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ABSTRACT
In this paper, we study the problem of modeling users’ diverse

interests. Previous methods usually learn a fixed user representa-

tion, which has a limited ability to represent distinct interests of

a user. In order to model users’ various interests, we propose a

Memory Attention-aware Recommender System (MARS). MARS

utilizes a memory component and a novel attentional mechanism

to learn deep adaptive user representations. Trained in an end-to-

end fashion, MARS adaptively summarizes users’ interests. In the

experiments, MARS outperforms seven state-of-the-art methods on

three real-world datasets in terms of recall and mean average pre-

cision. We also demonstrate that MARS has a great interpretability

to explain its recommendation results, which is important in many

recommendation scenarios.
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1 INTRODUCTION
How can we accurately model users’ interests? It is a fundamental

question for building recommender systems (RS). To answer this

question, we observed one essential characteristic of users’ inter-

ests: diversity. Users are interested in different kinds of items and

interests of users are diverse. For example, a user purchased several

books while she or he also bought an electrical gadget. Furthermore,

owing to the diversity of a user’s interests, only a subset of the

user’s purchased products can reveal if the user is interested in

another product. For instance, a user may purchase an iPad case
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because the user bought an iPad rather than a book or a pair of

shoes in her last week’s shopping list. Hence, it is a nontrivial task

to model the diversities of users’ interests.

However, how to devise representation vectors to express users’

diverse interests is challenging. Existing methods often project

users and items into fixed low-dimensional representation vectors

in a user-item joint space. We argue that a fixed user representation

largely restrains models from accurately modeling users’ diverse

interests. In the space, similar items are close to each other and the

distance between a user and an item implies how much the user

is interested in the item. As shown in Figure 1, a user i liked a list

of different kinds of items {j1, j2, j3, j4}. Because of the diversity
of items liked by user i , their representation vectors (vj1 ,vj2 ,vj3
and vj4 ) form two clusters in the space. As a result, the fixed user

representation ui resides between the two clusters in the space.

In this case, a system employing fixed user representations will

recommend item s to user i instead of item j or item k . Although
vs is closer to ui than vj or vk in the space, it is obvious that either

item j or item k is a much more reliable recommendation than item

s . One may increase the representation dimensionality to overcome

the restriction but will make item representations more scattered

in the space and cause a huge increase of model parameters.

Moreover, for most of current deep RS, interpreting its recom-

mendations is also difficult and demanding [12, 26]. Despite the

effectiveness of representation vectors for predicting interactions,

these vectors reside in latent spaces and are not understandable. In

order to enhance transparency and trust in the recommendation

process, an increasing need of RS is to provide not only accurate

but also interpretable recommendations. This is particularly im-

portant in a business-to-business setting, where recommendations

are generated for experienced sales staff and not directly for the

end-client.

In this paper, in order to model representations of users to ex-

press their diverse interests and build a recommendation model

capable of interpreting its recommendations, we develop MARS:

Memory Attention-Aware Recommender System. First of all, MARS

exploits the power of deep learning to learn representations of items

from the item content. More importantly, motivated by the obser-

vation of user behaviors, we facilitate a memory component and

a novel item-level attention mechanism to devise a deep adaptive
user representation. Unlike fixed user representations, adaptive user
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Figure 1: A fixed user representation ui fails to express user
i’s diverse interests. Adaptive user representations dynami-
cally adapt to relevant items.

representations dynamically adapt to locally activated items. As

shown in Figure 1, for a candidate item j, an adaptive user repre-
sentation uji dynamically adapts to locally activated items: j1 and

j2. To recommend item k , another adaptive user representation uki
adapts to relevant items like j3 and j4. The concept of adaptive user
representation can be defined as :

Definition 1. (Adaptive User Representation). For a user i
and an item list: L = {j1, j2, ..., jni } with ni items liked by the
user, in order to recommend a candidate item j, an adaptive user
representation dynamically adapts to items in L which are highly
relevant to item j.

The contributions of this work can be summarized as follows:

• Adaptive User Representations: To the best of our knowl-
edge, we are the first to introduce a deep end-to-end rec-

ommendation model to learn adaptive user representations.
Especially, a memory component is utilized to capture users’

interests in an end-to-end fashion. An attentional mecha-

nism is facilitated to handle the diversities of users’ interests.

• An Interpretable Model: Benefiting from the item-level

attention mechanism, MARS has a good interpretability to

explain why an item gets recommended to a user by showing

relevant items liked by the user.

• Strong Performance: In the experiments, we demonstrate

that MARS can significantly outperform strong baselines on

three real-world datasets.

2 BACKGROUND AND PRELIMINARIES
In this section, we present the background and preliminaries of this

study. Throughout the paper, we denote scalars by either lowercase

or uppercase letters, vectors by boldfaced lowercase letters, and

matrices by boldfaced uppercase letters.

We consider the most common scenario with implicit feedbacks.

For implicit feedbacks, only positive observations, such as clicks,

purchase or likes, are available. The non-observed user-item pairs,

e.g. a user has not bought an item yet, are a mixture of real negative

feedback (the user is not interested in buying the item) and missing

values (the user might want to buy the item in the future).

Although, in different recommendation scenarios, the item con-

tent can be in distinct formats, such as text or images, we limit

our study to recommend items associated with the textual content,

which usually describe important characteristics of items. How-

ever, note that the proposed model can be easily generalized to

recommend different types of items, such as songs or videos.

Let us denote a set of users asU and an item set I. Each item j ∈
I is associated with a document Y j = {w1,w2, ...,wnj } containing
nj words. For a user i ∈ U, let I+i = {I1, I2, ..., Ini } denote the

set of ni items liked by user i and I−
i denote the remaining items.

Furthermore, all remaining items liked by user i except item j,
denoted as I+i /j, are utilized to model user representations.

Finally, we define the recommendation problem which we study

in this paper as follows:

Definition 2. (Problem Definition). Given user and item sets:
U and I, for each user i ∈ U, we aim to recommend a ranked list of
items from I−

i that are of interests to the user.

