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Abstract—Multiple classifier system (MCS) has become a
successful alternative for improving classification performance.
However, studies have shown inconsistent results for different
MCSs, and it is often difficult to predict which MCS algorithm
works the best on a particular problem. We believe that the
two crucial steps of MCS - base classifier generation and
multiple classifier combination, need to be designed coordinately
to produce robust results. In this work, we show that for
different testing instances, better classifiers may be trained from
different subdomains of training instances including, for example,
neighboring instances of the testing instance, or even instances
far away from the testing instance. To utilize this intuition, we
propose Individualized Classifier Ensemble (ICE). ICE groups
training data into overlapping clusters, builds a classifier for
each cluster, and then associates each training instance to the
top-performing models while taking into account model types
and frequency. In testing, ICE finds the k most similar training
instances for a testing instance, then predicts class label of
the testing instance by averaging the prediction from models
associated with these training instances. Evaluation results on
49 benchmarks show that ICE has a stable improvement on a
significant proportion of datasets over existing MCS methods.
ICE provides a novel choice of utilizing internal patterns among
instances to improve classification, and can be easily combined
with various classification models and applied to many applica-
tion domains.

Index Terms—Classification, Multiple classifier system, Ensem-
ble Learning

I. INTRODUCTION

Multiple classifier system (MCS), including ensemble clas-
sifiers and mixture of experts, has established itself as an
effective and practical solution to address challenges in su-
pervised learning, such as functional complexity, insufficient
training data, high dimensionality of feature space, and noise
in training data, among others. Many excellent comprehensive
reviews on MCS algorithms are available [1]–[3].

Learning a MCS usually includes two critical steps: base
classifier generation, and multiple classifier combination, al-
though sometimes the two steps are intrinsically integrated.
Different MCS methods can be distinguished by how these
two steps are performed. According to model generation
strategies, existing MCS methods usually fall into one of

the following two categories: random methods and deliberate
methods. The former generates models by injecting random
perturbations into the training data or training process [4], [5].
In contrast, the latter attempts to generate multiple classifiers
in a more systematic, principled way, e.g., by iteratively re-
weighting the training instances with emphasis on previously
misclassified instances, a technique known as boosting [6],
or by first clustering the training instances and then learning
submodels from each cluster [7], [8]. According to model
combination strategies, MCS methods can also be grouped
into two categories: voting-based and learning-based. Most
popular ensemble methods (e.g., bagging and boosting) take a
(weighted) voting from all models in the pool. Other methods
attempt to learn a high-level model in order to determine
which model(s) should be selected for the prediction task,
or to learn a more complex function to combine the outputs
of all models in the pool. Learning-based model combination
algorithms include stacking, dynamic model selection, among
many others [9], [10].

Overall, ensemble approaches combining randomized model
generation and voting (e.g. bagging and random forest) have
been more successful / popular, probably due to their simplic-
ity and less over-fitting. On the other hand, it has been shown
that careful integration of deliberate models and learning-based
model combination can be very effective on specific problem
domains [11]. In particular, empirical studies suggest that
many classification problems consist of subdomains, which
can potentially benefit from constructing and selecting sub-
models [7], [8], [12]. The challenge, however, lies in whether
these subdomains can be corrected identified at training, and
whether the submodels can be correctly selected for individual
cases at prediction time.

Here, we design a general MCS framework, Individual-
ized Classifier Ensemble (ICE), with two key ideas. First,
it constructs a large pool of submodels that have low bias
when applied to appropriate instances. This is achieved by
applying a strong learner (in contrast to the high-bias, low-
variance models commonly used in a few ensemble methods)
to individual overlapping clusters of instances that represent
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Fig. 1. Overview of the ICE framework.

possible subproblems. Second, a simple yet effective, learning-
free method is used to obtain different combinations of
submodels for different testing instances. The learning-free
nature of the method reduces the chance of selecting wrong
models, therefore ensures that the combination of the selected
submodels is better than, or at least no worse than, an average
of all submodels.

