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Abstract

Support Vector Data Description is a popular method for out-
lier detection. However, its usefulness largely depends on se-
lecting good hyperparameter values – a difficult problem that
has received significant attention in literature. Existing meth-
ods to estimate hyperparameter values are purely heuristic,
and the conditions under which they work well are unclear.
In this article, we propose LAMA (Local Active Min-Max
Alignment), the first principled approach to estimate SVDD
hyperparameter values by active learning. The core idea bases
on kernel alignment, which we adapt to active learning with
small sample sizes. In contrast to many existing approaches,
LAMA provides estimates for both SVDD hyperparameters.
These estimates are evidence-based, i.e., rely on actual class
labels, and come with a quality score. This eliminates the
need for manual validation, an issue with current heuristics.
LAMA outperforms state-of-the-art competitors in extensive
experiments on real-world data. In several cases, LAMA even
yields results close to the empirical upper bound.

1 Introduction
Support Vector Data Description (SVDD) (Tax and Duin
2004) is one of the most popular one-class classifiers for
outlier detection. SVDD builds upon a concise and intu-
itive optimization problem, and has a wide range of suc-
cessful applications, including fault monitoring (Yin, Wang,
and Fan 2018) and network security (Görnitz et al. 2009;
Stokes et al. 2008). Its core idea is to fit a hypersphere to the
data that contains all normal observations; unusual observa-
tions fall outside the hypersphere. SVDD requires to set two
hyperparameter values: a kernel function to allow for non-
linear decision boundaries and the cost trade-off C that reg-
ulates the share of observations that fall outside the hyper-
sphere. With SVDD, the predominant choice is the Gaussian
kernel, which is parameterized by γ. In this case, an optimal
γ reflects the actual complexity of the data, and an optimal
C excludes the true share of outliers from the hypersphere.
However, finding out the true complexity and outlier share
is challenging, which makes choosing good hyperparameter
values difficult. Moreover, SVDD is sensitive to changes hy-
perparameter values (Ghafoori et al. 2018). It easily over- or
underfits the data, which in turn can deteriorate classification
quality significantly.

SVDD is usually applied in an unsupervised setting,
i.e., the selection of hyperparameter values cannot rely on
class label information. There is a great variety of heuris-
tics for hyperparameter estimation that use data characteris-
tics (Khazai et al. 2011; Ghafoori et al. 2018), synthetic data
generation (Wang et al. 2018; Bánhalmi, Kocsor, and Busa-
Fekete 2007), and properties of the fitted SVDD (Anaissi,
Braytee, and Naji 2018; Kakde et al. 2017) to select a
good γ. However, these heuristics do not come with any val-
idation measures or formal guarantees, making it difficult
to validate if estimated hyperparameters are indeed a good
fit. Moreover, selecting a suitable heuristic is difficult in the
first place, since the intuition of different heuristics may be
equally plausible. This leaves the user with the cumbersome
and difficult task of validating the choice of the heuristic and
the estimated hyperparameter values.

In this article, we strive for a principled method for SVDD
hyperparameter estimation. To do away with purely heuristic
methods, our idea bases on active learning, i.e., asking users
to provide class labels for a few observations that provide
grounding for the estimation.

Challenges. Developing an active learning method for
selecting SVDD hyperparameter values is challenging. On
the one hand, labels give way to using supervised meth-
ods for selecting kernel parameters, such as kernel align-
ment (Cristianini et al. 2002). However, a reliable and sta-
ble alignment calculation requires a sufficient number of la-
beled observations (Abbasnejad, Ramachandram, and Man-
dava 2012). With active learning, there are only very few la-
bels available, in particular during the first iterations. Next,
current kernel alignment assumes that observations from
the same class are similar to each other. This assumption
may not hold with outlier detection, since outliers are rare,
do not have a joint distribution, and may be dissimilar
to each other. So kernel alignment is not applicable with-
out further ado; Section 4.2 illustrates this. A further chal-
lenge is that most conventional active learning strategies
are not applicable since they rely on an already parame-
terized classifier (Trittenbach, Englhardt, and Böhm 2018;
Trittenbach, Englhardt, and Böhm 2019), or focus on fine-
tuning of an already parameterized classifier (Ghasemi et al.
2011). However, an active learning strategy to estimate hy-
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perparameter values should select observations that are in-
formative of the full data distribution.