3 PROPOSED MODEL
The overall architecture of MARS is shown as in Figure 3. Inspired

by the recent success of Convolutional Neural Network (CNN) [15]

in various tasks [13, 14], we first facilitate two CNNmodels to serve

for different purposes. One CNN model, denoted as fuser (:;Ψ) and
parameterized by Ψ, is designed to learn a memory component C
from documents associated with items liked by user i . The other
CNN model, denoted as fitem (:;Ω) and parameterized by Ω, is

responsible for learning an representation vj of item j . Later, a novel
item-level attention mechanism is proposed to build on the top of

the memory component to learn a deep adaptive user representation
uji . At last, with uji and vj , user i’s preference score of item j can
be derived.

3.0.1 CNN Models. In this subsection, since fuser (:;Ψ) and
fitem (:;Ω) only differ in their inputs, we focus on illustrating the

process of fitem (:;Ω) in detail. The same process is applied for

fuser (:;Ψ) with similar layers. The architecture of CNN used in

this paper is shown in Figure 2.

Given an item j and its associated documentY j = {w1,w2, ...,wnj },
in order to make use of complex lexical semantics within Y j

, we

first utilize a word embedding layer to transform the document into

a dense numeric matrix Π. Formally, the word embedding layer is

defined as H : V → Re
, where V represents the dictionary of

words. We map each word in Y j
into an e dimensional vector as:

Π = H(w1) ⊕ H(w2)⊕, ..., ⊕H(wnj ), (1)

where Π ∈ Re×nj
, each column corresponds to a vector for a word

in the document Y j
. Note that Π is randomly initialized and is

further trained through the optimization process.

Following the word embedding layer, a convolutional layer is

built to extract important contextual features that can represent

items. A convolution layer consists of д neurons in total, each of

which applies convolution operator on Π as:

z = ReLU (Π ∗ K + b). (2)
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Here symbol ∗ is the convolution operator, K ∈ Re×c
and b ∈ R

are a convolutional filter and a bias term, respectively, and c denotes
the window size of the convolutional filter. We use ReLU [20] as

our activation function.

After the convolutional layer, z ∈ R(nj−c+1)×1
becomes a vector

consisting of nj − c + 1 contextual features captured by the con-

volutional kernel K . To extract the most important feature value

from z, we apply a max-pooling operation on z as shown in Figure

2. With д neurons in the convolutional layer, we obtain a column

vector sj consisting of д important contextual features as:

sj = {max(z1),max(z2), ...,max(zд)}. (3)

At last, contextual features sj of item j is projected to aK-dimensional

space through a fully connected layer as:

vj = tanh(Ŵsj + ˆb), (4)

where Ŵ ∈ RK×д
and

ˆb ∈ R. Since the document Y j
is associated

with item j and characterizes item j, vj ∈ RK×1
can be regard as a

deep representation of item j.

3.1 Memory Component
A set of items liked by a user naturally reflects the user’s interests.

However, it is not easy to summarize diverse items liked by user i
into a user representation. As discussed in the introduction section,

a fixed user representation fails to convey diverse interests of a

user.

Different from previous methods [4, 36], in order to learn a deep

and accurate user representation, as shown in Figure 3, we first

propose to first utilize fuser (:;Ψ) to learn a memory component

for items in I+i /j as:

C = { fuser (Y 1
;Ψ), fuser (Y 2

;Ψ), ..., fuser (Yni−1
;Ψ)}

= {v1, v2, ..., vni−1}, (5)

Each column of C ∈ RK×(ni−1)
corresponds to a representation

of an item in I+i /j. Hence, the matrix C characterizes the user’s

interests.

3.1.1 Item-level Attention. Although the memory component

C stores all item information of user i , our goal is to learn a deep

representation of user i based on C. As discussed in the Introduction
section, items in I+i /j are diverse and only a subset of I+i /j is
relevant to item j. Motivated by the intuition above, we introduce

an item-level attention mechanism on the memory component to

capture items inI+i /j relevant to item j . To do so, as shown in Figure

3, for a given item j, we first feed its corresponding document Y j

into fitem (:;Ω) to derive an item representation as:

vj = fitem (Y j
;Ω), (6)

where vj ∈ RK×1
is a column vector serving as an representation

of item j.
More items in I+i /j with high relevance scores or locally acti-

vated to item j mean that the user i is more likely interested in

j. Thus, with the memory component C and vj , we measure the

relevance score or activation degree between vj and each item rep-

resentation in C = {v1, v2, ..., vni−1} ∈ RK×(ni−1)
by taking the

inner product followed by a softmax as:

α i j = so f tmax(C⊺v j ). (7)

We propose a memory attention-aware recommender system 
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Output Layer
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z1 zg

sj

Π

Figure 2: Our CNN architecture used for learning item rep-
resentations.

Defined in this way, α i j ∈ R(ni−1)×1
is an attention column vector

of user i for item j . A larger value in α i j
indicates higher relevance

between item j and a corresponding item in I+i /j. A larger value

means a higher weight for deriving interests of user i for item j.

3.1.2 Deep Adaptive User Representations. A fixed user repre-

sentation is unable to express diverse interests of the user. In order

to uncover a user’s interests in a candidate item j, we introduce a
deep adaptive user representation. The proposed user representation
is dependent on the candidate item j and non-fixed. By focusing on

items in I+i /j which are highly activated, it is able to model users’

diverse interests.

With the matrix C and the attention vectorα i j
, a deep attention-

aware adaptive user representation is formed by a weighted sum of

C = {v1, v2, ..., vni−1} as:

uji = Cα i j . (8)

In Eq. (8), the attention vectorα i j
weights each item representation

in C. An adaptive user representation uji is obtained by adaptively

focusing on items in I+i /j activated by item j.