Experimental results on 49 datasets from different domains
show that ICE consistently outperforms the competing meth-
ods. Furthermore, detailed component analysis shows that both
steps of our algorithm have positive contributions as expected.
In addition, analysis of the submodels can shed light on the
internal structure of the problem, which can potentially be
used to further increase prediction performance, or to improve
mechanistic understanding of the problem. The framework can
be easily combined with existing classifiers and applied to
many domains.

II. METHODS

Fig. 1 shows a brief overview of ICE, which starts with
generating a pool of diverse and subdomain-representative
classifiers from subsets of training instances (Algorithm 1),
obtained by a graph-based clustering method that can detect
overlapping clusters (Algorithm 2). Then, these classifiers
are associated with individual training instances based on
their relative prediction performance on the instance, taking
into account model types and frequency (Algorithm 3). In
testing/prediction stage, the nearest neighbors of a test instance
are identified from the training dataset and the classifiers asso-
ciated with these neighboring instances are selected to form an
ensemble for prediction (Algorithm 4). While the general ICE
framework is flexible and the individual components can be
re-designed with domain-specific information, several design
principles are crucial and are discussed below.

Source code and data are available at https://github.com/
ds-utilities/ICE.

Algorithm 1 Training
1: procedure TRAIN ( X , Y , L, w, s )
2: C ← CLUSTERING (X, L)
3: O = {oi}Li=1 ← ∅
4: for cj in C do
5: oj ∈ O ← Train model on cj using base-classifier
6: end for
7: D ← ASSOCIATE (X,Y ,C,O, w, s)
8: return D, O
9: end procedure

Algorithm 2 Graph-based fuzzy clustering
1: procedure RWFCLUSTERING (X , L)
2: SQ×Q ← Euclidean dist. based inst. similarities on X
3: GQ×Q ← Each node keeps top dlog10Qe Nbr. on S
4: WQ×Q ← Random walk with restart on G
5: T = 〈tj〉(L−1)×1 ← 〈0〉(L−1)×1

6: t1 ← find the most connected node in W
7: for j in 2...(L− 1) do
8: tj ← find the common farthest node of T
9: end for

10: R = 〈rij〉Q×Q ← keep top z edges in W

11: C = {ci}Li=1 ← ∅
12: for j in 1...(L− 1) do
13: cj ← find indices of rtj• == 1
14: end for
15: cL ← 1...Q
16: return C
17: end procedure

A. Training

1) Basic notations: We define a dataset of Q training
instances as A = {(xi, yi)}Qi=1, where xi ∈ X is an R
dimensional feature vector and yi ∈ Y is the binary label
of instance i. The clustering result on X is denoted as
C = {ci}Li=1; ci is the ith cluster; L is the total number of
clusters. Here we designate the last cluster cL of C to be the
whole set of instances. Without loss of generality, we assume
the class labels are binary.

2) Graph-based Fuzzy Clustering: As clustering can be
subjective and unstable, we recommend generating a large
number of relatively independent but overlapping clusters. In
addition, each cluster needs to have a sufficient number of
instances to learn a strong submodel for that subdomain. In our
design, we use a graph-based clustering algorithm that chooses
a set of furthest points to initiate a random walk process and
use probability cutoffs to control cluster size (Algorithm 2).

The algorithm works as follows. We first calculate an
instance-instance distance matrix on X by Euclidean distance
and store it in S. Then, we construct a KNN graph G by
keeping the top dlog10Qe neighbors for each node in S.
Afterwards, a random walk with a restart probability p (default
to 0.3 in this work) is performed on the KNN graph G to
obtain an affinity matrix, W [13]. Next, a set of points,
T = 〈tj〉(L−1)×1, is identified as cluster centers: from W , the
node with the largest total incoming probability, t1, is chosen
as the center point of the first cluster; cluster centers for the
other clusters are selected by finding the furthest node from
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the current center points. Finally, a probability cutoff is applied
on W to identify direct neighbors of each cluster center as
members of the cluster, such that the average cluster size is
z (z = Q/3 as default). We designate the last cluster cL of
C to be the whole set of instances. A classifier is built using
instances from each cluster.

