
Constrained Multi-Objective Optimization for
Automated Machine Learning

Steven Gardner, Oleg Golovidov, Joshua Griffin, Patrick Koch, Wayne Thompson, Brett Wujek and Yan Xu
SAS Institute Inc.

North Carolina, USA
{Steven.Gardner, Oleg.Golovidov, Joshua.Griffin, Patrick.Koch, Wayne.Thompson, Brett.Wujek, Yan.Xu}@sas.com

Abstract—Automated machine learning has gained a lot of at-
tention recently. Building and selecting the right machine learning
models is often a multi-objective optimization problem. General
purpose machine learning software that simultaneously supports
multiple objectives and constraints is scant, though the potential
benefits are great. In this work, we present a framework called
Autotune that effectively handles multiple objectives and con-
straints that arise in machine learning problems. Autotune is built
on a suite of derivative-free optimization methods, and utilizes
multi-level parallelism in a distributed computing environment
for automatically training, scoring, and selecting good models.
Incorporation of multiple objectives and constraints in the model
exploration and selection process provides the flexibility needed
to satisfy trade-offs necessary in practical machine learning
applications. Experimental results from standard multi-objective
optimization benchmark problems show that Autotune is very
efficient in capturing Pareto fronts. These benchmark results
also show how adding constraints can guide the search to more
promising regions of the solution space, ultimately producing
more desirable Pareto fronts. Results from two real-world case
studies demonstrate the effectiveness of the constrained multi-
objective optimization capability offered by Autotune.

Index Terms—Multi-objective Optimization; Automated Ma-
chine Learning; Distributed Computing System

I. INTRODUCTION

There has been increasing interest in automated machine
learning (AutoML) for improving data scientists’ productivity
and reducing the cost of model building. A number of general
or specialized AutoML systems have been developed [1]–
[7], showing impressive results in creating good models with
much less manual effort. Most of these systems only support
a single objective, typically accuracy or error, to assess and
compare models during the automation process. However,
building and selecting machine learning models is inherently
a multi-objective optimization problem, in which trade-offs
between accuracy, complexity, interpretability, fairness or in-
ference speed are desired. There are a plethora of metrics for
describing model performance [8], [9] such as precision, recall,
F1 score, AUC, informedness, markedness, and correlation to
name a few. In general, each measure has an inherent bias [9]
and we typically expect data scientists to compare different
performance measures when selecting the best models from
a set of candidates. A data scientist might desire relatively
accurate models but with minimal memory footprints and/or
faster inference speed. Alternatively, a data scientist might
have business constraints that are difficult to incorporate into

the machine learning model training algorithm itself. There
could also be a number of segments inherent within the data
where it is important to have comparable accuracy across
all segments. When toggling between different performance
measures and goals, what the data scientist is really doing
is executing a manual multi-objective optimization. Arguably,
they are mentally constructing a Pareto front and choosing the
model that achieves the best compromise for their use case
and criteria.

It is considered fruitless to search for a single measure
that perfectly captures the multiple dimensions of interest
in machine learning as shown in Zitzler et. al [10] and
paraphrased here:

Theorem 1. In general, solution quality for the m-objective
optimization problem cannot be reduced to less than m
performance measures.

To emphasize this observation, we include a hypothetical
example. Consider Matthews Correlation Coefficient (MCC)
[11] that is considered a good metric to quantify performance
of the binary classification problem even when data is unbal-
anced:

MCC =
TP× TN− FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)

Now suppose we were to apply single objective optimization
and discover two models (model A and model B) with
performances shown in Table I.

TP FP FN TN ACC MCC FPR
model A 900 500 100 8500 94.0% 0.73 5.6%
model B 350 100 650 8900 92.5% 0.49 1.1%

TABLE I: Performance of models A and B. TP is true
positives; FP is false positives; FN is false negatives; TN is
true negatives; ACC is accuracy; FPR is false positive rate.
Compared to model B, model A has better MCC, but worse
FPR.

With MCC as the single objective to be maximized , an
optimization algorithm would discard model B in preference
for model A. However, the choice of which model is better
depends entirely on context. For instance, if this is a credit
card fraud case, we might also be interested in reducing
false positive rate (FPR) because false positives are very

ar
X

iv
:1

90
8.

04
90

9v
1

 [
cs

.L
G

]
 1

4
A

ug
 2

01
9

costly [12]. Thus, we would prefer to search around model B
to attempt to improve MCC while trying to maintain FPR.
However, with unconstrained single objective optimization,
this preference is difficult to enforce during the optimization
process.

One approach to addressing this problem is aggregating
multiple objectives into a single objective, usually accom-
plished by some linear weighting of the objectives. The main
disadvantage of this approach is that many separate optimiza-
tions with different weighting factors need to be performed to
examine the trade-offs among the objectives. Another popular
approach is multi-objective optimization [13], [14], which
generates diverse multiple Pareto-optimal models to achieve
a desired trade-off among various performance metrics and
goals. However, a potential drawback of pure multi-objective
optimization is that the corresponding algorithms are designed
to determine the entire Pareto front when, in practice, only part
of the front may be desired. For example, if considering false
negative rate and false positive rate together, the trivial models
that predict always negative and always positive could be part
of the Pareto front. It would be a waste of computational
resources to train models to refine such regions of the Pareto
front. Moreover, not all measures for assessing models can
be easily formulated as objectives. Therefore, it can be very
beneficial to guide model search to the desired area by using
constraints.