3.2 Pair-wise Learning and Prediction
Recall that an adaptive user representation uji is obtained by placing

an attentional vector on our memory component. Given the rep-

resentation of a candidate item vj , one can compute the user i’s
preference score over item j as:

ri j = uji
⊺
vj . (9)

Here, we derive a preference score ri j that reflects the preference of
the user for the item. Usual approaches for item recommendations

are to rank items by sorting them according to the scores. However,

these approaches treat recommendation tasks as regression prob-

lems and are not optimized for ranking. To train MARS optimized

for ranking, inspired by BPR [22], we formalize the training data
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Figure 3: The architecture of MARS.

D as:

D = {(i,I+i /j, j, j ′)|i ∈ U ∧ j ∈ I+i ∧ j ′ ∈ I−
i }, (10)

where i , j and j ′ are uniformly sampled form U, I+i and I−
i , re-

spectively. Note that for each quadruple (i,I+i /j, j, j ′) in D, I+i /j
is a different sampled subset of I+i . The sampling strategy is a

common practice for pair-wise recommendation learning. [22] also

shows that training on all item pairs can result in slow and poor

convergence.

Similar to BPR, instead of scoring single items, we use item pairs

to model a user u’s preference of item j over item j ′ as:

L = − 1

|D |
∑
(i,I+i /j, j, j′)∈D {ln(σ (uji

⊺
vj − uj

′

i
⊺

vj′))

+λuuji
⊺

uji + λuuj
′

i
⊺

uj
′

i + λvvj ⊺vj + λvvj′⊺vj′}, (11)

where uji and uj
′

i denote adaptive user representations of user i for
item j and item j ′; vj and vj′ stand for representations of item

j and item j ′; λu and λv are regularization terms. The sigmoid

function σ maps user i’s preference score of item j over item j ′ into
probabilities.

MARS is trained by minimizing Eq. (11). The derivatives of pa-

rameters in different layers can be computed by applying differen-

tiation chain rule [23]. We optimize the model through RMSprop

[31] over a batch of tuple {i,I+i /j, j, j ′}.
Overall, the training procedure of MARS is summarized in Algo-

rithm 1. During the test, given a user i’s past likes I+i , the final item

recommendation list for user i is given according to the following

ranking criterion:

i : j1 ≽ j2 ≽ ... ≽ jn ⇒ ri, j1 > ri, j2 > ... > ri, jn . (12)

4 EXPERIMENTS
4.1 Datasets
We evaluate the proposed method on three real-world datasets with

different kinds of items as the following:

Algorithm 1: Training procedure of MARS

Input: Training set:
D := {(i, I+i /j, j, j′) |i ∈ U ∧ j ∈ I+i ∧ j′ ∈ I−

i }, number of

epochs T , batch sizem, window size c , number of

convolutional neurons д
Output:Model’s parameter set: Θ = {u, v, Ω}
for t = 1, 2, · · · , T do

Generate the t th batch of sizem by uniformly sampling from U,

I+i and I−
i ;

Calculate the memory component C according to Eq. (5);

Calculate vj and vj′ according to Eq. (6);

Calculate α i j
and α i j′

according to Eq. (7);

Calculate uji and uj
′
i according to Eq. (8);

Calculate L according to Eq. (11);

Estimate gradients
∂L
∂Θt by back propagation;

Calculate Θt+1 with RMSprop [31];

end
return ΘT ;

• Yahoo! Movies: it consists of users rating movies on a scale

of 1-5 with a short synopsis. To be consistent with the im-

plicit feedback setting, as in [8], we extract only positive

ratings (rating 5) for training and testing. After removing

movies without a synopsis and users with less than 3 ratings,

we obtain a dataset that contains 7,642 users, 11,915 items,

and 221,367 positive ratings with 0.24% density.

• AmazonVideo Games: it is collected by [6, 19] and contains
game descriptions and ratings from 1 to 5. Similarly, we

transformed it into implicit data, where each entry is marked

as 0 or 1 indicating whether the user has rated the games.

After removed games with descriptions and users with less

than 10 ratings, the resulting dataset contains 47,063 video

games and 2,670 users with 0.037% density.

• Amazon Movies and TV : this dataset is also collected by

[6, 19]. Similarly, items in this dataset are movies and TV

shows available on Amazon.com. Users rate them from 1 to 5.

In order to transform explicit ratings into implicit feedbacks,

we only preserve ratings with the value of 5 and treat them

as positive feedbacks. Other entries are marked as negative

ones. By removing userswith less than 10 ratings, we obtain a

dataset with 22,147 users, 178,086 items, and 0.0128% density.

Note that, compared with the previous two datasets, this is

a much harder dataset due to its sparsity.

The synopses and descriptions of items serve as item contents.

After removing stop words and frequencies of the word less than 5,

the vocabulary sizes of Yahoo! Movies, Amazon Video Games and
Amazon Movies and TV are 33,195, 25,035 and 68,919, respectively.

All three datasets are publicly available
1
.

4.2 Baselines
To validate the effectiveness of MARS, we compare MARS with

seven state-of-the-art baseline models. Among them, BPR and NCF

completely ignore the textual content associated with items and

1Yahoo! Movies can be downloaded at https://webscope.sandbox.yahoo.com;

Amazon Video Games and Amazon Movies and TV are available at

https://snap.stanford.edu/data/web-Amazon.html
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all other baselines utilize the content information to boost their

performances.

• BPR [22]
2
: We use Bayesian Personalized Ranking based

Matrix Factorization, which is based on users’ pair-wise

preference, as the single collaborative filtering method. BPR

completely ignores the usage of item content.

• NCF [8]
3
: Neural Collaborative Filtering fuses matrix fac-

torization and Multi-Layer Perceptron (MLP) to learn from

user-item interactions. The MLP endows NCF with the abil-

ity of modelling non-linearities.

• CMF [29]
4
: Collective Matrix Factorization simultaneously

factorizes multiple matrices to incorporate different sources

of information. We factorize the rating matrix and a matrix

consisting of bag-of-words features. Note that we follow the

work of [11] to adapt CMF for implicit feedbacks.

• CTR [34]
5
:CollaborativeTopicRegression is based on topic

modeling techniques and shows very good performance on

recommending articles.