Algorithm 3 Associate instances with models by calculating
the decision table

1: procedure ASSOCIATE ( X , Y , C, O, w, s )
2: P = 〈pij〉Q×L ← 〈0〉Q×L

3: E = 〈eij〉Q×L ← 〈0〉Q×L
4: for cj in C do
5: 〈p•j〉Q×1 ← Pred. Y with Cross Val. (oj , cj ,X)
6: 〈e•j〉Q×1 ← |〈p•j〉Q×1 − Y |
7: end for
8: for 〈ei•〉1×L in E do
9: eiL ← (eiL − w)

10: eij ← (eij − s) if xi ∈ cj
11: end for
12: D = 〈dij〉Q×L ← 〈0〉Q×L
13: for dij in D do
14: dij ← 1 if eij ≤ eiL, 0 otherwise
15: end for
16: return D
17: end procedure

3) Associating models to instances: Incorrect model selec-
tion can significantly degrade the performance of the algorithm
compared to simply averaging all submodels. When the num-
ber of training instances is relatively small, supervised learning
based model selection tends to overfit. Therefore, we propose
a robust learning-free method (Algorithm 3), which performs
model-instance association at training time and KNN-based
model selection at prediction time. Importantly, the model-
instance association step takes a Bayesian approach by using
different cutoffs for different types of submodels, which re-
flects their frequency in the pool and the probability for them
to outperform other types of submodels.

Formally, given the clustering result on instances, C =
{ci}Li=1, where cL is the whole set of instances, the corre-
sponding set of models built on the clusters by a base learner
(e.g., SVM) is denoted as O = {oi}Li=1. Here we call a model
oi, i ∈ [1, L − 1] as a ‘partial’ model, since each model is
built on a subset of the training instances, and, we call model
oL as the ‘whole’ model, which is built on the whole set of
instances. The class probabilities predicted by all models are
stored in P = 〈pij〉Q×L; pij is the predicted class probability
for instance i by model j; piL is the prediction probability for
instance i by model built on the whole set of training instances.
Note that if instance i is NOT a member of cluster cj (in which
case, we call model oj to be a ‘remote’ model of instance i),
the model is directly used to predict pij for instance i; on the
other hand, if instance i is a member of cluster cj (in which
case we call model oj a ‘local’ model of instance i), the value
pij is obtained by 10-fold cross-validation using instances
in this cluster. This process ensures that the performance
evaluation used for model-instance association is not inflated,
as an instance is never evaluated by a model that used the

instance in training. Importantly, by not having any designated
validation dataset, we are able to keep as many instances as
possible for training, an important feature for small training
data.

The prediction error table, E = 〈eij〉Q×L is derived from
P ; eij = |pij − yi| is the prediction error for instance i
by model oj . Each row of E, ei•, represents the prediction
error of different models on instance i. Given the empirical
results that local models usually work slightly better than
whole model and remote models, as well as the fact that
there are more remote models than local models in the pool,
we introduce two parameters to easily balance the proportion
of local, whole and remote models in the ensemble: w as
the advantage score of the whole model, and s the advantage
score of each local model. Usually s > w > 0 to promote
the inclusion of local models and demote remote models,
unless the error in a remote model is significantly smaller
than in the whole model. Each row of E is adjusted such
that eiL ← (eiL − w), and, eij ← (eij − s) if xi ∈ cj .
Then, the decision table, D = 〈dij〉Q×L, dij ∈ {1, 0}, where
dij = 1 indicates association between model oj and instance
i, is derived from the error table E, by

dij =

{
1, if eij ≤ eiL
0, otherwise

B. Testing / prediction

Algorithm 4 Testing
1: procedure PREDICT ( xt, X , D, O, N , α, β )
2: Knb = 〈ki〉N×1 ← select N nearest Nbr. of xt
3: Onb ← ∅
4: for ki in Knb do
5: J ← 〈dki•〉1×L = 1

6: Onb ← Onb ∪OJ

7: end for
8: pwhole ← Predict by base-classifier (oL, xt)
9: M ← length(Onb)

10: P partial =
〈
ppartiali

〉
M×1

← ∅
11: for oi in Onb do
12: ppartiali ← Predict by base-classifier (oi, xt)
13: end for
14: pt ← Equation 1(P partial, pwhole,M,N, α, β)
15: return pt