In this work, we provide a constrained multi-objective
optimization framework for automated machine learning. This
framework is built on a suite of derivative-free search methods
and supports multiple objectives and linear or nonlinear con-
straints. While the default search method works well in most
settings, the hybrid framework is extensible so that other desir-
able search methods can be incorporated easily in such a way
that computing resources are shared to minimize and exploit
inherent load imbalance. Moreover, redundant evaluations are
intercepted and handled seamlessly to avoid similar algorithms
within the hybrid strategy from performing redundant work.
The approach works well on standard benchmark problems
and shows promising results on real world applications. Our
main contributions in this work are:
• To the best of our knowledge, this is the first gen-

eral extensible constrained multi-objective optimization
framework specifically designed for automated machine
learning.

• The Autotune framework embraces the no-free-lunch
theorem in that new and diverse search algorithms fit
well in the existing framework and may be added in a
collaborative rather than a competitive manner, permit-
ting resource sharing and making completed evaluations
available to all internal solvers that are capable of using
them.

• By supporting general constraints, we can aid users in
focusing on specific segments of the Pareto front to save
computational time from models that are of little interest
to the user. Further, in certain cases the multi-objective
problem is really a nonlinearly constrained problem in

disguise; for example, one might wish only to optimize
specificity and sensitivity while ensuring overall accuracy
does not degrade beyond a given threshold. The Autotune
framework offers this flexibility.

II. RELATED WORK

Jin [13], [15] claims that machine learning is inherently
a multi-objective task and provides a compilation of various
multi-objective applications including feature extraction, accu-
racy, interpretability, and ensemble generation. He et al. [16]
use reinforcement learning to balance the trade-off between
accuracy and compression of neural networks. The approach is
sequential and not targeted toward the general multi-objective
problem. Asgari et al. [17] apply a specialized evolutionary
algorithm to optimize parameters of an auto-encoder with
respect to the two objectives: reconstruction error and classifi-
cation error. Loeckx [18] stresses the need for multi-objective
optimization in the context of machine learning applied to
structural and energetic properties of models, emphasizing that
such an approach provides a gateway to hierarchy and abstrac-
tion. A novel multi-objective evolutionary algorithm (ENORA)
was created to search for and select the optimal feature subset
in the context of a multi-class classification problem [19].
Shenfield and Rostami [20] apply an evolutionary algorithm
that optimizes neural network weights, biases, and structures
to simultaneously optimize both overall and individual class
accuracy. In RapidMiner [21], an evolutionary framework is
proposed where the user may manually design the evolutionary
algorithm using drag and drop features.

A significant body of multi-objective research has been
proposed in the context of neural architecture search (NAS). To
simultaneously optimize accuracy and inference speed, Kim et
al. [22] propose a multi-objective approach where neural ar-
chitectures are encoded using integer variables and optimized
using a customized evolutionary algorithm. Elsken et al. [23]
develop a novel evolutionary algorithm (LEMONADE) to op-
timize both accuracy and several model complexity measures
including number of parameters. They propose a Lamarckian
inheritance mechanism for warmstarting children networks
with parent network predictive performance. Dong et al. [24]
adopt progressive search to optimize for both device-related
(inference speed and memory usage) and device-agnostic
objectives (accuracy and model size). DVOLVER [25], an
evolutionary approach inspired by NSGA-II [26], is created
to find a family of convolutional neural networks with good
accuracy and computational resource trade-offs.

Multi-objective optimization in machine learning seems
to favor evolutionary algorithms. However, there have been
enhancements made to many other derivative-free optimiza-
tion approaches that are appropriate and have complementary
properties that, if combined, may create robust powerful hybrid
approaches. The derivative-free optimization community has
been successfully handling these scenarios in arguably similar
if not identically complex and challenging conditions [26]–
[29]. For instance, inspired by direct-search methods, Custódio
et al. [30] propose a novel algorithm called direct multisearch

for optimization problems with multiple black-box objectives.
Deb and Sundar [31] combine a preference based strategy with
an evolutionary multi-objective optimization methodology and
demonstrate that a preferred set of solutions near a reference
point can be found in parallel (instead of one solution).

III. CONSTRAINED MULTI-OBJECTIVE OPTIMIZATION
FRAMEWORK

Autotune is designed specifically to tune the hyperparame-
ters and architectures of various machine learning model types
including decision trees, forests, gradient boosted trees, neural
networks, support vector machines, factorization machines,
Bayesian network classifiers, and more. The tuning process
utilizes customizable, hybrid strategies of search methods and
multi-level parallelism (for both training and tuning). In this
work, we focus on the two key features of Autotune: multiple
objectives and constraints.

Candidate
Configurations

Best Models
Found

Gradient Boosting

ML Algorithms

SVM

Neural Network

...

Genetic Algorithm

Search Methods

Pattern Search

Bayesian

...

Search
Manager

Model
Definitions

Control
Strategies

Hyperparameter
and Architecture
Configurations

Control
Strategies

Fetch
in

gFe
tc

h
in

g

Model
Evaluator

P
ro

p
o

se
d

C
o

n
fi

gu
ra

ti
o

n
s

Train
ed

M
o

d
els

Fig. 1: The Autotune framework. Machine learning algorithms
provide detailed model definitions. Search methods propose
candidate configurations that are stored in a dedicated pool.
Model evaluator utilizes a distributed computing system to
train and evaluate models. Search manager supervises the
whole search and evaluation process, and collects the best
models found and other searching information.

The Autotune framework is shown in Figure 1. An extend-
able suite of search methods (also called solvers) is driven
by the search manager that controls concurrent execution of
the search methods. The search methods propose candidate
configurations that are stored in a dedicated pool. New search
methods can easily be added to the framework. The model
evaluator utilizes a distributed computing system to train and
evaluate candidate models. The search manager supervises
the entire search and evaluation process and collects the best
models found. The pseudocode in Algorithm 1 provides a
high-level algorithmic view of the Autotune framework.

A. Derivative-Free Optimization Strategy

Autotune is able to perform optimization of general non-
linear functions over both continuous and integer variables.
The functions do not need to be expressed in analytic closed

Algorithm 1 Multi-objective constrained optimization in Au-
totune
Require: Population size np, and evaluation budget nb.
Require: Number of centers nc < np and initial step-size ∆̂.
Require: Sufficient decrease criterion α ∈ (0, 1).