• DeepFM [28]
6
: This baseline combines the power of factor-

ization machine [21] for recommendations and deep learning

for feature learning in a neural network. We concatenate a

user id and bag-of-words features of each item for training

and predictions.

• CDL [35]
7
: Collaborative Deep Learning is a recently pro-

posed deep recommender system. It tightly couples a Bayesian

formulation of the stacked denoising auto-encoders and

Probabilistic Matrix Factorization (PMF) [24]. The middle

layer of auto-encoders serves as a bridge between auto-

encoders and probabilistic matrix factorization.

• Wide & Deep [4]
8
: This model is proposed to jointly train

wide linear models and deep neural networks to combine

the benefits of memorization and generalization for recom-

mender systems. Similar to DeepFM, a user id and bag-of-
words features of each item are combined to be fed into both

the "wide" and "deep" parts of the model.

All baseline models can be categorized into three groups: (1) BPR
andNCF: these twomodels learn only from users’ implicit feedback

and ignore the textual content; (2) CMF and CTR: this group in-

cludes two "shallow" recommendation models; (3) DeepFM, CDL
andWide & Deep: three state-of-the-art deep learning based mod-

els are included to be compared with MARS.

4.3 Experimental Setup
Following [36], we evaluate the models on held-out user-item likes.

For each dataset, to evaluate MARS and baselines in a sparse setting,

we randomly select only 30% items associated with each user to

form the training set. All the remaining are split evenly to serve as

the validation and test set. We repeat the evaluation five times with

different randomly selected training sets. The average performances

are reported in the following sections. For each dataset, to achieve

2
Code: https://github.com/zenogantner/MyMediaLite

3
Code: https://github.com/hexiangnan/neural_collaborative_filtering

4
Code: https://github.com/david-cortes/cmfrec

5
Code: https://github.com/blei-lab/ctr

6
Code: https://github.com/ChenglongChen/tensorflow-DeepFM

7
Code: http://www.wanghao.in/code/cdl-release.rar

8
Code: https://www.tensorflow.org/tutorials/wide_and_deep

the best performance for each individual model, we conducted

carefully parameter study in Section 4.4.

Since we expect RS to not only be able to retrieve relevant items

out of all available items but also provide a ranking where items of

users’ interests are ranked in the top. Therefore, for evaluation, we

use two metrics to evaluate the proposed model and the baselines.

The first metric we use is recall@N . The recall is often used to

measure how well a model can retrieve relevant items out of all

available items. The recall@N for each user is then defined as:

recall@N =
# items the user likes among the top N

total number of items the user likes

. (13)

Another evaluation metric we use is Mean Average Precision (MAP).

The MAP is employed to measure the ranking performances of

MARS and baselines. The definition of MAP is given as:

MAP =
1

|U|
∑
i ∈U

AveP(i),

AveP(i) = 1

|K ′ |

K ′∑
k=1

Pi (k)reli (k), (14)

where Pi (k) represents the precision of the top k products recom-

mended to user i; reli (k) denotes whether the kth item has inter-

acted with user i in the test set. Similar to [32], we set the cut-off

point K ′
as 500 for each user.

4.4 Hyper-Parameter Study
Although different models have different hyper-parameters, some

hyper-parameters are common and play important roles on model

performances. In this section, we optimize the performances of

MARS and the baselines by studying the impacts of several impor-

tant hyper-parameters on the validation sets of Yahoo! Movies and
Amazon Video Games. The learning rate and batch size are empiri-

cally set as 0.001 and 512 for MARS. All the other hyper-parameters

for baselines follow the original papers.

4.4.1 Dimension of Latent Vectors. A low-dimensional latent

vector of users and items has a limitation of modeling complex

user-item interactions. However, a high-dimensional vector may

harm the generalization of the model and increases the number

of parameters. In order to optimize the performances of MARS as

well as the baselines, we conduct an experiment to investigate the

impacts of the dimension of latent vectors. The dimension of latent

vectors is searched from [5, 10, 20, 50, 70, 100] via validation sets

from Yahoo! Movies and Amazon Video Games. As shown in Figure

4, different models reach their own best performances at different

dimensions of latent vectors. MARS achieves its best performances

when its dimensions are set to 50 and 70 on the dataset of Yahoo!
Movies and Amazon Video Games, respectively.

4.4.2 Regularization Terms. In order to combat the over-fitting

problem, many models place L2 regularization terms (λu and λv )
on the representation vectors of users and items. We search the

two hyper-parameters from [0.001, 0.002, 0.005, 0.01, 0.02, 0.05] to
optimize performances of MARS and the baselines. In Figure 5 and

6, we can see that MARS reaches its best performances when both

λu and λv are set to 0.002 on the two datasets. Note that instead

https://github.com/zenogantner/MyMediaLite
https://github.com/hexiangnan/neural_collaborative_filtering
https://github.com/david-cortes/cmfrec
https://github.com/blei-lab/ctr
https://github.com/ChenglongChen/tensorflow-DeepFM
http://www.wanghao.in/code/cdl-release.rar
https://www.tensorflow.org/tutorials/wide_and_deep
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Figure 4: The dimension of latent vectors of users and items
is varied from 5 to 100 to investigate its impacts on the per-
formances.
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Figure 5: The L2 regularization term λu is varied from 0.001
to 0.05 to investigate its impacts on the performances.
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Figure 6: The L2 regularization term λv is varied from 0.001
to 0.05 to examine its impacts on the performances.

of L2 regularization, NCF and DeepFM employ Dropout [30] to

prevent over-fitting. And, Wide & Deep uses the L1 regularization.

4.4.3 Network Architecture. To find a good network shape for

MARS, we also investigate two hyper-parameters: e and д, each of

which denotes the dimension of word embeddings and the number

of convolutional filters, respectively. We perform a grid search on

the two hyper-parameters on the validation set of Yahoo! Movies. We

found MARS can achieve good performances when we set e = 300

and д = 64. For NCF, as suggested in the original paper [8], we

employ a three-layer MLP with the shape of (32, 16, 8). In Wide &

Deep, a three-layer MLP with the shape of (1024, 512, 256) is used
in the "deep" part. In DeepFM, as in [28], we build a MLP network

with the shape of (200, 200, 200).