16: end procedure

For a test instance xt, ICE first finds its N nearest neighbors
from the training dataset, then predicts its class label yt
by averaging the class probabilities predicted by the models
associated with the neighbor training instances (Algorithm 4).
Formally, the PREDICT() algorithm first selects N nearest
neighbors of xt from X , and stores the indices of the neighbor
instances in Knb = 〈ki〉N×1. Then, for each neighbor instance
ki, the algorithm looks up in the corresponding decision table
dki• to find the models associated with the neighbor instance,
and stores the associated ‘partial’ models of xt in Onb.
The number of ‘partial’ models in Onb is denoted as M .
Note that although onbi ∈ O, Onb is not a subset of O,



since Onb may contain duplicated models. Then we denote
P partial =

〈
ppartiali

〉
M×1

as the ‘partial’ model predictions,

and each ppartiali is predicted by oi on xt. The predicted class
probability by the whole model is denoted as pwhole. Then the
predicted class probability of xt is calculated by:

pt =

M∑
i=1

ppartiali + (αM + βN) · pwhole

(α+ 1)M + βN
, (1)

where α is the parameter to balance the weight of ‘partial’
models and the ‘whole’ model; β is the parameter to adjust
the weight of ‘whole’ models based on the number of top
neighbors to ensure at least one pwhole will be used in case
there is no ‘partial’ model.

In our experiments, α and β are both set to 1 and N is set to
5, except in cases that we vary them to analyze the contribution
of different components and the robustness of our algorithm’s
performance.

C. Relationship with Existing MCS Methods

ICE differs from most existing ensemble methods signif-
icantly in both model generation and model combination.
Popular ensemble methods such as Bagging and Random
Forest generate submodels using random subsets of data, and
combine them using voting. In order for these methods to
work effectively, a large number of submodels is needed to
reduce overall bias. In contrast, ICE generates submodels to
deliberately increase model diversity by clustering training
instances. A carefully designed model-instance association
algorithm helps identify the best ensemble for individual
instances at prediction time. On the other hand, boosting
generates submodels that focus on different groups of training
instances, where grouping of instances is done implicitly by
iterative re-weighting and therefore lack a global view of
instance space. In addition, since there is no model selection
at prediction time, boosting tend to overfit in the presence of
noisy training instances.

Mixtures of experts is a class of neural network models
attempting to simultaneously learn multiple submodels as well
as a gating function that assigns each instance to one or more
submodels [14], [15] . With similar idea, several methods use
clustering as a preprocessing step for classification [7], [8].
These algorithms force each instance to be in a disjoint cluster,
which reduces the number of instances at training time. In
addition, prediction is done only by cluster-specific models so
the cost of incorrect model selection is high. Empirical results
presented in the original papers show mixed performance when
compared to other MCS algorithms [7], [8], [14].

Finally, a series of methods have been developed recently
under the common name ‘dynamic model selection’ [10],
[16], [17], [17]–[21]. These approaches take an ensemble of
base classifiers (e.g, from bagging), then attempt to learn a
high-level classification model using, for example, instance-
instance similarities and model-model correlations, as input
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Fig. 2. Characteristics of datasets used in evaluation. The three columns
show number of instances, number of features and percentage of majority
class, respectively.

features. While conceptually appealing, these methods tend
to overfit and have poor performance when training data is
limited. In our opinion, the marriage between random model
generation and learning-based model combination is a poor
choice, since the relatively small number of random models
(compared to the possible number of instance combinations)
does not guarantee that there is necessarily any predictably
better submodel than a simple average of all submodels.

III. RESULTS AND DISCUSSION

A. Data and Experimental Setup

Characteristics of the 49 benchmark datasets are shown in
Figure 2. The datasets are collected from UCI machine learn-
ing repository and Kaggle Dataset for binary classification,
with number of instance between 100 and 3,000, number of
features between 3 and 1500, and percentage of majority class
ranging from 50% to 77%. A total of 42 datasets from UCI
and 23 datasets from Kaggle meet the criteria (18 of which
appeared in both repositories). In addition, we add two cancer-
related datasets - breast-cancer-nki [22] and breast-cancer-
wang [23]. The data preprocessing mainly follows [24],
which includes a Z-Score transformation based normalization.
For nine datasets with nominal features we use two different
methods to handle nominal features: (i) removing nominal
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AUC gain on a dataset using a cluster of training data to predict a testing
cluster. The two numbers on the right of each column are the number of
datasets with AUC gain > 0 and AUC gain < 0.