1: Generate initial parent-points P using LHS with |P| = np.
2: Evaluate P asynchronously in parallel.
3: Populate reference cache-tree, R, with unique points from
P .

4: Associate each point p ∈ P with step ∆p initialized to ∆̂.
5: Let F denote current approximation of Pareto front.
6: while (|R| ≤ nb) do
7: Select A ⊂ F for local search, such that |A| = nc.
8: for p ∈ A do . Search along compass directions
9: Set Tp = {}

10: for ei ∈ I do
11: Tp = Tp ∪ {p+ ∆pei} ∪ {p−∆pei}
12: end for
13: end for
14: Generate child-points C via crossover and mutations

on P .
15: Set T = C ∪p∈A Tp.
16: Evaluate T ∩ R using fast tree-search look-up on R.
17: Project T −R to linear constraint manifold.
18: Evaluate remaining T −R asynchronously in parallel.
19: Add unique points from T −R to cache-tree R.
20: Update P with new generation C and initial step ∆̂.
21: for p ∈ A do
22: if |Tp ∩ F| > 0 then
23: Select new p ∈ F . Pattern search success
24: else
25: Set ∆p = ∆p/2 . Pattern search failure
26: end if
27: end for
28: end while

form (i.e., black-box integration is supported), and they can
be non-smooth, discontinuous, and computationally expensive
to evaluate. Problem types can be single objective or multi-
objective. The system is designed to run in either single
machine mode or distributed mode.

Because of the limited assumptions that are made about the
objective and constraint functions, Autotune takes a parallel,
hybrid, derivative-free approach similar to those used in Taddy
et al. [32]; Plantenga [33]; Gray, Fowler, and Griffin [34];
Griffin and Kolda [35]. Derivative-free methods are effective
whether or not derivatives are available, provided that the
number of variables is not too large (Gray and Fowler [36]). As
a rule of thumb, derivative-free algorithms are rarely applied
to black-box optimization problems that have more than 100
variables. The term “black-box” emphasizes that the function
is used only as a mapping operator and makes no implicit
assumption about the structure of the functions themselves.
In contrast, derivative-based algorithms commonly require the
nonlinear objectives and constraints to be continuous and

smooth and to have an exploitable analytic representation.
Autotune has the ability to simultaneously apply multiple

instances of global and local search algorithms in parallel.
This ability streamlines the process of needing to first apply
a global algorithm in order to determine a good starting point
to initialize a local algorithm. For example, if the problem
is convex, a local algorithm should be sufficient, and the
application of the global algorithm would create unnecessary
overhead. If the problem instead has many local minima,
failing to run a global search algorithm first could result in
an inferior solution. Rather than attempting to guess which
paradigm is best, the system simultaneously performs global
and local searches while continuously sharing computational
resources and function evaluations. The resulting run time
and solution quality should be similar to having automati-
cally selected the best global and local search combination,
given a suitable number of threads and processors. Moreover,
because information is shared among simultaneous searches,
the robustness of this hybrid approach can be increased over
other hybrid combinations that simply use the output of one
algorithm to hot start the second algorithm.

Autotune handles integer and categorical variables by using
strategies and concepts similar to those in Griffin et al. [37].
This approach can be viewed as a genetic algorithm that
includes an additional “growth” step, in which selected points
from the population are allotted a small fraction of the total
evaluation budget to improve their fitness score (that is, the
objective function value) by using local optimization over the
continuous variables.

Execution of the system is iterative in its processing, with
each iteration repeating the following steps:

1) Acquire new points from the solvers
2) Evaluate each of those points by calling the appropriate

black-box functions (model training and validation)
3) Return the evaluated point values (model assessment

metrics) back to the solvers
The search manager exchanges points with each solver in

the list. During this exchange, the solver receives back all the
points that were evaluated in the previous iteration. Based upon
those evaluated point values, the solver generates a new set of
points it wants evaluated and those new points get passed to the
search manager to be submitted for evaluation. For any solvers
capable of “cheating”, they may look at evaluated points
that were submitted by a different solver. As a result, search
methods can learn from each other, discover new opportunities,
and increase the overall robustness of the system.

To best utilize computing resources, Autotune supports
multiple levels of parallelization ran simultaneously:
• Each evaluation can use multiple threads and multiple

worker nodes, and
• Multiple evaluations can run concurrently

Evaluation sessions can be configured to minimize the overlap
of worker nodes but also allow resources to be shared. This
design makes Autotune extremely powerful and capable of
efficiently using compute grids of any size.

B. Multi-Objective Optimization Approach

When attempting to find the best machine learning model,
it is very common to have several objectives. For instance, we
might want to build models that maximize accuracy while also
minimizing model size so that the models can be deployed in
mobile devices. The desired result for such problems is usually
not a single solution but rather a range of solutions that we
can use to identify an acceptable compromise. Ideally each
solution represents a necessary compromise in the sense that
no single objective can be improved without causing at least
one remaining objective to deteriorate. The goal of Autotune
in the multi-objective case is thus to provide to the decision
maker a set of solutions that represent the continuum of best-
case scenarios.

Mathematically, we can define multi-objective optimization
in terms of dominance and Pareto optimality. For a k-objective
minimizing optimization problem, a point (solution) x is
dominated by a point y if fi(x) ≥ fi(y) for all i = 1, . . . , k
and fj(x) > fj(y) for some j = 1, . . . , k.

f1(x)

f2(x)

a

b

d

c

e

f

g

h

i

j

Fig. 2: Example Pareto Front. f1(x) and f2(x) are two
functions to be minimized. Points a, b, c and d consist of
the Pareto frontier found.