4.4.4 Other Hyper-Parameters. For CMF, bag-of-words vectors
as in [35] for each item forms a matrix to be simultaneously fac-

torized with the rating matrix. By performing the grid search, we

optimize the performances of CMF by setting the weights for the

rating matrix and content matrix to 5 and 1. α of CTR is set as 0.1.

To optimize the performance of CDL, we perform a grid search on

the hyper-parameters: λn , λw and L.

4.5 Experimental Results
Table 1 illustrates the experimental results for MARS and seven

state-of-the-art baselines on all three datasets. Overall, MARS im-

proves the best baseline by 20.8% and 13.0% in terms of recall@50

and MAP, respectively, averaging on all three datasets.

These experiments reveal a number of interesting points:

• Regardless of the data sets and the evaluation metrics, our

MARS always achieves the best performance. This shows

that by leveraging the power of adaptive user representations,
MARS can better model users’ diverse interests, resulting in

better recommendations.

• Besides CMF, models considering the texutal content gen-

erally give better results than models ignoring the textual

content. It validates the usefulness of the textual content.

• Deep models perform better than "shallow" ones in our ex-

periments. This observation indicates the advantages of deep

features extracted by various deep models.

• Among all baseline models, Wide & Deep shows itself as a

strong performer and defeats all other baselines in all three

datasets in terms of recall@50 andMAP. It calls us to combine

a deep model with a "shallow" one for improvements.

• Because of the sparsity differences, we also observe that the

performances of all models degrade as the dataset become

sparser.

5 MODEL ANALYSIS
In this section, we conduct experiments to answer the following

questions:

Q1: How much does MARS benefit from taking the textual content

associated with items into consideration?

Q2: How much do the incorporated CNN models help MARS?

Q3: Do the proposed adaptive user representations and attention

mechanism assist MARS in achieving better performances?

In order to answer questions above, we include three variants of

MARS: MARS w/o Text, MARS+Embed and MARS w/o Att as the

following:

• MARS w/o Text: To answer Q1, instead of learning item

embeddings from the textual content, we ignore the con-

tent information and randomly initialize item embeddings

based on a Gaussian distribution. After the initialization,

embeddings of items are optimized during the training.

• MARS+Embed: In order to answer Q2, in this variant, we

replace the CNNmodels by simply averaging on embeddings

of words contained each document associated with every

item.

• MARS w/o Att: ForQ3, we include a variant of MARS with-

out the proposed attention mechanism. To do so, we fix all

values of α as one. In this way, for a user i , the attention
vector is canceled and representation of user i becomes fixed

and is not adaptive to relevant items liked by user i .
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Table 1: Performance comparison with baselines. The best performance is indicated in bold (higher is better). The standard
deviation is shown in parentheses.

Dataset BPR NCF CMF CTR DeepFM CDL

Wide &

Deep

MARS

MARS
vs. best

Yahoo! Movies
recall@50

0.1756

(0.001)

0.1649

(0.008)

0.1532

(0.002)

0.2067

(0.002)

0.2416

(0.002)

0.2534

(0.001)

0.2611

(0.001)

0.3230
(0.001) 23.7%

MAP

0.1045

(0.001)

0.0973

(0.002)

0.0894

(0.003)

0.1223

(0.002)

0.1389

(0.001)

0.1452

(0.001)

0.1523

(0.002)

0.1692
(0.002) 11.1%

Amazon
Video Games

recall@50

0.0716

(0.001)

0.0849

(0.002)

0.0528

(0.002)

0.0827

(0.003)

0.1086

(0.001)

0.1034

(0.004)

0.1123

(0.001)

0.1337
(0.002) 19.1%

MAP

0.0625

(0.002)

0.0654

(0.001)

0.0517

(0.002)

0.0658

(0.001)

0.0815

(0.004)

0.0746

(0.005)

0.0821

(0.003)

0.0934
(0.003) 13.8%

Amazon
Movies and TV

recall@50

0.0643

(0.001)

0.0604

(0.002)

0.0496

(0.002)

0.0711

(0.002)

0.0935

(0.001)

0.0901

(0.001)

0.1001

(0.003)

0.1196
(0.002) 19.5%

MAP

0.0543

(0.001)

0.0551

(0.001)

0.0493

(0.002)

0.0659

(0.004)

0.0771

(0.002)

0.0746

(0.004)

0.0785

(0.001)

0.0895
(0.002) 14.0%
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Figure 7: Performance comparison with variants of MARS on the three datasets in terms of recall@50 and MAP.

As shown in Figure 7, MARS w/o Text performs the worst, regard-

less of datasets and evaluation metrics. Compared with MARS w/o

Text, MARS+Embed gains improvements in all three datasets. It fur-

ther validates the advantages of incorporating the textual content

for RS. However, averaging on embeddings of words associated with

items is not an ideal method to make use of information existing in

the textual content. Powered by deep features extracted by the CNN

models from the textual content, MARS w/o Att achieves additional

improvements over MARS+Embed. In terms of MAP, MARSw/o Att

improves MARS+Embed by 12.0%, 15.73% and 26.82% on the dataset

of Yahoo! Movies, Amazon Video Games and Amazon Movies and
TV, respectively. However, MARS defeats MARS w/o Att in terms

of recall@50 and MAP on all three datasets. This demonstrates

that, with the proposed attention mechanism and the incorporated

CNN models, MARS is able to learn an effective adaptive user repre-
sentation and leverage the rich information existing in the textual

content.