features (denoted with suffix ‘-1’ in Figure 2), (ii) using One-
Hot encoding (denoted with suffix ‘-2’ in Figure 2). Since all
features in dataset ‘tic-tac-toe’ are nominal, this dataset only
has the One-Hot encoding version. Data and source code are
available at https://github.com/ds-utilities/ICE.

Performance of each classification method is evaluated by
10-fold cross validation and measured by AUC. To facilitate a
simple and fair evaluation, we use common parameter values
for ICE on all datasets. The number of overlapping clusters,
L, is set to 100, which while not ideal for all data sets, makes
evaluation easier. The advantage scores for ‘whole’ model and
‘local’ model are set to w = 0.4 and s = 0.5 respectively;
this reflects the empirical observation that local models usually
have better performance than the other two types of models,
and there are many remote models so a higher cutoff score is
needed for a remote model to be associated with an instance.
In prediction stage, the number of top neighbors parameter N
is set to 5; the parameter α and β are both set to 1 for an overall
balanced ‘partial’ and ‘whole’ models in the final weighting
of prediction. The base model in the evaluation is linear-SVM
with the regularization parameter C=1 for ICE and comparison
methods Bagging and AdaBoost. Bagging and AdaBoost use
100 bags and 100 iterations respectively. It is worth noting
that these parameters are chosen intuitively without extensive
tuning. Parameter analysis results show that the performance
of ICE is robust with regarding to a wide range.

B. Empirical Evidence Supporting Cluster-Based Ensemble
Classification

To verify our assumption that, for each testing instance,
some subset of training instances may provide a better clas-
sification model than the whole set of training instances, we
perform a simple experiment as follows: first, each dataset
is clustered into three disjoint clusters using k-means. We
denote the clusters as cluster-a, b and c respectively, with
their cluster size decreasing. Then using instances in each
cluster for cross-testing: we compared the prediction AUC for
each cluster using instances from cluster a, b, c or the whole
dataset, respectively, as training data. We adopted notation a-
b to denote the situation where we use the cluster a trained
model to make predictions on cluster b instances.

To have a fair evaluation, when using a larger cluster to
predict a smaller cluster, we randomly select the same number
of instances from the larger cluster as the size of the smaller
cluster to be the training data; when use a smaller cluster to
predict a larger cluster, we use all instances in the smaller
cluster and randomly select some instances from the larger
cluster (making sure that they are not in the fold of testing) to
be the training instances, such that the total number of training
instances is the same as the number of instances in the larger
cluster.

From Figure 3, with only three disjoint clusters, in more
than 80% of the datasets, at least one of the local models
can outperform the whole model (Figure 3a and b, columns
a-a, b-b and c-c). Interestingly, while in general the remote
models do not perform well, some of them have the largest
performance gain compared to the whole model (column a-
c and b-c). Collectively, this experiment shows the potential
benefit of using a cluster of instances to improve prediction
accuracy. On the other hand, the results also signifies the
importance to predict, for each test instance, whether partial
models (and which) should be used.

C. ICE Outperforms Existing MCS Algorithms

Figure 4 shows that ICE outperforms the corresponding
Bagging classifier on most datasets, and, suffers from only
minor performance loss on a few datasets. Notably, ICE
uses less than 100 base models - on average 45 models
per prediction. ICE may still have room for improvement on
failed datasets by parameter tuning and improved clustering
methods. Understandably, ICE tends to have less performance
gain on datasets with fewer instances, such as on datasets 1
to 6, since ICE needs more enriched instance information for
a meaningful clustering. From another perspective, ICE will
have advantage on datasets with more instances and with more
complex instance structure.