A Pareto front contains only nondominated solutions. In
Figure 2, a Pareto front is plotted with respect to minimization
objectives f1(x) and f2(x) along with a corresponding popula-
tion of 10 points that are plotted in the objective space. In this
example, point a dominates {e, f, j}, b dominates {e, f, g, j},
c dominates {g, h, j}, and d dominates {i, j}. Although no
other point in the population dominates point c, it has not yet
converged to the true Pareto front. Thus there are points in a
neighborhood of c that have smaller values of f1 and f2 that
have not yet been identified.

In the constrained case, a point x is dominated by a point
y if θ(x) > ε and θ(y) < θ(x), where θ(x) denotes the
maximum constraint violation at point x and the feasibility
tolerance is ε; thus feasibility takes precedence over objective
function values.

Unlike common multi-objective optimization approaches
that solely use metaheuristics [20], [23], [25], the default

approach employed by Autotune is a novel hybrid strategy
that combines the global search emphasis of metaheuristic
[38] with lesser known, but efficient, direct local search
methods [39]. The hybrid search strategy begins by creating
a Latin Hypercube Sampling (LHS) of the search space. This
LHS is used as the starting point for a Genetic Algorithm
(GA) to search the solution space for promising configurations.
GA’s enable us to attack multi-objective problems directly in
order to evolve a set of Pareto-optimal solutions in one run of
the optimization process instead of solving multiple separate
problems. In addition, Autotune conducts local searches using
a Generating Set Search (GSS) algorithm in neighborhoods
around nondominated points to improve objective function val-
ues and reduce crowding distance. For measuring convergence,
Autotune uses a variation of the averaged Hausdorff distance
[40] that is extended for general constraints.

C. Constraint Handling

In real-world use cases, it is common to encounter con-
straints that impose limits on the predictive models being used.
For example, consider the context of the Internet of Things
(IoT). In the IoT setting, model size and inference speed
are very important factors as models are typically deployed
to edge computing devices. If a model requires too much
memory for storage or is very slow to score, then it is not
a good fit for edge computing. For mobile devices, models
that need many computations during inference will consume
too much power and should be avoided. For these examples,
it can be extremely powerful to add constraints when picking
a model. The constraints can be used to focus on the parts of
the solution space that satisfy the business needs.

Autotune uses different strategies to handle different types
of constraints. Linear constraints are handled by using both
linear programming and strategies similar to those in [41],
where tangent directions to nearby constraints are constructed
and used as search directions. In this case, trial points that
violate the linear constraints are first projected back to the fea-
sible region before being submitted for evaluation. Nonlinear
constraints are handled by using smooth merit functions [42].
Nonlinear constraint violations are penalized with an L2-norm
penalty term that is added to the objective value. In the context

of constrained multi-objective optimization, when comparing
points for domination, a feasible point is always favored over
an infeasible one.

IV. EXPERIMENTAL RESULTS

While Autotune is designed specifically for automatically
finding good machine learning models, the optimization pro-
cess that drives it is applicable to general optimization prob-
lems. Therefore, to evaluate the performance of Autotune
and its effectiveness at solving multi-objective optimization
problems, we conducted a benchmark experiment by applying
the Autotune system to a set of common multi-objective
optimization benchmark problems. We present a sampling of
the results here for two of the benchmark problems: ZDT1 and
ZDT3, taken from [14]. For both of these problems, the true
Pareto front is known, which provides a basis for comparison.

The mathematical formulation for ZDT1 is:

f1(x) = x1, f2(x) = g(x)(1−
√

x1
g(x)

)

g(x) = 1 +
9

n− 1

n∑
i=2

xi, ∀xi ∈ [0, 1], n = 30

ZDT1 is a multi-objective optimization problem with two
objectives (f1, f2) and 30 variables. Figure 3a shows Auto-
tune’s results when running with a sufficiently large evaluation
budget of 25,000 evaluations. The plot shows that Autotune
has completely captured the true Pareto front and Autotune’s
Pareto markers completely cover the true Pareto front. Many
times in real-world use cases, evaluation budgets are limited
due to time and cost. Figure 3b shows Autotune’s results when
running with a limited evaluation budget of 5000 evaluations.
In this case, we can see that Autotune’s approximation of the
Pareto front isn’t nearly as complete, and there are significant
gaps when running with the limited evaluation budget. Con-
straints can be added to the optimization to focus the search
to a particular region of the solution space. To demonstrate
the power of constraints in the Autotune multi-objective opti-
mization framework, Figure 3c shows the results of re-running
Autotune against ZDT1, this time with a constraint specifying
that f1 ≥ 0.6. Again, Autotune was given a limited budget

0.0 0.2 0.4 0.6 0.8 1.0

f1

0.0

0.2

0.4

0.6

0.8

1.0

f2

Autotune ParetoTrue Pareto

(a) 25,000 evals; no constraints

0.0 0.2 0.4 0.6 0.8 1.0

f1

0.0

0.2

0.4

0.6

0.8

1.0

f2

Autotune ParetoTrue Pareto

(b) 5000 evals; no constraints

0.0 0.2 0.4 0.6 0.8 1.0

f1

0.0

0.2

0.4

0.6

0.8

1.0

f2

Autotune ParetoTrue Pareto

(c) 5000 evals; constraint f1 ≥ 0.6

Fig. 3: ZDT1 Benchmark Test Problem

0.0 0.2 0.4 0.6 0.8 1.0

f1

-1.0

-0.5

0.0

0.5

1.0
f2

Autotune ParetoTrue Pareto

(a) 25,000 evals; no constraints

0.0 0.2 0.4 0.6 0.8 1.0

f1

-1.0

-0.5

0.0

0.5

1.0

f2

Autotune ParetoTrue Pareto

(b) 5000 evals; no constraints

0.0 0.2 0.4 0.6 0.8 1.0

f1

-1.0

-0.5

0.0

0.5

1.0

f2

Autotune ParetoTrue Pareto

(c) 5000 evals; constraint f1 ≤ 0.3

Fig. 4: ZDT3 Benchmark Test Problem

of 5000 evaluations. This plot clearly shows how adding the
constraint has focused the optimization to that lower-right
section of the solution space. This has allowed Autotune to
capture a much better representation of the true Pareto front
in that region where f1 ≥ 0.6.