6 A CASE STUDY ON THE
INTERPRETABILITY OF MARS

To gain a better insight into the interpretation ability of MARS, we

conduct a qualitative experiment in this section. We run MARS on

the dataset of Yahoo! Movies and examine two example users. For

each of them, we show two recommended movies in the second

column of Table 2. And the top three movies with the highest atten-

tion values shown in the third column explain why corresponding

movies in the second column are recommended by MARS. For ex-

ample, MARS recommends Sleepless in Seattle to User I because
movies, such as Where the Heart Is and When Harry met Sally..., are
locally activated by high attention values. Besides romance movies,

MARS also discovers that User I is interested in action movies be-

cause of his or her past interactions with X2: X-Men United and Top
Gun. As a result, MARS recommends Enemy at the Gates. For User II,
MARS recommends two movies of different genres: The Lord of the
Rings: The Two Towers and Kill Bill Vol. 1 (2003). It is because movies

watched by User II, such as Pirates of the Caribbean: The Curse of
the Black Pearl and Donnie Brasco (1997), indicate the user is a fan
of fantasy and action movies. Overall, this case study shows that

MARS is not only able to capture users’ diverse interests but also

has a great interpretability to explain its recommendation results.

7 RELATEDWORK
Our work is closely related to two areas: deep learning based RS

and attentional mechanisms employed for RS. We will first give

a brief review on deep learning based RS. Then, we covers works

utilizing attentional mechanisms for RS.

7.1 Deep Recommender Systems
Several studies [18, 37, 47] recently propose deep learning based

models for the recommendation tasks. One pioneer work [25] in this

area uses a Restricted BoltzmannMachines (RBM) [9] based method

tomodel users using their rating preferences. Followed by this trend,

[41] utilize denoising Auto-encoders to learn latent vectors of users
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Table 2: A case study on the interpretability of MARS. The second column displays the top 2 movies recommended by MARS
to User I and User II. The third column includes the top three movies with highest attention values. The actual attention value
is shown in parentheses.

Recommended Movies Because you watched

User I Sleepless in Seattle
1. Where the Heart Is (0.03)
2. When Harry Met Sally... (0.02)
3. Ronnie & Julie (0.02)

Enemy at the Gates
1. X2: X-Men United (0.02)

2. Top Gun (0.015)

3. The Matrix Reloaded (0.014)

User II The Lord of the Rings: The Two Towers
1. Pirates of the Caribbean: The Curse of the Black Pearl (0.03)
2. Harry Potter And the Chamber of Secrets (0.02)
3. Harry Potter and the Sorcerer’s Stone (0.02)

Kill Bill Vol. 1
1. Donnie Brasco (0.03)
2. The Italian Job (0.021)
3. S.W.A.T. (0.02)

and items from the rating matrix. [8] and [7] leverage Multilayer

Perceptron (MLP) to learn from user-item interactions. In [47], a

CF-based Neural Autoregressive Distribution Estimator (CF-NADE)

model is proposed for collaborative filtering tasks. However, all

works above differ fromMARS because they ignore the rich content

associated with items.

Some studies also propose to utilize deep learning techniques

to build a content-based recommender system. In [32, 39], authors

introduce Convolutional Neural Networks (CNN) [15] and Deep

Belief Network (DBN) [10] to learn users’ preferences from music

data. [1, 35, 36] propose a deep recommendation model learning

from the textual content associated with items. [5, 38] propose

deep recommender systems for video and point-of-interest recom-

mendation. [43, 45, 46] investigate how to leverage the multi-view

information to improve the quality of recommender systems. In

[16], they propose a model which is able to simultaneously predict

ratings and generate abstractive tips. For more works on the deep

learning based RS, readers can refer to a survey paper [44].

7.2 Attentional Mechanisms for RS
Recently, attentional mechanisms attract considerable interests of

researchers, owing to their ability of modeling users’ attention. A

number of works [33] employing attentional mechanisms to build

RS have been proposed. [2] introduces an attentional mechanism

utilizing reviews. In [42], authors propose a neural attention net-

work to model the importance of each feature interaction from

data. [17] proposed an attentional mechanism based model to learn

dynamics of user interests from a sequence of items. To build an

interpretable recommendation model, [27] proposes to utilize an

attentional method to extract text form reviews. For the purpose of

capturing editors’ dynamic criteria for selecting news articles, [40]

proposes a dynamic attentional method.

To the best of our knowledge, two methods close to ours are

presented in [3] and [48]. Although the twoworks proposed to place

attentional mechanisms on items, none of them are end-to-end

models. It means that they use either hand-crafted or pre-trained

features. As a result, item features are not optimized for the task of

recommendation. It leads to an inaccurate attentional mechanism.

In contrast, MARS learns item features and users’ attention in

an end-to-end fashion. Therefore, compared with them, MARS

achieves better item features and more accurate attention of users.

In terms of interpretability, a deep recommender system with

interpretability is presented in [27]. However, they interpret recom-

mendations based on reviews written by users. In contrast, we in-

terpret recommendations based on items purchased/liked by users.

In fact, interpreting recommendations based on purchased items is

more popular in real life (as Amazon or Netflix does).

Although all neural network based approaches above are deep

content-based recommender systems, they differ from MARS be-

cause all of works above are unable to learn an adaptive user repre-
sentation in an end-to-end fashion.

8 CONCLUSIONS
Although deep learning based RS have shown promising results

in a variety of recommendation tasks, previous methods often fo-

cus on utilizing deep models for modeling item representations

and learning a fixed user representation. However, a fixed user

representation restrains models from modeling diverse interests

of users. Furthermore, while interpretability is demanded in many

recommendation scenarios, most of existing deep learning based

RS are unable to interpret their recommendation results.

In this paper, to tackle the problems and challenges above, we

present a Memory Attention-aware Recommender System (MARS)

model. With a proposed memory component and an item-level

attention mechanism, instead of modeling fixed deep user repre-

sentations, MARS learns a deep adaptive user representation. For
an item j and a set of items liked by user i , a deep adaptive user
representation can dynamically adapt to those items in the set which

are relevant item j. Owing to its adaptability, a deep adaptive user
representation can overcome the difficulty of modeling users’ di-

verse interests. Moreover, with the help of the proposed attention

mechanism, MARS is able to interpret its recommendation results

based on purchased items of users.

In the experiments, we demonstrate thatMARS achieves superior

performances by comparing with seven state-of-the-art methods

on three real-world datasets. Also, we demonstrate that MARS can

not only overcome the difficulty of modeling diverse interests of

users but also has a great interpretability.