Contributions. In this article, we propose LAMA (Local
Active Min-Max Alignment), an active learning method to
select both SVDD hyperparameters γ and C. To our knowl-
edge, this is the first active learning method to estimate hy-
perparameters of SVDD. It is a principled, evidence-based
method and yields a quality score based on the actual class
labels obtained by active learning. This is a key advantage
over existing heuristics: LAMA does not require manual val-
idation, since its estimations base on labeled observations.

For γ, we address the challenges in two steps. First, we
propose locally optimal alignment, an adapted kernel align-
ment method based on local neighborhoods. It confines the
calculation to regions where class labels are available. Sec-
ond, we propose a novel active learning strategy to explore
regions of the data space where class labels are likely to con-
tribute to a reliable alignment calculation. Estimating γ is
efficient and widely applicable, since it solely relies on the
kernel matrix, and not on any specific model, such as SVDD.
For C, we propose a scheme to estimate a feasible lower and
upper bound, and then use a grid search to estimate its value.

Empirically, LAMA outperforms state-of-the-art heuris-
tics QMS (Ghafoori et al. 2018), DFN (Xiao et al. 2014)
and ADS (Wang et al. 2018) in extensive experiments on
real world data. On several data sets, LAMA even yields re-
sults close to the empirical upper bound.

2 Fundamentals
We first introduce some notation, and then describe SVDD.

Notation. Let X = {x1, x2, . . . , xN} be a data set
with N observations and M dimensions. Each observa-
tion is either an inlier or an outlier, encoded by yi ∈
{+1(inlier),−1(outlier)}. The number of inliers is Ninlier,
and of outliers Noutlier. The data can be partitioned into the
sets of labeled observations Linlier and Loutlier, and of unla-
beled observations U .

SVDD is a minimum enclosing ball optimization prob-
lem. The basic idea is to fit a hypersphere around the train-
ing data by choosing its center a and a radius R, such that
the boundary is a description of the inliers. In its most basic
form, SVDD is a hard-margin classifier, i.e., all observations
lie inside the hypersphere and are considered inliers. By in-
troducing a trade-off into the optimization problem, SVDD
becomes a soft-margin classifier, since some observations,
the outliers, can be outside the hypersphere if this decreases
the radius significantly. This is realized by a cost parameter
C ∈ [0, 1]. Large values of C make excluding observations
from the hypersphere more expensive. The soft-margin op-
timization problem is

minimize
a,R,ξ

R2 + C

N∑
i=1

ξi

subject to ‖Φ(xi)− a‖2 ≤ R2 + ξi, i = 1, . . . , N.

ξi ≥ 0, i = 1, . . . , N.

(1)

The kernel function Φ maps observations from the data
space into the kernel space, and facilitates arbitrarily shaped

decision boundaries. Since the dual of SVDD depends only
on inner products, one can use the kernel trick to replace
them with a kernel function k. In our article, we focus on
the Gaussian kernel k(x, x′) = e−γ‖x−x

′‖ with kernel band-
width γ. It is by far the most popular kernel used with
SVDD. Existing literature on SVDD hyperparameter selec-
tion focuses on choosing γ as well. The kernel function
can be interpreted as a similarity measure. Intuitively, when
γ = 0, all observations are projected to the same vector,
and their inner product is 1. For γ → ∞, all observations
are orthogonal to each other, and their inner product is 0.
Another way to think about γ is the complexity of the deci-
sion boundary it induces. For small values of γ, the decision
boundary in the data space is almost a perfect hypersphere.
Thus, it is less flexible to adjust to the data distribution. With
large values for γ, the decision boundary is very complex,
i.e., the classifier is likely to overfit to the data. Determining
the complexity of the decision boundary is challenging, and
makes choosing an appropriate value for γ difficult.

The symmetric matrixKN×N denotes the Gram matrix of
the pairwise kernel functions. We use the shorthand K(i, j)
to refer to the entries of K.

3 Related Work
Both SVDD hyperparameters depend on each other, i.e., a
good value for C depends on the choice of the kernel. C in-
fluences the share of observations that are classified as out-
lier, and a good value depends on the specific application.
Literature has produced several heuristics to select an appro-
priate γ, but the choice of C is often left to the user. In some
cases, the heuristics to select a kernel even require users to
initialize C – a requirement unlikely to be met in practice.