The mathematical formulation for ZDT3 is:

f1(x) = x1, f2(x) = g(x)(1−
√

x1
g(x)

− x1
g(x)

sin (10πx1))

g(x) = 1 +
9

n− 1

n∑
i=2

xi, ∀xi ∈ [0, 1], n = 30

ZDT3 has two objectives (f1, f2) and 30 variables. Figure
4a shows that Autotune is able to obtain the true Pareto front
very well when given a sufficiently large evaluation budget
of 25,000 objective evaluations. Figure 4b shows Autotune’s
results when running with a limited evaluation budget of 5000
objective evaluations. Autotune struggles to find a complete
representation of the Pareto front when limited to 5000 evalu-
ations. In particular, the left side of the plot only shows a few
Pareto points that were found by Autotune. Figure 4c shows
the results with the same limited evaluation budget of 5000
objective evaluations but with an added constraint of f1 ≤ 0.3.
The plot clearly shows Autotune was able to do a much better
job of representing the Pareto front in that area of the solution
space.

This experiment demonstrates that Autotune correctly cap-
tures the Pareto fronts of the benchmark problems when given
adequate evaluation budgets. By using constraints, Autotune is
able to significantly improve the search efficiency by focusing
on the regions of the solution space that we are interested in.

V. CASE STUDIES

The case study data sets are much larger real world machine
learning applications, using multi-objective optimization to
tune a high quality predictive model. The first data set comes
from the Kaggle Donors Choose challenge. The second data
set is a sales leads data set. After a preliminary study of
different model types, including logistic regression, decision
trees, forests, and gradient boosted trees, the gradient boosted
tree model type was selected for both case studies as the

other model types all significantly underperformed. Table II
presents the tuning hyperparameters of gradient boosted tree,
their ranges, and default values.

Hyperparameter Lower Default Upper
Num Trees 100 100 500
Num Vars to Try 1 all all
Learning Rate 0.01 0.1 1.0
Sampling Rate 0.1 0.5 1.0
Lasso 0.0 0.0 10.0
Ridge 0.0 0.0 10.0
Num Bins 20 20 50
Maximum Levels 2 6 7

TABLE II: Gradient Boosted Tree Hyperparameters

For both studies, Autotune’s default hybrid strategy that
combines a LHS as the initial population with the GA and
GSS algorithms is used. The population size used is 50 and
the maximum number of iterations is 20. The tuning process is
executed on a compute cluster containing 100 worker nodes.
Individual model training uses multiple worker nodes and
multiple models are trained in parallel.

A. Donors Choose Data

This case study involves building a model using data from
the website DonorsChoose.org. This is a charity organization
that provides a platform for teachers to request materials
for projects. The business objective is to identify projects
that are likely to attract donations based on the historical
success of previous projects. Since DonorsChoose.org receives
hundreds of thousands of proposals each year, automating
the screening process and providing consistent vetting with a
machine learning model allows volunteers to spend more time
interacting with teachers to help develop successful projects.
Properly classifying whether or not a project is exciting is
a primary objective, but an important component of that is
to minimize the number of projects improperly classified as
exciting (false positives). This ensures that valuable human
resources are not wasted vetting projects that are likely to be
unsuccessful.

The data includes 24 attributes describing the project, in-
cluding:

• the type of school (metro, charter, magnet, year-round,
NLNS)

• school state/region
• average household income for the region
• grade level, subject, and focus area for the project
• teacher information
• various aspects of project cost
The data set contains 620,672 proposal records, of which

roughly 18% were ultimately considered worthy of a review by
the volunteers. A binary variable labeling whether or not the
project was ultimately considered exciting is used as the target
for predictive modeling. The data set was partitioned into 70%
for training (434,470) and 30% for validation (186,202) for
tuning the gradient boosted tree predictive model.

As mentioned in the study data set description, using
misclassification rate as a single objective is not sufficient, and
a successful predictive model is expected to also minimize the
false positive rate. This makes the multi-objective optimization
approach well suited for the study, with both misclassification
rate and false positive rate (FPR) as the two objectives. It is
unlikely that using any one of the more traditional machine
learning metrics for tuning the models would produce the
desired results.

The default gradient boosted tree model uses the default
hyperparameter configuration listed in Table II. Its confusion
matrix is shown in Table III. The default model predicts 5,562
false positives, a significant amount. The FPR on the validation
data set is 3.6%. The overall misclassification rate on the
validation set is high, around 15%, and needs to be improved,
ideally while also improving FPR.

Target Predicted False Predicted True
False 146,956 5,562
True 22,963 10,721

TABLE III: Confusion Matrix - Validation Data - Default
Model

0.075 0.100 0.125 0.150 0.175 0.200

Misclassification Rate

0.00

0.02

0.04

0.06

0.08

F
al

se
 P

os
iti

ve
 R

at
e

F1
Default
MCE
KS
AUC
Pareto
All

Fig. 5: Donors Choose - All Evaluations

The multi-objective tuning results for the Donors Choose
data set are shown in Figures 5 and 6. In Figure 5 the
entire set of evaluated configurations is displayed, along with
the default model and the generated Pareto front, trading off
the minimization of misclassification on the x-axis and the
minimization of the FPR on the y-axis. The entire cloud of
points is split into two distinct branches, one branch trending
towards a near zero FPR value, and another branch trending
towards lower misclassification values, resulting in a split set
of Pareto points. The default configuration appears to be a near
equal compromise of the two objectives.