MARS: Memory Attention-Aware Recommender System Conference’17, July 2017, Washington, DC, USA

REFERENCES
[1] Trapit Bansal, David Belanger, and Andrew McCallum. 2016. Ask the gru: Multi-

task learning for deep text recommendations. In Proceedings of the 10th ACM
Conference on Recommender Systems. ACM, 107–114.

[2] Chong Chen, Min Zhang, Yiqun Liu, and Shaoping Ma. 2018. Neural Attentional

Rating Regression with Review-level Explanations. In Proceedings of the 2018
World Wide Web Conference on World Wide Web. International World Wide Web

Conferences Steering Committee, 1583–1592.

[3] Jingyuan Chen, Hanwang Zhang, Xiangnan He, Liqiang Nie, Wei Liu, and Tat-

Seng Chua. 2017. Attentive Collaborative Filtering: Multimedia Recommendation

with Item-and Component-Level A ention. In Proceedings of the 40th International
ACM SIGIR conference on Research and Development in Information Retrieval.

[4] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra,

Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, et al.

2016. Wide & deep learning for recommender systems. In Proceedings of the 1st
Workshop on Deep Learning for Recommender Systems. ACM, 7–10.

[5] Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep neural networks

for youtube recommendations. In Proceedings of the 10th ACM Conference on
Recommender Systems. ACM, 191–198.

[6] Ruining He and Julian McAuley. 2016. Ups and downs: Modeling the visual

evolution of fashion trends with one-class collaborative filtering. In Proceedings
of the 25th International Conference onWorld Wide Web. International WorldWide

Web Conferences Steering Committee, 507–517.

[7] Xiangnan He and Tat-Seng Chua. 2017. Neural Factorization Machines for

Sparse Predictive Analytics. In Proceedings of the 40th International ACM SIGIR
Conference on Research and Development in Information Retrieval, Shinjuku, Tokyo,
Japan, August 7-11, 2017. 355–364.

[8] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng

Chua. 2017. Neural collaborative filtering. In Proceedings of the 26th International
Conference on World Wide Web. International World Wide Web Conferences

Steering Committee, 173–182.

[9] Geoffrey Hinton. 2010. A practical guide to training restricted Boltzmann ma-

chines. Momentum 9, 1 (2010), 926.

[10] Geoffrey Hinton, Simon Osindero, and Yee-Whye Teh. 2006. A fast learning

algorithm for deep belief nets. Neural computation 18, 7 (2006), 1527–1554.

[11] Yifan Hu, Yehuda Koren, and Chris Volinsky. 2008. Collaborative filtering for

implicit feedback datasets. In 2008 Eighth IEEE International Conference on Data
Mining. Ieee, 263–272.

[12] Dietmar Jannach, Markus Zanker, Alexander Felfernig, and Gerhard Friedrich.

2010. Recommender systems: an introduction. Cambridge University Press.

[13] Donghyun Kim, Chanyoung Park, Jinoh Oh, Sungyoung Lee, and Hwanjo Yu.

2016. Convolutional matrix factorization for document context-aware recom-

mendation. In Proceedings of the 10th ACM Conference on Recommender Systems.
ACM, 233–240.

[14] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifica-

tion with deep convolutional neural networks. In Advances in neural information
processing systems. 1097–1105.

[15] Yann LeCun, Bernhard E Boser, John S Denker, Donnie Henderson, Richard E

Howard, Wayne E Hubbard, and Lawrence D Jackel. 1990. Handwritten digit

recognition with a back-propagation network. In Advances in neural information
processing systems. 396–404.

[16] Piji Li, Zihao Wang, Zhaochun Ren, Lidong Bing, and Wai Lam. 2017. Neural

Rating Regressionwith Abstractive Tips Generation for Recommendation. (2017).

[17] Pablo Loyola, Chen Liu, and Yu Hirate. 2017. Modeling User Session and Intent

with an Attention-based Encoder-Decoder Architecture. In Proceedings of the
Eleventh ACM Conference on Recommender Systems. ACM, 147–151.

[18] Chun-Ta Lu, Lifang He, Hao Ding, Bokai Cao, and S Yu Philip. 2018. Learning from

Multi-View Multi-Way Data via Structural Factorization Machines. In Proceedings
of the 2018 World Wide Web Conference on World Wide Web. International World

Wide Web Conferences Steering Committee, 1593–1602.

[19] Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton Van Den Hengel.

2015. Image-based recommendations on styles and substitutes. In Proceedings
of the 38th International ACM SIGIR Conference on Research and Development in
Information Retrieval. ACM, 43–52.

[20] Vinod Nair and Geoffrey E Hinton. 2010. Rectified linear units improve re-

stricted boltzmann machines. In Proceedings of the 27th International Conference
on Machine Learning (ICML-10). 807–814.

[21] Steffen Rendle. 2012. Factorization Machines with libFM. ACM Trans. Intell. Syst.
Technol. 3, 3, Article 57 (May 2012), 22 pages.

[22] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.

2009. BPR: Bayesian personalized ranking from implicit feedback. In Proceedings
of the twenty-fifth conference on uncertainty in artificial intelligence. AUAI Press,
452–461.

[23] David E Rumelhart, Geoffrey E Hinton, Ronald J Williams, et al. 1988. Learning

representations by back-propagating errors. Cognitive modeling 5, 3 (1988), 1.

[24] Ruslan Salakhutdinov and Andriy Mnih. 2011. Probabilistic matrix factorization.

In NIPS, Vol. 20. 1–8.

[25] Ruslan Salakhutdinov, Andriy Mnih, and Geoffrey Hinton. 2007. Restricted Boltz-

mann machines for collaborative filtering. In Proceedings of the 24th international
conference on Machine learning. ACM, 791–798.

[26] J Ben Schafer, Joseph Konstan, and John Riedl. 1999. Recommender systems in

e-commerce. In Proceedings of the 1st ACM conference on Electronic commerce.
ACM, 158–166.