The bulk of methods we present in this section focuses
on selecting γ. There are three types of heuristics. The first
type is data-based selection, which solely relies on data
characteristics to estimate γ, often in a closed formula. The
second type is model-based selection, which optimizes for
criteria based on the trained model, and thus requires solv-
ing SVDD, often multiple times. The third type of selection
heuristics generates synthetic data in combination with su-
pervised selection schemes to fit a decision boundary. In rare
cases, when labeled training data is available, one can use
plain supervised selection, e.g., by using cross validation.

Data-based Selection The simplest data-based estimation
methods are formulas to directly calculate γ. There are two
rules of thumb by Scott (Scott 2015) and by Silverman (Sil-
verman 1986). They use the number of observations and
lower-order statistics to calculate γ in a closed formula. Oth-
ers propose to estimate γ by using the distances between the
centers of the outlier and inlier class (Khazai et al. 2011).
Recent approaches use changes in the neighborhood density
of training observations to derive closed formulas for γ and
C (Ghafoori et al. 2018; Ghafoori et al. 2016).

A different approach is to define desired properties of the
kernel matrix, and optimize for them by modifying the ker-
nel parameter. Several such objectives have been proposed:
to maximize the coefficient of variance of non-diagonal
kernel matrix entries (Evangelista, Embrechts, and others



2007), to ensure that the kernel matrix is different from the
identity matrix (Chaudhuri et al. 2017), and to maximize the
difference between distances to the nearest and to the far-
thest neighbours of training observations (Xiao et al. 2014).

Model-based Selection Changes in hyperparameter val-
ues modify the optimal solution of the SVDD optimiza-
tion problem, and the properties of this solution. Model-
based selection strategies fit SVDD for several γ values,
and select the model which has the desired properties. A
common approach is to define desired geometric proper-
ties of the decision boundary. For instance, one can de-
fine criteria on the tightness of a decision boundary, e.g.,
by estimating whether the decision function is a boundary
on a convex set (Xiao et al. 2014). A good kernel param-
eter leads to a decision boundary that is neither too tight
nor too loose. Variants of this approach are to first detect
edge points of the data sample (Xiao, Wang, and Xu 2015;
Anaissi, Khoa, and Wang 2018). Intuitively, interior points
should be far from the decision boundary, and edge points
close to the decision boundary. Thus, one can maximize
the difference between the maximum distance of an interior
point to the decision boundary and the maximum distance of
an edge-point to the decision boundary to balance between
tight and loose boundaries.

Others have suggested optimization criteria based on the
number of support vectors, i.e., the observations that define
the decision boundary. The number of support vectors tends
to increase with more complex decision boundaries. So one
can search for the smallest γ such that the number of sup-
port vectors are the lower bound imposed by C (Gurram and
Kwon 2011). A variant of this idea is to decrease γ until all
support vectors are edge points (Anaissi, Braytee, and Naji
2018). A different approach is to select the kernel parame-
ter by training SVDD on multiple resamples of the data and
then select the γ that results in the smallest average number
of support vectors over all samples (Banerjee, Burlina, and
Diehl 2006).

One can also derive objectives directly from the dual ob-
jective function of SVDD. For instance, empirical obser-
vations suggest that one can set the second derivative of
the dual objective with respect to the kernel parameter to
zero to obtain a parameter estimate (Kakde et al. 2017;
Peredriy, Kakde, and Chaudhuri 2017). Also combinations
of support vector count and objective function maximization
have been proposed as objectives (Wang et al. 2013).

Selection with Synthetic Data The core idea of parameter
tuning by synthetic data generation is to enhance the train-
ing data with labeled artificial observations. One can then
apply supervised parameter tuning, such as grid search and
cross-validation, to select parameters that fit best the artifi-
cially generated data set. A benefit is that many of the syn-
thetic data generation methods also provide an estimate for
C. However, the success of these methods depends on how
well the artificial observations are placed, and whether this
placement works well for the data at hand is unclear. A poor
placement can yield parameter values that have very poor
classification quality, see Section 5.

The basic variants generate outliers either uniformly (Tax

and Duin 2001) or from a skewed distribution (Deng and
Xu 2007) and estimate the false negative rate for the out-
liers generated. To generate outliers more reliably in high-
dimensional data, there are adaptations that decompose this
problem into first detecting the edge points of the sample and
then generating the artificial outliers based on them (Wang
et al. 2018; Bánhalmi, Kocsor, and Busa-Fekete 2007).

Supervised Selection If labeled training data is avail-
able, one can use supervised hyperparameter tuning
(Tax and Muller 2004; Tran, Li, and Duan 2005;
Theissler and Dear 2013). However, these methods are
not relevant for our article since with active learning, there
initially is no labeled training data available.

