E[log p(zi|v)] =

Kmax∑
k=1

(
q(zi > k)E[log(1− vk)] + q(zi = k)E[log vk]

)
(36)

where

q(zi > k) =

Kmax∑
k′=k+1

ζi,k′

q(zi = k) = ζi,k

E[log(1− vk)] = ψ(κk,2)− ψ(κk,1 + κk,2)

E[log vk] = ψ(κk,1)− ψ(κk,1 + κk,2).

(37)

The expectations in line 3 and 4 of eq. 20 are unchanged and
still

E[log p(Uj,k|β)] = log Γ

(∑
r

βr

)
−
∑
r

log Γ(βr)

+
∑
r

(βr − 1)
(
ψ(φj,k,r)− ψ

(∑
r

φj,k,r

))
E[log p(Xi,j |Uj,k, zi = k) = ζi,k

Rj∑
r=1

1[Xi,j = r]

×
(
ψ(φj,k,r)− ψ

(∑
r

φj,k,r

))
(38)

We also need to update the entropy for the Dirichlet in eq.
25.

H[q(v;κ1,κ2)] = −
Kmax∑
k=1

(
log Γ(κk,1) + log Γ(κk,2)

− log Γ(κk,1 + κk,2)

+ (κk,1 − 1)ψ(κk,1)

+ (κk,2 − 1)ψ(κk,2)

− (κk,1 + κk,2 − 2)ψ(κk,1 + κk,2)
)

(39)

We now again have all the elements to derive the new update

equations. We will first derive the updates for κk,1

∂ ELBO

∂κk,1
=

∂

∂κk,1

(
(α1 − 1)(ψ(κk,1)− ψ(κk,1 + κk,2))

− (α2 − 1)ψ(κk,1 + κk,2)

+

I∑
i=1

(
(ψ(κk,2)− ψ(κk,1 + κk,2))

Kmax∑
k′=k+1

ζi,k′

+ (ψ(κk,1)− ψ(κk,1 + κk,2))ζi,k

)
−
(

log Γ(κk,1) + log Γ(κk,1 + κk,2)

+ (κk,1 − 1)ψ(κk,1)

+ (κk,1 + κk,2 − 2)ψ(κk,1 + κk,2)
))

= ψ(κk,1)(α1 − 1 +
∑
i

ζi,k − κk,1 + 1)

+ ψ(κk,1 + κk,2)

× ( − α1 + 1− α2 + 1

−
∑
i

Kmax∑
k′=k+1

ζi,k′

−
∑
i

ζi,k + κk,1 + κk,2 − 2)

(40)
This term is zero if κk,2 removes the additional terms in

the second parentheses and κk,1 is just equal to the remaining
terms. The update equations for κk,1 and κk,2 are thus

κk,2 = α2 +
∑
i

Kmax∑
k′=k+1

ζi,k′

κk,1 = α1 +
∑
i

ζi,k,

(41)

which matches the results of [19]. In this equation we see
that unlike the classical Dirichlet Process our model has two
hyper-parameters: α1 and α2. This model is also the called
the Beta two parameter process [27]. It is equivalent to the
Dirichlet Process if α1 = 1. A large value for α2 encourages
the opening of more classes, whereas a large value for α1

penalizes the opening of new classes.
Specifically for the Beta two parameter process the ratio of

κk,1 to κk,2 determines how much of the remaining probability
mass is assigned to class k. On average class k will cover

κk,1

κk,1+κk,2
of the remaining space. The priors α1 and α2 serve

as additional pseudo counts in that ratio. So if we believe a
priori that each class should cover 90% of the remaining space
there are in theory two ways to achieve this. We can either fix
α1 = 1 and make α2 smaller (i.e. α2 = 1/9) or fix α2 = 1
and make α1 larger (i.e. α1 = 9). But in the first case if
we actually have observed

∑
i

∑Kmax

k′=k+1 ζi,k′ > 1 this would
easily overpowers our prior believe, whereas in the second
case the regularization is much stronger.



We will now similarly derive the update for ζi,k

∂ ELBO

∂ζi,k
=

∂

∂ζi,k

(
ζi,k(ψ(κk,1)− ψ(κk,1 + κk,2))

+ ζi,k

k−1∑
k′=1

(ψ(κk′,2)− ψ(κk′,1 + κk′,2))

+ ζi,k

J∑
j=1

(
ψ(φj,k,Xi,j

)− ψ
(∑

r

φj,k,r

))
− ζi,k log ζi,k

)
= ψ(κk,1)− ψ(κk,1 + κk,2)

+

k−1∑
k′=1

(ψ(κk′,2)− ψ(κk′,1 + κk′,2))

+

J∑
j=1

(
ψ(φj,k,Xi,j )− ψ

(∑
r

φj,k,r

))
− log(ζi,k)− 1

(42)
We can easily set this to zero and solve this for ζi,k again

up to an proportional constant

ζi,k ∝ exp

(
ψ(κk,1)− ψ(κk,1 + κk,2)

+

k−1∑
k′=1

(ψ(κk′,2)− ψ(κk′,1 + κk′,2))

+

J∑
j=1

(
ψ(φj,k,Xi,j )− ψ

(∑
r

φj,k,r

)))
(43)

The update equation for φj,k,r does not change, so we now
have all the elements to maximize the ELBO.