[27] Sungyong Seo, Jing Huang, Hao Yang, and Yan Liu. 2017. Interpretable Con-

volutional Neural Networks with Dual Local and Global Attention for Review

Rating Prediction. In Proceedings of the Eleventh ACM Conference on Recommender
Systems. ACM, 297–305.

[28] Carles Sierra (Ed.). 2017. Proceedings of the Twenty-Sixth International Joint
Conference on Artificial Intelligence, IJCAI 2017, Melbourne, Australia, August
19-25, 2017. ijcai.org. http://www.ijcai.org/Proceedings/2017/

[29] Ajit P Singh and Geoffrey J Gordon. 2008. Relational learning via collective matrix

factorization. In Proceedings of the 14th ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 650–658.

[30] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan

Salakhutdinov. 2014. Dropout: A simple way to prevent neural networks from

overfitting. The Journal of Machine Learning Research 15, 1 (2014), 1929–1958.

[31] Tijmen Tieleman and Geoffrey Hinton. 2012. Lecture 6.5-rmsprop: Divide the

gradient by a running average of its recent magnitude. COURSERA: Neural
networks for machine learning 4, 2 (2012), 26–31.

[32] Aaron Van den Oord, Sander Dieleman, and Benjamin Schrauwen. 2013. Deep

content-based music recommendation. In Advances in Neural Information Pro-
cessing Systems. 2643–2651.

[33] Tran Dang Quang Vinh, Tuan-Anh Nguyen Pham, Gao Cong, and Xiao-Li Li.

2018. Attention-based Group Recommendation. arXiv preprint arXiv:1804.04327
(2018).

[34] Chong Wang and David M Blei. 2011. Collaborative topic modeling for recom-

mending scientific articles. In Proceedings of the 17th ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 448–456.

[35] Hao Wang, Naiyan Wang, and Dit-Yan Yeung. 2015. Collaborative deep learning

for recommender systems. In Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. ACM, 1235–1244.

[36] Hao Wang, SHI Xingjian, and Dit-Yan Yeung. 2016. Collaborative recurrent

autoencoder: Recommend while learning to fill in the blanks. In Advances in
Neural Information Processing Systems. 415–423.

[37] Jun Wang, Lantao Yu, Weinan Zhang, Yu Gong, Yinghui Xu, Benyou Wang, Peng

Zhang, and Dell Zhang. 2017. Irgan: A minimax game for unifying generative

and discriminative information retrieval models. In Proceedings of the 40th In-
ternational ACM SIGIR conference on Research and Development in Information
Retrieval. ACM, 515–524.

[38] SuhangWang, Yilin Wang, Jiliang Tang, Kai Shu, Suhas Ranganath, and Huan Liu.

2017. What your images reveal: Exploiting visual contents for point-of-interest

recommendation. In Proceedings of the 26th International Conference on World
Wide Web. International World Wide Web Conferences Steering Committee,

391–400.

[39] Xinxi Wang and Ye Wang. 2014. Improving content-based and hybrid music

recommendation using deep learning. In Proceedings of the ACM International
Conference on Multimedia. ACM, 627–636.

[40] Xuejian Wang, Lantao Yu, Kan Ren, Guanyu Tao, Weinan Zhang, Yong Yu, and

Jun Wang. 2017. Dynamic attention deep model for article recommendation by

learning human editors’ demonstration. In Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. ACM, 2051–

2059.

[41] Yao Wu, Christopher DuBois, Alice X Zheng, and Martin Ester. 2016. Collabora-

tive denoising auto-encoders for top-n recommender systems. In Proceedings of
the Ninth ACM International Conference on Web Search and Data Mining. ACM,

153–162.

[42] Jun Xiao, Hao Ye, Xiangnan He, Hanwang Zhang, Fei Wu, and Tat-Seng Chua.

2017. Attentional factorization machines: Learning the weight of feature interac-

tions via attention networks. arXiv preprint arXiv:1708.04617 (2017).

[43] Fuzheng Zhang, Nicholas Jing Yuan, Defu Lian, Xing Xie, and Wei-Ying Ma.

2016. Collaborative knowledge base embedding for recommender systems. In

Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. ACM, 353–362.

[44] Shuai Zhang, Lina Yao, and Aixin Sun. 2017. Deep Learning based Recommender

System: A Survey and New Perspectives. arXiv preprint arXiv:1707.07435 (2017).
[45] Yongfeng Zhang, Qingyao Ai, Xu Chen, and W Croft. 2017. Joint representation

learning for top-n recommendation with heterogeneous information sources.

CIKM. ACM (2017).

[46] Lei Zheng, Vahid Noroozi, and Philip S Yu. 2017. Joint Deep Modeling of Users

and Items Using Reviews for Recommendation. In Proceedings of the Tenth ACM
International Conference on Web Search and Data Mining. ACM, 425–434.

[47] Yin Zheng, Bangsheng Tang, Wenkui Ding, and Hanning Zhou. 2016. A neural

autoregressive approach to collaborative filtering. arXiv preprint arXiv:1605.09477
(2016).

http://www.ijcai.org/Proceedings/2017/


Conference’17, July 2017, Washington, DC, USA L. Zheng et al.

[48] Guorui Zhou, Chengru Song, Xiaoqiang Zhu, Xiao Ma, Yanghui Yan, Xingya

Dai, Han Zhu, Junqi Jin, Han Li, and Kun Gai. 2017. Deep Interest Network for

Click-Through Rate Prediction. arXiv preprint arXiv:1706.06978 (2017).


	Abstract
	1 Introduction
	2 Background and Preliminaries
	3 Proposed Model
	3.1 Memory Component
	3.2 Pair-wise Learning and Prediction

	4 Experiments
	4.1 Datasets
	4.2 Baselines
	4.3 Experimental Setup
	4.4 Hyper-Parameter Study
	4.5 Experimental Results

	5 Model Analysis
	6 A case study on the interpretability of MARS
	7 Related Work
	7.1 Deep Recommender Systems
	7.2 Attentional Mechanisms for RS

	8 Conclusions
	References