To conclude, there is a plethora of heuristics available to
set the hyperparameter values of SVDD. However, selecting
a suitable heuristic is difficult for several reasons. For one,
there is no objective criterion to compare heuristics. They do
not come with any formal guarantees on their result quality,
but offer different intuitions on SVDD, and on motivations
for particular estimation strategies. Respective articles gen-
erally do not discuss the conditions under which the heuris-
tics work well. Next, existing experimental evaluations com-
prise only a few of the heuristics, and in many cases only a
very limited body of benchmark data. A further important
downside of many existing heuristics is that they require to
set C manually. This makes both a competitive comparison
and the application in practice difficult.

4 Method
In this section, we propose an active learning method to learn
hyperparameters values of SVDD. We first present some
preliminaries on kernel learning. Then we focus on cases
when only a few labeled observations are available. We then
present a query strategy to identify observations that are
most informative for learning the kernel parameter value. Fi-
nally, we propose a strategy to estimate the cost parameter
C based on the set of labels acquired by active learning.

4.1 Kernel Learning Fundamentals
Kernel learning methods construct a kernel matrix or a ker-
nel function from labeled training data, or from pairwise
constraints. The idea is to identify a good kernel given the
training data, independent of the classifier. There are multi-
ple approaches to learn a kernel, e.g., by directly learning the
Kernel Matrix (Non-Parametric Kernel Learning) (Zhuang,
Tsang, and Hoi 2011) or to learn an optimal combination of
multiple kernels, which may differ by type or by parameter-
ization (Gönen and Alpaydın 2011).

With SVDD, the Gaussian kernel is the predominant
choice for the kernel. The Gaussian kernel is parametric,
which gives way to learning good parameter values by so-
called kernel alignment (Cristianini et al. 2002). The idea of
kernel alignment is to define an ideal kernel matrix

Kopt = yyᵀ (2)

using class labels y. The entries of Kopt are +1 if obser-
vations have the same class label, and −1 otherwise. The



alignment between an empirical and ideal kernel matrix is

A(Kγ ,Kopt) =
〈Kγ ,Kopt〉F√

〈Kγ ,Kγ〉F 〈Kopt,Kopt〉F
(3)

where 〈·, ·〉F is the Frobenius inner product. Kernel align-
ment has some desirable theoretical properties (Wang, Zhao,
and Tian 2015): it is computationally efficient, i.e., the com-
putation only depends on the number of labeled observations
O(|L|2); it is concentrated around its expected value, i.e.,
the empirical alignment deviates only slightly from to the
true alignment value; it generalizes well to a test set.

Kernel alignment is useful for finding a good kernel pa-
rameter. By using the kernel alignment as an objective, one
can search for an optimum (Wang, Zhao, and Tian 2015)

γopt = arg max
γ

A(Kγ ,Kopt). (4)

With outlier detection, calculating the alignment is more dif-
ficult, since the class distributions are highly imbalanced.
In this case, the sensitivity of the alignment measure may
drop (Wang, Zhao, and Tian 2015). One remedy is to adjust
y by the relative class frequency (Kandola, Shawe-Taylor,
and Cristianini 2002). Another method to deal with unbal-
anced classes is to center the kernel matrix (Cortes, Mohri,
and Rostamizadeh 2012). Preliminary experiments indicate
that relative class frequency adjustment does not improve
the alignment calculation in our setting. We therefore rely
on kernel matrix centering.

4.2 Alignment on Small Samples
One difficulty of kernel alignment is that it generally re-
quires a large set of labeled examples to define the ideal
kernel matrix (Abbasnejad, Ramachandram, and Mandava
2012). However, with active learning, only very few labels
are available, in particular during the first few iterations. A
second difficulty is that user labels may be noisy, i.e., the
actual label may differ from the user-provided label. A rea-
son is that labeling is a subjective assessment, and that users
may misjudge and provide a wrong label. In general, this is-
sue may be negligible, in particular when feedback is correct
in most of the cases. However, noisy labels may impact the
kernel alignment significantly when the amount of labeled
data is small.

In the following, we propose a method that creates a lo-
cal alignment to mitigate both of these difficulties. The idea
is to include the local neighborhood of labeled observations
in the alignment calculation. Our methods consists of two
steps. In the first step, we re-label observations based on a
majority vote of the labels in their local neighborhood. The
reason for this is two-fold. On the one hand, this step re-
duces the influence of noisy labels. On the other hand, this
creates pseudo labels for observations in U and increases the
number of observations for the alignment calculation. In the
second step, we define a locally optimal kernel matrix for
the alignment. That is, we limit the comparison between Kγ

and Kopt to the relevant entries.