Several other tuning runs were executed with various tra-
ditional metrics (AUC, KS, MCE and F1) as a single objec-
tive. The best model configurations for each of the runs are
superimposed on Figures 5 and 6. Nearly all of the single
objective runs converged to similar values of misclassification
and FPR. All of them sacrificed some FPR in the process,
which is undesirable as defined by the conditions of this study.

0.08 0.09 0.10 0.11 0.12

Misclassification Rate

0.030

0.035

0.040

0.045

0.050

0.055

0.060

F
al

se
 P

os
iti

ve
 R

at
e

Best

F1
MCE
KS
AUC
Constrained
Pareto
All

Fig. 6: Donors Choose - Misclassification <0.15

While the near zero FPR values are appealing, the in-
crease in the misclassification makes these configurations
undesirable. It is more beneficial to look at models with both
objectives reduced compared to the default model. Because
of this, an additional tuning run was executed with an added
constraint of misclassification <0.15. The Pareto points for
this tuning run are shown in Figure 6. This figure shows
a zoomed-in area around the points of interest and one of
the Pareto points selected as the ‘Best’ overall model. The
confusion matrix for this ’Best’ model is shown in Table IV.
The number of false positives reduced by 8% (461) compared
to the default model but more importantly, the misclassification
improved from 15% to 10%.

B. Sales Leads Data

Marketers often rely on machine learning models to accu-
rately predict marketing actions and strategies that are most
likely to succeed. In this case study, we use a data set collected
by the marketing department at SAS Institute Inc. A key goal

Target Predicted False Predicted True
False 147,417 5,101
True 13,650 20,034

TABLE IV: Confusion Matrix - Validation Data - ”Best”
Model

of this study is to provide the sales team of the company
with an updated list of quality candidate leads. Supervised
models are then built to identify and prioritize qualified leads
across about 20 global regions. Machine learning qualifies
leads by prioritizing known prospects and accounts based on
their likelihood of acting.

The training data has about 200 candidate features through
a four-year window. Web traffic data is a key feature category
that includes page counts for several company websites as
well as the referrer domain. Customer experience data such as
the number of whitepapers downloaded, webcasts watched,
and live events attended is also captured. A text analytics
tool is used to standardize new features such as job function
and department. Marketing based on business rules and actual
outcomes labels the binary target for model training. The non-
event (not a lead) is down sampled using stratified sampling to
obtain a 10% target event rate. The data set contains 962,670
observations. For the tuning process, the observations were
partitioned into 42% for training (404,297), 28% for validation
(269,556), and 30% for test (288,817).

Purchase propensity models are very difficult to build due
to the unbalanced nature of the training data. It is very
important to deliver a scoring model that captures the event
well yet minimizes false negatives so that sales opportunities
are not overlooked. Typically with unbalanced data, overall
misclassification rate is not the preferred measure of model
quality. Here we investigate several model quality measures
along with a multi-objective tuning strategy that incorporates
both overall model accuracy and minimizing the false negative
rate (FNR).

The confusion matrix for a default gradient boosted tree
model is shown in Table V. The default model predicts many
more false negatives than false positives which is opposite
from the desired scenario in this case only 31% of true
positives are captured.

Target Predicted False Predicted True
False 276,718 1,193
True 7,542 3,364

TABLE V: Confusion Matrix - Holdout Data

The multi-objective tuning results for the leads data set are
shown in Figures 7 and 8. In Figure 7 the entire set of evalu-
ated configurations is displayed, along with the default model
and the generated Pareto front, trading off the minimization
of misclassification on the x-axis and the minimization of the
FNR on the y-axis. The majority of the cloud of evaluations
perform better than the default model, with respect to both
overall misclassification and FNR. The Pareto front represents

a set of trade-off solutions all of which are significantly better
than the default model, cutting the FNR in half.

0.02 0.03 0.04 0.05

Misclassification Rate

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
al

se
 N

eg
at

iv
e

R
at

e

FNR
F1
Default
MCE
KS
AUC
Pareto
All

Fig. 7: Leads Data Results - All Evaluations

The Pareto front is shown in more detail in Figure 8. It can
be seen more clearly that the solution generated by maximizing
only KS for this unbalanced data set, given the same evaluation
budget, underperforms relative to the Pareto front of solutions.
The overall misclassification of this solution is similar to that
of the highest misclassification solution on the Pareto front
and the FNR is higher than that of all solutions on the Pareto
front. When the misclassification is minimized as a single
objective tuning effort the misclassification is similar to the
lowest misclassification solution on the Pareto front, but the
FNR is higher. In review of the Pareto front, it is clear that the
range of misclassification of the solutions is relatively small.
If it is desirable to trade some false positives for a reduction
of false negatives, an increase of over 300 sales leads can be
obtained by sacrificing just 0.05% in overall misclassification.

0.0202 0.0204 0.0206 0.0208 0.0210 0.0212

Misclassification Rate

0.42

0.44

0.46

0.48

F
al

se
 N

eg
at

iv
e

R
at

e

Best

FNR
F1
MCE
KS
AUC
Pareto
All

Fig. 8: Leads Data - Pareto Front and Single Objective

Constraints on both FNR and misclassification were applied

in this problem in an attempt to identify more Pareto solutions
with lower FNR. However, since the Pareto front is very nar-
row in this case study, with both objectives gravitating towards
the lower left in the solution space, no additional preferred
Pareto solutions were identified by adding constraints. With
very little trade-off between objectives observed after running
multi-objective optimization, a final attempt to further reduce
FNR is executed as a single objective constrained optimization
problem. This result is shown in Figure 8 which shows that
when minimizing FNR directly as a single objective, we do
not achieve results as desirable as those that were found when
executing the multi-objective tuning process. The solution with
the lowest FNR was chosen as the ‘Best’ model and its
confusion matrix is given in Table VI. The number of false
negatives is reduced by 40% (3007), compared to the default
model. The FNR is 0.4343 on the holdout test data; 56.6% of
the true positive leads are captured, a significant improvement
over 31% with the default model.