Table 1 shows the complete AUCs of three versions of ICE
(with SVM, Bagging and AdaBoost as the base model) on
49 benchmark datasets compared to multiple MCS methods,
including Bagging, Adaboost, and seven dynamic model se-
lection approaches. META-DES [16] has two versions in this
evaluation, using Perceptron (the base classifier choice of the
original META-DES paper) and Bagging (comparable with

https://github.com/ds-utilities/ICE
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AUC OF ICE AND COMPETING METHODS ON 49 DATASETS
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Fig. 4. ICE outperforms the corresponding benchmark classifier on most
datasets. The ID-name mapping of datasets is shown in Figure 1. L = 100;
s = 0.5; w = 0.4; N = 5; α = 1; β = 1. ICE wins on 37 out of 49 datasets
(%75.5).

Bagging and ICE-Bagging) respectively. The base classifier is
Bagging for the other six dynamic model selection methods -
KNORA-U [17], KNORA-E [17], DES-PRC [18], [19],
OLA [20], MCB [10] and A Priori [21], which is the
suggested setting plus SVM to make comparable with other
methods. We use the suggested parameters for dynamic model
selection approaches [25].

As shown, all three versions of ICE have better performance
than the other methods. The performance gain of ICE over
Bagging can be attributed to the use of specifically generated
models for subproblems and individualized model association
and selection step. Comparing AdaBoost to ICE, both models
attempt to produce subdomain-specific classifiers; however,
AdaBoost always uses the same ensemble of all submodels
for all instances, which reduces the potential performance gain
provided by the submodel-specific models. Therefore, ICE-
Adaboost and even ICE-SVM perform better than AdaBoost
in general. More over, ICE outperforms the seven dynamic
selection methods. Each of the dynamic selection methods
has unique contributions on model selection or integration.
However, none of them focuses on deliberately generating
models for specific subproblems as the fuzzy clustering that
ICE uses. In addition, the unique instance-model association
of ICE can utilize all training instances, comparing to dynamic
selection methods such as META-DES, which separates train-
ing data into META learning and dynamic selection datasets,
therefore lead to more data loss and weaker base classifiers. As
discussed earlier in Section 2E, learning the best combination
of multiple randomly generated models can be a daunting task
when the amount of training data is limited.

(a)

(b)

(c)

Fig. 5. Component analysis of ICE. Each column indicates a randomized
control experiment. (a) Marker ‘•’ and ‘◦’ represent standard component and
random control. (b) Color indicates the AUC gain of ICE over Bagging. (c)
Each bar shows the average AUC gain of ICE over Bagging.

D. Randomized Control Analysis Reveals The Effectiveness of
Different Components of ICE

To understand the impact of the three components of ICE
(C1: fuzzy clustering based model generation, C2: instance-
model association, and, C3: KNN-based model selection), we
perform a randomized control experiment, where one or more
of the components is replaced with comparable, randomized
procedures. To randomize C1, the fuzzy clustering is replaced
by bootstrapping instances , where the bags are made the same
size as in the fuzzy clusters, therefore resulting in a slightly
modified version of Bagging. To randomize C2, the decision
table is shuffled row-wise, destroying the association of models
to instances. Finally, to randomize C3, KNN is replaced with
random selection of instances. Note that randomizing C2 or C3
(or both) are expected to have similar impact on the algorithm,
which will essentially perform random model selection (and in
most cases will choose many more models than real ICE due
to independence of different rows of the randomized decision
table).

Figure 5 shows the performance of ICE with different com-
ponents randomized. Here, in order to show the effectiveness
of each component of ICE, the parameter α and β are set
to 0, effectively eliminating ‘whole’ model. Not surprisingly,
when both the model generation and model selection compo-
nents of ICE are randomized (columns 1-3 in Figure 5a), its
performance becomes similar to that of Bagging. On the other
hand, when only one component is randomized (columns 4-7),
ICE can still perform better than standard Bagging, although
not as effective as the complete ICE algorithm (column 8),
indicating that both components of ICE played a role in
effective learning.
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Fig. 6. ICE performs in a stable manner across the wide range of
parameter space. (a) AUC gain varies as a function of N , number of nearest
neighbors for model selection. Here w = 0.4, s = 0.5. (b) AUC gain varies
as a function of w. Here N = 5, s = 0.5. (c) AUC gain varies as a function
of s. Here N = 5, w = 0.4.