Preliminaries We first introduce some useful definitions.

Definition 1 (Nearest Neighbors). NNk(x) are the k closest
observations of an observation x. We set NN1(x) = {x}.
Definition 2 (Reverse Nearest Neighbors). RNNk(x) is the
set of observations that have x as one of their k-nearest
neighbors.

RNNk(x) = {l | x ∈ NNk(l)} (5)

Definition 3 (Symmetric Nearest Neighbors). SNNk(x) is
the set of observations that are k-nearest neighbors of x as
well as reverse nearest neighbors of x.

SNNk(x) = {l ∈ NNk(x) | x ∈ NNk(l)} (6)

Relabeling We propose to relabel observations based on
their local neighborhood to increase the number of labeled
observations, and to reduce the influence of noisy labels.
More specifically, when a user labels an observation xi, this
label is propagated to the local neighborhood of xi. We pro-
pose an asymmetric propagation scheme. When xi is inlier,
the label propagates to the k-nearest neighbors of xi. So the
nearest neighbors of an inlier are deemed inliers as well.
When xi is outlier, the label propagates to the symmetric
nearest neighbors of xi. The rationale behind this propaga-
tion scheme is that the nearest neighbor of an outlier may
well be an inlier – this holds with certainty if there is only
one outlier in the data space. But the nearest neighbors of in-
liers are likely to also be inliers. So asymmetric propagation
mitigates wrong label propagation.

After relabeling, one can count how often x occurs as a
reverse k-nearest neighbor of labeled inliers, i.e.,

nin(x) =
∑
l∈Lin

1NNk(l)(x). (7)

Analogously, the number of times x occurs in symmetric
nearest neighbors of outliers is

nout(x) =
∑
l∈Lout

1SNNk(l)(x). (8)

Based on these counts, neighborhoods are relabeled based
on a majority vote. The re-labeled pools are

L′in = {x | nin(x)

nin(x) + nout(x)
> 0.5}, and

L′out = {x | 0 < nin(x)

nin(x) + nout(x)
≤ 0.5}.

(9)

The set U ′ contains the remaining observations, i.e., the ones
that do not occur in neighborhoods of labeled observations.
Figure 1 illustrates the relabeling.

The optimal kernel matrix based on relabeled observa-
tions is

K ′opt = y′(y′)ᵀ, (10)

where y′ is the label vector after relabeling, cf. Equation 2.

Locally Optimal Alignment The global kernel alignment
relies on all entries of the kernel matrix, see Equation 3. This
is problematic because, when the sample size is small and bi-
ased towards some area of the data space, γopt may be far off



Lin Lout

Figure 1: Relabeling with local neighborhoods. The arrows
indicate the propagation of class labels to NN2 (green) and
SNN2 (red) neighborhoods of the labeled observations.

the true optimum. Figure 2 illustrates this issue on data sam-
pled from a Gauss distribution with two labeled inliers and
one labeled outlier. In Figure 2a, the alignment is “global”,
i.e., does not rely on neighborhood information. It results in
a large value for γopt and causes the SVDD classifier to over-
fit. In Figure 2b, the alignment is “local”, i.e., includes the
local neighborhood of labeled observations in the alignment
calculation. The result is a small γopt – a good choice for the
data.

We now explain how to calculate the alignment on a sub-
set of the kernel matrix entries. In general, an inlier should
be similar to its nearest neighbors. However, inliers may not
be similar to all other inliers. If there only are two distant
observations xi and xj with xi, xj ∈ Lin, a global kernel
alignment would result in a large γopt, such that k(xi, xj)
is close to 1. In this case, γopt overfits to the labeled ob-
servations. To avoid this issue, we only expect inliers to be
similar to their nearest neighbors that are also labeled as in-
liers. Next, inliers should be dissimilar to nearest neighbors
that are labeled as outliers. Formally, this means to select the
kernel matrix entries

Min = {(i, j) | i ∈ Lin, j ∈ L′ ∩ NNk(i)} (11)

With outliers, one cannot assume similarity to their nearest
neighbors, since the nearest neighbor of an outlier may often
be an inlier. Thus, we assume that outliers are similar only to
their symmetric nearest neighbors. Further, outliers should
be dissimilar to the nearest inliers that are not their reverse
nearest neighbors. Formally, this means to select the kernel
matrix entries

Mout = {(i, j) | i ∈ Lout, j ∈ (L′out ∩ SNNk(i))

∪ (L′in ∩ NNk(i) \ RNNk(i))}
(12)

Figure 2b highlights Min and Mout. To calculate an align-
ment on these subsets, we set the remaining kernel matrix
entries to 0, i.e., they do not have any impact on the align-
ment calculation.