Target Predicted False Predicted True
False 276,482 1,429
True 4,535 6,371

TABLE VI: Confusion Matrix - Holdout Data - Lowest FNR

VI. CONCLUSIONS

Automation in machine learning improves model building
efficiency and creates opportunities for more applications. This
work extends the general framework Autotune by implement-
ing two novel features: multi-objective optimization and con-
straints. With multi-objective optimization, instead of a single
model, a set of models on a Pareto front are produced. Then,
the preferred model can be selected by balancing different
objectives. Adding constraints is also important in the model
tuning process. Constraints provide a way to enforce business
restrictions or improve the search efficiency by pruning parts
of the solution search space. The numerical experiments on
benchmark problems demonstrate the effectiveness of our
implementation of multi-objective optimization and constraint
handling. The two case studies we presented show Autotune’s
ability to find models that appropriately balance multiple
objectives while also adhering to constraints. Future work to
enhance Autotune includes simplifying the user’s experience
when choosing metrics for objectives and constraints.

REFERENCES

[1] Google, “Cloud automlBETA,” 2018. [Online]. Available: https:
//cloud.google.com/automl

[2] Microsoft, “Automl,” 2018. [Online]. Available: https://www.microsoft.
com/en-us/research/project/automl/

[3] Salesforce, “Open sourcing transmogrifai,” 2018.
[Online]. Available: https://engineering.salesforce.com/
open-sourcing-transmogrifai-4e5d0e098da2

[4] M. Feurer, A. Klein, K. Eggensperger, J. Springenberg, M. Blum,
and F. Hutter, “Efficient and robust automated machine learning,” in
Advances in Neural Information Processing Systems 28, C. Cortes, N. D.
Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, Eds. Curran
Associates, Inc., 2015, pp. 2962–2970.

[5] L. Kotthoff, C. Thornton, H. Hoos, F. Hutter, and K. Leyton-Brown.,
“Auto-weka 2.0: Automatic model selection and hyperparameter opti-
mization in weka,” Journal of Machine Learning Research, vol. 18,
no. 25, pp. 1–5, 2017.

[6] h2o, “Automl: Automatic machine learning,” 2018. [Online]. Available:
http://docs.h2o.ai/h2o/latest-stable/h2o-docs/automl.html

[7] H. Jin, Q. Song, and X. Hu. (2018) Auto-keras: Efficient neural
architecture search with network morphism.

[8] C. Ferri, J. Hernández-Orallo, and R. Modroiu, “An experimental
comparison of performance measures for classification,” Pattern Recogn.
Lett., vol. 30, no. 1, pp. 27–38, 2009.

[9] D. Powers, “Evaluation: From precision, recall and f-factor to roc,
informedness, markedness & correlation,” Mach. Learn. Technol., vol. 2,
01 2008.

[10] E. Zitzler, M. Laumanns, L. Thiele, C. M. Fonseca, and V. G.
da Fonseca, “Why quality assessment of multiobjective optimizers is
difficult,” in Proceedings of the 4th Annual Conference on Genetic and
Evolutionary Computation, ser. GECCO’02. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 2002, pp. 666–674.

[11] B. W Matthews, “Comparison of the predicted and observed secondary
structure of t4 phage lysozyme,” Biochimica et Biophysica Acta, vol.
405, pp. 442–51, 11 1975.

[12] Bolt, “The limitations of fraud detection today, and its future
with bolt,” 2018. [Online]. Available: https://medium.com/@bolt.com/
the-limitations-of-fraud-detection-today-and-its-future-with-bolt-5cdac0114a2f

[13] Y. Jin and B. Sendhoff, “Pareto-based multiobjective machine learning:
An overview and case studies,” Trans. Sys. Man Cyber Part C, vol. 38,
no. 3, pp. 397–415, 2008.

[14] E. Zitzler, K. Deb, and L. Thiele, “Comparison of multiobjective
evolutionary algorithms: Empirical results,” Evolutionary Computation,
vol. 8, no. 2, pp. 173–195, 2000.

[15] Y. Jin, Ed., Multi-Objective Machine Learning, ser. Studies in Compu-
tational Intelligence. Springer, 2006, vol. 16.

[16] Y. He and S. Han, “ADC: automated deep compression and acceleration
with reinforcement learning,” CoRR, vol. abs/1802.03494, 2018.

[17] S. A. Taghanaki, J. Kawahara, B. Miles, and G. Hamarneh, “Pareto-
optimal multi-objective dimensionality reduction deep auto-encoder for
mammography classification,” Computer methods and programs in
biomedicine, vol. 145, pp. 85–93, 2017.

[18] J. Loeckx, “Beyond mitchell: Multi-objective machine learning – min-
imal entropy, energy and error,” in 11th Metaheuristics International
Conference (MIC), Agadir, Morocco, 6 2015.

[19] M. Panda, “Big models for big data using multi objective averaged one
dependence estimators,” CoRR, vol. abs/1610.07752, 2016.

[20] A. Shenfield and S. Rostami, “Multi-objective evolution of artificial
neural networks in multi-class medical diagnosis problems with class
imbalance,” in CIBCB. IEEE, 2017, pp. 1–8.

[21] RapidMiner, “Rapidminer documentation,” 2019. [Online]. Available:
https://docs.rapidminer.com

[22] Y.-H. Kim, B. Reddy, S. Yun, and C. Seo, “Nemo : Neuro-evolution
with multiobjective optimization of deep neural network for speed and
accuracy,” 2017.