Interestingly, with only C1 randomized, our algorithm is
conceptually similar to dynamic model selection [16], except
that we replaced their learning-based model selection with
simple KNN-based model selection. The fact that this version
of ICE still outperforms dynamic model selection suggests
that, with limited training data, KNN-based model selection
can have more robust performance than learning-based model
selection. In addition, when C2 or C3 (or both) are randomized
but C1 is not randomized (column 5-7), our algorithm is
conceptually similar to bagging, except that the models in the
ensemble are based on clusters of instances instead of random
selection of instances. As shown, this version of ICE has
significant performance gain over Bagging, suggesting that,
at least in these datasets, clustering-based model generation,
which implicitly diversifies the models, can be better than
randomized model generation.

E. Performance of ICE is Robust in a Wide Range of Param-
eter Space

Figure 6 shows the results of ICE using a wide range of
parameters - N : number of neighbors per testing instances in
prediction; w: the weight advantage of the base whole model

in model-instance association; s: the weight advantage of the
self-model in model-instance association. In this analysis, the
parameter α and β are both set to 1 to balance whole and
partial models.

Figure 6a shows that the number of nearest neighbors used
in model selection has only slight impact on AUC gain on
average across all 49 datasets. The recommended setting of
N is 5 to 10 for a balanced running speed and accuracy. ICE
works best when there are strong patterns in the dataset. If
ICE does not have a significant gain over Random Forest (RF)
on a center dataset, a larger N setting will make ICE more
stable and closer to bagging. ICE still has a large room of
improvement on specific dataset by using more suitable fuzzy
clustering algorithm, which is one of our future work.

Figure 6b and Figure 6c shows the robust performance of
ICE with respect to parameter w and s. A general insight of w
and s is to set s slightly larger than w, such as s = 0.5, w=0.4.
The parameter α and β are quite simple to choose. Set both
α and β to 1 will lead to a decent result for most of cases;
try to set both α and β to 0 if there are strong clusters within
the dataset, and the extreme localized classifiers may have an
advantage over the basic to-go choice where α = β = 1.

In addition, it is worth noting that the parameters used in the
experimental setup have not been tuned for individual dataset
in this study. There is a potential to perform model tuning on
each dataset for even more improved performance.

F. ICE Significantly Improves Random Forest Performance

We further perform an extreme comparison between ICE
(using Random Forest with 100 trees as the base classifier) and
Random Forest with 10,000 trees. Random Forest (RF) is well
known for its stable high performance with almost tuning-free
design, and is well positioned to be a benchmark classifier. As
shown in Figure 7, ICE significantly improves the performance
of Random Forest; ICE wins or ties over RF on 36 out of 49
datasets (74%), and has minor performance loss on 13 datasets.
The t-test p-value of gain = 0.018, which is significant (p-
value< 0.02), and, there are 7 datasets (highlighted on Figure
7) with AUC gain over 8% (among these, ICE has AUC gain
over 13.4% on 4 datasets), while no dataset with AUC loss
over 3%. Note that ICE only uses on average 47 models per
prediction, much fewer comparing to 10,000 trees by the RF
classifier. Moreover, RF easily reaches its performance limits
as the number of trees grows, while ICE has a much larger
room of improvement as the number of submodels increases.
Performance of ICE can be further improved by increasing the
number of fuzzy clusters (submodels) or using more suitable
clustering methods.

The performance gain of ICE over RF can be attributed to
the use of specifically generated models for subproblems and
individualized model association and selection step. Interest-
ingly, the AUC gain of ICE is correlated with the result from
Figure 3a - the 7 highest-scoring datasets by ICE on Figure
7 have on average 4.3 ‘partial’ models winning the ‘whole’
model, while this statistic is only 2.6 for the other datasets;
the average AUC gain by ‘partial’ models of ICE on these



Fig. 7. ICE significantly improves the performance of random forest on
seven datasets.
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Fig. 8. Analysis of ICE submodels on a breast cancer dataset. (a) AUC
gain of ICE varies as a function of model counts per instance. (b) distribution
of number of unique ‘partial’ models per instance. (c) Predictions by ICE
have a lower error rate than Bagging on instances with >30 models.