K ′opt(i, j)← 0, ∀ (i, j) /∈Min ∪Mout (13)

Kγ(i, j)← 0, ∀ (i, j) /∈Min ∪Mout (14)

We denote the alignment on this subset as

alocal := A(Kγ ,K
′
opt). (15)

4.3 Query Strategy
Active learning is an iterative approach to selecting observa-
tions for which users are asked to provide a class label (Set-
tles 2010). The core idea is to improve upon some objective,
usually classification accuracy, with a minimal number of
iterations. In each iteration, a query strategy ranks observa-
tions by their informativeness, i.e., the expected benefit of
knowing the class label given a specific objective. Formally,
this is a function τ that maps an observation x ∈ U to R.
Users are asked to provide the class label for the observation
with the highest informativeness, q = arg maxx∈U τ(x).

Active learning in combination with kernel learning has
only been studied for non-parametric kernels (Hoi and Jin
2008). Conventional active learning methods are also not
useful for learning hyperparameter values. Most conven-
tional query strategies are not applicable since they rely
on already parameterized classifiers (Trittenbach, Englhardt,
and Böhm 2018). Other query strategies rely only on data
characteristics and select observations in the margin be-
tween classes (Ghasemi et al. 2011), i.e., they select bor-
der cases for fine-tuning an already parameterized classifier,
which tend to not be representative of the underlying dis-
tribution. Hyperparameter estimation requires observations
that are informative of both classes and of the data distribu-
tion. To our knowledge, there currently is no query strategy
with the objective to estimate hyperparameter values.

In our scenario, an observation is informative if its label
contributes towards finding γopt. Intuitively, these are the ob-
servations that fit least to the current alignment, and thus
lead to large changes. The rationale is that this query strategy
results is explorative at first, which leads to large changes in
the alignment. Over time, the changes become smaller, and
the parameter estimation more stable. Thus, we propose to
estimate informativeness of an instance by calculating how
much the alignment changes when the label for a yet unla-
beled instance would become available.

Min-Max Alignment Query Strategy Given a current
γopt, and the respective alignment alocal both derived by
Equation 15, for each potential query x ∈ U , there are two
cases. If x is an inlier, the updated sets are L′′in = L′in ∪ {x},
otherwise L′′out = L′out ∪{x}. One must then update Min and
Mout respectively to calculate an updated alignment. If x is
inlier, the updated alignment is ain

local, otherwise it is aout
local.

We define the informativeness as the minimum change in
the alignment over both cases

τMMA(x) = min{|alocal − ain
local|, |alocal − aout

local|}. (16)
So q is the unlabeled observation where τMMA is maximal.
Algorithm 1 is an overview of our proposed active learning
method to estimate the kernel parameter. For efficiency, we
calculate τMMA on a candidate subset S ⊆ U with sample
size |S|, which we select randomly in each iteration. In our
experiments, we have found a sample of size |S| = 100 to
work well.

4.4 Estimating Cost Parameter C
Active learning results in a ground truth of size |L| = k after
k iterations. The sample obtained through Min-Max Align-
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Figure 2: Comparison of global and local alignment and fitted SVDD with |Lin| = 2 and |Lout| = 1.

ment gives way to a grid search forC, as follows. First, there
is a lower bound CLB and an upper bound CUB on the feasi-
ble region of C. Recall that, with decreasing C, more obser-
vations may fall outside of the hypersphere. To obtain CLB,
we use binary search for the smallest C where the SVDD
optimization problem still has a feasible solution. To obtain
CUB, we search for the smallest C where all observations,
regardless of their label, are classified as inlier. We then
use a grid search to find Copt. We train several classifiers in
[CLB, CUB] and compare their classification accuracy on L
based on a suitable metric, e.g., Cohen’s Kappa. This is the
quality score that assesses the current parameter estimates.
Copt is the value that yields the highest score.