[23] T. Elsken, J. H. Metzen, and F. Hutter. (2018) Efficient multi-objective
neural architecture search via lamarckian evolution. [Online]. Available:
https://arxiv.org/pdf/1804.09081.pdf

[24] J.-D. Dong, A.-C. Cheng, D.-C. Juan, W. Wei, and M. Sun, “Ppp-net:
Platform-aware progressive search for pareto-optimal neural architec-
tures,” 2018.

[25] G. Michel, M. A. Alaoui, A. Lebois, A. Feriani, and M. Felhi,
“DVOLVER: Efficient pareto-optimal neural network architecture
search,” 2019.

[26] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan, “A fast elitist non-
dominated sorting genetic algorithm for multi-objective optimization:
Nsga-ii,” in Parallel Problem Solving from Nature PPSN VI, M. Schoe-
nauer, K. Deb, G. Rudolph, X. Yao, E. Lutton, J. J. Merelo, and H.-P.
Schwefel, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000,
pp. 849–858.

[27] C. Audet, G. Savard, and W. Zghal, “Multiobjective optimization
through a series of single-objective formulations,” SIAM J. on Opti-
mization, vol. 19, no. 1, pp. 188–210, Feb. 2008.

[28] P. Cao, Q. Shuai, and J. Tang, “A multi-objective DIRECT algorithm
towards structural damage identification with limited dynamic response
information,” CoRR, 2017.

[29] A. L. Custódio and J. F. A. Madeira, “Multiglods: global and local
multiobjective optimization using direct search,” Journal of Global
Optimization, vol. 72, no. 2, pp. 323–345, Oct 2018.

https://cloud.google.com/automl
https://cloud.google.com/automl
https://www.microsoft.com/en-us/research/project/automl/
https://www.microsoft.com/en-us/research/project/automl/
https://engineering.salesforce.com/open-sourcing-transmogrifai-4e5d0e098da2
https://engineering.salesforce.com/open-sourcing-transmogrifai-4e5d0e098da2
http://docs.h2o.ai/h2o/latest-stable/h2o-docs/automl.html
https://medium.com/@bolt.com/the-limitations-of-fraud-detection-today-and-its-future-with-bolt-5cdac0114a2f
https://medium.com/@bolt.com/the-limitations-of-fraud-detection-today-and-its-future-with-bolt-5cdac0114a2f
https://docs.rapidminer.com
https://arxiv.org/pdf/1804.09081.pdf

[30] A. L. Custódio, J. F. A. Madeira, A. I. F. Vaz, and L. N. Vicente,
“Direct multisearch for multiobjective optimization.” SIAM Journal on
Optimization, vol. 21, no. 3, pp. 1109–1140, 2011.

[31] K. Deb and J. Sundar, “Reference point based multi-objective optimiza-
tion using evolutionary algorithms,” in Proceedings of the 8th Annual
Conference on Genetic and Evolutionary Computation, ser. GECCO ’06.
New York, NY, USA: ACM, 2006, pp. 635–642.

[32] M. A. Taddy, H. K. H. Lee, G. A. Gray, and J. D. Griffin, “Bayesian
guided pattern search for robust local optimization,” Technometrics,
vol. 51, pp. 389–401, 2009.

[33] T. Plantenga, “Hopspack 2.0 user manual (v 2.0.2),” Sandia National
Laboratories, Tech. Rep., 2009.

[34] G. A. Gray, K. R. Fowler, and J. D. Griffin, “Hybrid optimization
schemes for simulation-based problems,” Procedia Computer Science,
vol. 1, pp. 1349–1357, 2010.

[35] J. D. Griffin and T. G. Kolda, “Asynchronous parallel hybrid optimiza-
tion combining direct and gss,” Optimization Methods and Software,
vol. 25, pp. 797–817, 2010.

[36] G. A. Gray and K. R. Fowler, “The effectiveness of derivative-free
hybrid methods for black-box optimization,” International Journal of
Mathematical Modeling and Numerical Optimization, vol. 2, pp. 112–

133, 2011.
[37] J. D. Griffin, K. R. Fowler, G. A. Gray, and T. Hemker, “Derivative-free

optimization via evolutionary algorithms guiding local search (eagls) for
minlp,” Pacific Journal of Optimization, vol. 7, pp. 425–443, 2011.

[38] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Ma-
chine Learning, 1st ed. Addison-Wesley Longman Publishing Co., Inc.,
1989.

[39] J. D. Griffin, T. G. Kolda, and R. M. Lewis, “Asynchronous parallel gen-
erating set search for linearly constrained optimization,” SIAM Journal
on Scientific Computing, vol. 30, pp. 1892–1924., 2008.

[40] O. Schütze, X. Esquivel, A. Lara, and C. A. Coello Coello, “Using the
averaged hausdorff distance as a performance measure in evolutionary
multiobjective optimization,” IEEE Transactions on Evolutionary Com-
putation, vol. 16, pp. 504–522, 2012.

[41] J. D. Griffin, T. G. Kolda, and R. M. Lewis, “Asynchronous parallel gen-
erating set search for linearly constrained optimization,” SIAM Journal
on Scientific Computing, vol. 30, pp. 1892–1924, 2008.

[42] J. D. Griffin and T. G. Kolda, “Nonlinearly constrained optimization
using heuristic penalty methods and asynchronous parallel generating
set search,” Applied Mathematics Research Express, vol. 2010, pp. 36–
62, 2010.

	I Introduction
	II Related work
	III Constrained Multi-objective Optimization Framework
	III-A Derivative-Free Optimization Strategy
	III-B Multi-Objective Optimization Approach
	III-C Constraint Handling

	IV Experimental Results
	V Case Studies
	V-A Donors Choose Data
	V-B Sales Leads Data

	VI Conclusions
	References