7 datasets is 0.077, while it is 0.057 for the other datasets.
This results not only further validates our intuition of using
‘partial’ models to improve classification performance, but
also suggests that the performance of ICE can be partially
predictable based on dataset characteristics, which is a very
important feature in practice.

G. Classification Improved by Accurately Predicting ‘Hard’
Instances with ‘partial’ Models

ICE has a stable AUC gain on most of datasets over a
large range of parameter variation, and the dataset with one
of the most dramatic improvement using ICE is the 15-breast-
cancer-1 dataset. As shown in Figure 8a, as the parameter
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Fig. 9. The higher the correlation between the data similarity and the
decision table similarity, the higher the AUC gain.

N increases, the average number of models per instance also
increases and the performance of ICE continues to increase,
reaching a plateau after N ≥ 25. In addition, analysis of the
models used by each test instance of ICE shows an interesting
bimodal distribution: most of the test instances (262 out of
286 cases) use less than 20 models (mostly local models); in
contrast, a few instances (24 cases) use more than 40 unique
models (including both local and remote models) (Figure 8b),
which are presumably the more difficult instances that are hard
to be clustered and/or classified.

Comparing the performance difference on these two groups
of instances, we can see that ICE has a much lower prediction
error when compared to the‘whole’ model on instances with
>30 models by ICE (Figure 8c). The ttest p-value of the
error differences between the‘whole’ model prediction and
ICE prediction on instances with >30 models (24 cases)
is significant (8.98 × 10−6). This result demonstrates that
different instances should be treated differently on this dataset,
and the ICE algorithm shows a potential way of separating and
treating these different instances.

H. AUC Gain of ICE has a Strong Correlation with the Data-
Decision Table Similarity

In this work, instances are clustered based on their similari-
ties in the feature space. However, it is possible that this clus-
tering may not be optimal in revealing model heterogeneity.
A different view may be obtained by analyzing the instance-
instance similarities in the model space. Therefore, we use
the decision table, which describes the prediction performance
of each model on each instance, to measure instance-instance
similarity, and inspect whether the consistency between these
two types of similarity measures can be predictive of the
performance of ICE.

Indeed, as shown in Figure 9, there exists a strong positive
correlation (Pearson correlation coefficient = 0.425) between
AUC gain and feature-model consistency, where the consis-
tency is defined as the Pearson correlation correlation between



the instance-instance similarities measured in the feature space
and the instance-instance similarities measured using the deci-
sion table entries. This result indicates the potential of improv-
ing our current work by feature selection and better clustering
method on data X . Our intuition is that some features are
more related with a classification task than the other features,
and, we should be able to use these features for clustering
for the classification task rather than use all the features. This
also explains that the AUC gain on dataset 15-breast-cancer-1
(3 features, AUC gain = 0.126) is much larger than the AUC
gain on dataset 16-breast-cancer-2 (50 features, AUC gain =
0.024). The three features of dataset 15-breast-cancer-1 are
‘tumor-size’, ‘left or right breast’ and ‘if irradiate’, and, all
the non-binary nominal features in the original breast cancer
dataset from [24] has been removed, while the dataset 16-
breast-cancer-2 keeps all the other nominal features by One-
Hot encoding. It is reasonable to imagine that the clustering
on dataset 16 is influenced by some of the over-complicated
and irrelevant features (for the classification task); therefore,
the models built on those clusters are not optimized for the
classification task. A potential future improvement is to cluster
instances based on the output values from different models
instead of on the feature values, or using both in an iterative
manner.

IV. CONCLUSION

Based on the intuition that classifiers generated from differ-
ent subdomains of training instances are needed in classifica-
tion task, we proposed ICE, a novel multiple classifier gener-
ation and combination framework, which generally increases
the diversity among submodels, and successfully associates the
submodels to subdomains of instances. Evaluation results on
49 benchmarks show that our model has a stable improvement
on a significant proportion of datasets over multiple existing
MCS methods. A detailed component analysis shows that the
different components of our algorithm work coordinately to
achieve its performance. We believe that ICE can provide
a novel choice of utilizing subdomain models to improve
classification.
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