5 Experiments
We evaluate our method on an established set of benchmark
data for outlier detection (Campos et al. 2016). In this bench-
mark, one of the classes of the original data has been de-
clared the outlier class. This means that some outliers can
lie in dense regions, i.e., the data contains noisy labels. We
use 16 data sets of varying size and dimensionality, normal-
ized, with varying outlier percentage between 1 % and 44 %.
Large data sets are sub-sampled to N = 2000. Our imple-
mentations, raw results, and notebooks to reproduce our re-
sults are publicly available.1

We evaluate our active learning approach against several
state-of-the-art methods to estimate SVDD hyperparameter

1https://www.ipd.kit.edu/mitarbeiter/lama

values, and compare against a random baseline and an em-
pirical upper bound. We repeat each experiment five times
and report the average results unless stated differently.

Active Learning. As an initial labeled pool, we randomly
draw a sample of size |Lin| = 2 and |Lout| = 2. This is a re-
laxed version of a cold start, and not a limitation in practice.
We apply Min-Max Alignment until |L| = 50. To speed
up query selection, we only calculate τMMA on a subset of
size S = 100 in each iteration, see Section 4.3. The locality
parameter for relabeling and local alignment is k = 5; we
will discuss the impact of k later. To estimate C, we split
[CLB, CUB] by a grid of size 20.

Competitors. We use several state-of-the-art heuristics
that have outperformed other competitors in experiments
conducted in the respective papers. The first heuristic is
QMS (Ghafoori et al. 2018). We follow the recommenda-
tion in the paper to set its parameter k = df · Ne, where
f is an a-priori estimate of the outlier ratio, which we set to
0.05. The second heuristic is DFN (Xiao et al. 2014). We use
two variants: DFN-Fix with C = 0.05 as recommended in
the paper, and DFN-Sample where we query the label for 50
randomly selected observations and apply grid search. The
third heuristic is ADS (Wang et al. 2018), which uses syn-
thetic observations. We use the grid size recommended in
the paper (ADS) and a variant with a larger grid (ADS-Ext).

Empirical Bounds. As a lower baseline for the effective-
ness of our query strategy, we replace Min-Max Alignment
with random sampling (LAMA-Sample). Note that the
other components of our approach, i.e., selecting γ by

https://www.ipd.kit.edu/mitarbeiter/lama


Algorithm 1: Active Learning of Kernel Parameter
Data : X = 〈x1, x2, . . . , xN 〉
Parameter: k
Output : γopt

1 Function τ(x; a, L′in, L′out):
2 L′′in ← L′in ∪ {x}
3 L′′out ← L′out ∪ {x}
4 calculate ain

local, a
out
local // Eq. 15, 16

5 return min(|alocal − ain
local|, |alocal − aout

local)|
6 Lin, Lout ← drawInitialSample
7 U ← X \ Lin ∪ Lout

8 while ¬terminate do
9 L′in, L′out ← relabel (Lin, Lout) // Eq. 9

10 calculateMin, Mout // Eq. 11, 12
11 calculateK ′opt // Eq. 10, 13
12 calculate γopt // Eq. 4, 15

// Min-Max Alignment Strategy
13 alocal ← A(Kγopt ,K

′
opt)

14 s← 0
15 for x ∈ U do
16 s′ ← τ (x; alocal, L′in, L′out)
17 if s′ > s then
18 q← x
19 s← s′

20 end
21 end

// Update pools
22 if askOracle (q) == “outlier” then
23 Lout ←Lout ∪ {q}
24 else
25 Lin ←Lin ∪ {q}
26 end
27 U ← U \ {q}
28 end
29 return γopt

local alignment, and C by grid search remain the same as
with LAMA. As an empirical upper bound, we search for
hyperparameter values based on the ground truth via grid
search (Emp. UB). This is an unfair comparison; it merely
sets results into perspective. Note that this is an empirical
upper bound, i.e., instances may occur where one of the
competitors yields better results, e.g., for values between
the grid steps.

One has to be careful when evaluating classification on
outlier benchmark data. This is because measuring classifi-
cation quality on a holdout split assumes that the train split
is representative of the data distribution; this might not hold
for outliers. We therefore suggest to evaluate on the full data
set, i.e., a variant of the resubstitution error. This a good
compromise as long as there are only a few labeled observa-
tions (Trittenbach, Englhardt, and Böhm 2018). In addition,
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Figure 3: Results with varying k.

labels are only used for parameter tuning, the final classifier
training is unsupervised, i.e., it does not use the obtained
labels. As evaluation metric we use Cohen’s kappa, which
is well suited for imbalanced data. It returns 1 for a perfect
prediction, 0 for random predictions, and negative values for
predictions worse than random.

LAMA obtains very good results on the majority of the
data sets, see Table 1. In several cases, LAMA is even close
to the empirical upper bound. This shows that the quality
score calculation on a labeled sample aligns very well with
the classification quality on the full data set. The local align-
ment with LAMA-Sample also yields good results. This
means that our local alignment works well even on random
samples. This is in line with literature, i.e., random selection
sometimes scores well against sophisticated alternatives.

LAMA outperforms its competitors on most data sets.
Overall, the competitors do not perform well at all, and there
are only few instances where they produce useful hyperpa-
rameter values. In many cases, the resulting classification
accuracy is 0, i.e., the competitors do not produce useful es-
timates in these cases. Reasons for this might be that nei-
ther a direct estimation (DFN-Fix and QMS) nor an estima-
tion with artificial data (ADS) works well with outlier data.
For QMS, we found that the closed formula to calculate C
returns values that are far from the empirical optimum. In
these cases, the classifier either classifies too many or too
few observations as outliers. Further, QMS sometimes does
not return valid γ values because of duplicates (“–”). DFN-
Sample is the closest competitor to LAMA. One reason is
that it uses a random sample to estimate C, which tends to
be more effective than a closed formula. On most data sets,
however, classification results are still worse than LAMA-
Sample, which relies on a random sample as well, but uses
local kernel alignment for γ instead of a closed formula.

We found LAMA to return good parameters for small val-
ues of k. Figure 3 shows the result quality and the estimated
γ value with k averaged over 10 repetitions for two data sets
with increasing k. There, the estimated γ as well as the re-
sult quality are stable for k ∈ [5, 10]. This means that our
method is not sensitive to k for small values of k. In prac-
tice, we recommend to set k = 5 since this value has worked
well in our benchmark, see Table 1.



Dataset LAMA LAMA-Sample DFN-Fix DFN-Sample QMS ADS-default ADS-ext Emp. UB

Annthyroid 0.02 0.03 0.00 -0.00 0.00 0.00 0.00 0.04
Cardio 0.25 0.23 0.00 0.22 – 0.00 0.00 0.24
Glass 0.15 0.09 0.04 0.03 – 0.00 0.00 0.25
Heart 0.13 0.10 0.00 0.10 0.00 0.00 -0.02 0.13
Hepatitis 0.05 0.15 0.00 0.16 0.05 0.08 0.05 0.21
Ionosphere 0.66 0.66 0.00 0.55 – 0.59 0.00 0.78
Lymph 0.47 0.41 0.47 0.39 – 0.48 0.48 0.51
PageBlocks 0.42 0.35 0.10 0.42 0.00 0.00 0.00 0.52
Pima 0.08 0.16 0.02 0.07 0.00 0.00 0.00 0.14
Shuttle 0.06 0.19 0.13 0.10 0.00 0.00 0.00 0.31
SpamBase 0.01 -0.01 0.00 0.01 0.00 0.00 0.00 0.04
Stamps 0.18 0.17 0.08 0.18 0.00 0.00 0.01 0.21
WBC 0.53 0.50 0.53 0.46 0.00 0.00 0.45 0.59
WDBC 0.38 0.31 0.34 0.15 0.00 0.00 -0.01 0.45
WPBC 0.01 0.04 -0.03 0.01 0.00 -0.02 -0.05 0.08
Wave 0.05 0.04 -0.00 0.02 0.00 0.00 0.04 0.11

Table 1: Result on real world benchmark data; average kappa coefficient over five repetitions; best per data set in bold.

6 Conclusions
The usefulness of SVDD largely depends on selecting good
hyperparameter values. However, existing estimation meth-
ods are purely heuristic and require a cumbersome and dif-
ficult validation of estimated values.

In this article, we propose LAMA, a principled approach
to SVDD hyperparameter estimation based on active learn-
ing. Its core idea is to refine kernel alignment to small sam-
ple sizes by considering only local regions of the data space.
LAMA provides evidence-based estimates for both SVDD
hyperparameters and eliminates the need for manual vali-
dation. LAMA outperforms state-of-the-art competitors in
extensive experiments. It provides estimates for both SVDD
hyperparameters that result in good classification accuracy,
in several cases close to the empirical upper bound.
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