
Embedding for Anomaly Detection on
Health Insurance Claims

Jiaqi Lu

Master of Science

Computer Science

McGill University

Montreal,Quebec

June 2019

A thesis submitted to McGill University in partial fulfilment of the requirements of
the degree of Masters of Science, Computer Science

©Jiaqi Lu, 2019

DEDICATION

To my family and friends who keep encouraging me.

ii

ACKNOWLEDGEMENTS

First I would like to express my gratitude to my academic supervisor Benjamin

Fung for offering me countless suggestions and sharing his great knowledge about

the field and the world to me. His guidance helps me finish this thesis.

Also, I would like to thank my colleagues during the industrial collaboration,

David Lachapelle, Patrick Lemieux, Serge Illiesco, Roger Grondin, and Nadia Tahiri.

I would like to thank them for explaining domain background to me, offering me nu-

merous help in prototyping, and spending time with me sharing their experience and

view about software development.

Special thanks to my family and friends, whoever in Montreal or not. Their love

and support is always my motivation to move forward.

This research is supported by the Engage Grants (529904-18) from the Nat-

ural Sciences and Engineering Research Council of Canada (NSERC) with McGill

Research Ethics Board’s approval (146-0818).

iii

ABSTRACT

Properly analyzing health insurance claims data could lead to significant busi-

ness insights and benefits for health service providers and insurance companies. Yet,

health insurance data is often high dimensional and contains complex interleave se-

quences of claims. Instead of conducting machine learning tasks directly on the raw

data, a better approach is performing the tasks on high-quality embeddings of the raw

data. Driven by the business need of our industrial partner, a Canadian technology

company in the group insurance industry, in this thesis, we extract health insurance

claims embeddings with neural networks in the context of anomaly detection. We

propose and thoroughly examine six embedding components that are customized

based on different possible assumptions made on the data. One of our proposed

embedding components, EC-ReStepRec, significantly outperforms other candidates

on two anomaly detection tasks. This is the first embedding study done on health

insurance claims for anomaly detection.

iv

ABRÉGÉ

Une analyse appropriée des données de réclamations d’assurance maladie pour-

rait permettre aux prestataires de services de santé et aux compagnies d’assurance

de tirer des conclusions importantes sur les entreprises. Cependant, les données sur

l’assurance maladie sont souvent de grande dimension et contiennent des séquences

complexes de demandes entrelacées. Au lieu d’effectuer des tâches apprentissage

automatique directement sur les donnes brutes, une meilleure approche consiste à ef-

fectuer les tâches sur des intégrations de haute qualité des données brutes. Soucieux

de répondre aux besoins réalistes de notre partenaire industriel, une société cana-

dienne de technologie du secteur des assurances collectives, nous extrayons dans

cette thèse les intégrations de réclamations d’assurance maladie avec des réseaux

de neurones dans le cadre de la détection des anomalies. Nous proposons et exam-

inons de manière approfondie six composants d’intégration personnalisés en fonction

des différentes hypothèses possibles basées sur les données. L’un des composants

d’intégration proposés, EC-ReStepRec, surpasse de manière considérable les autres

candidats sur deux tâches de détection d’anomalies. Ceci est la première étude

d’intégration sur les demandes de règlement d’assurance maladie pour la détection

d’anomalies.

v

CONTRIBUTION OF AUTHORS

The candidate and Prof. Benjamin Fung identified the research problem. The

candidate formally defined the problem, designed the models, conducted the exper-

iments, evaluated the experimental results, and wrote the entire thesis under the

supervision of Prof. Benjamin Fung. Prof. Benjamin Fung proofread the final ver-

sion of the thesis. The thesis is an extension of a submitted conference paper under

review. Dr. William Cheung proofread the final version of the paper.

vi

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

ABSTRACT . iv

ABRÉGÉ . v

CONTRIBUTION OF AUTHORS . vi

LIST OF TABLES . ix

LIST OF FIGURES . x

1 Introduction . 1

2 Literature Review . 5

2.1 Anomaly Detection . 5
2.2 Embedding . 9

3 Technical Background . 11

3.1 Classical Machine Learning Classifiers 11
3.1.1 Generative Learning Methods 12
3.1.2 Discriminative Learning Methods 16
3.1.3 Ensemble Learning Methods 20

3.2 Artificial Neural Networks . 23
3.2.1 The Fully Connected Layer 25
3.2.2 The Recurrent Layer . 26
3.2.3 The Long Short-Term Memory (LSTM) Layer 28

4 Problem Description . 31

vii

5 Model: Embedding Component Design 34

5.1 EC-Flatten . 35
5.2 EC-Recurrent . 36
5.3 EC-Step . 36
5.4 EC-FlaRec . 37
5.5 EC-StepRec . 38
5.6 EC-ReStepRec . 39

6 Experiments . 41

6.1 Data Preparation . 41
6.1.1 The Pharmaceutical Claims Dataset 41
6.1.2 Data Processing . 43

6.2 Model Implementation . 44
6.3 Baselines . 50

7 Evaluation . 52

7.1 Evaluation Tasks . 52
7.1.1 Binary Classification Task 54
7.1.2 Three-Class Classification Task 55

7.2 t-SNE Visualization . 56
7.2.1 Low Granularity Visualization 57
7.2.2 High Granularity Visualization 60

7.3 Result Summary . 63

8 Discussion . 64

8.1 Why does EC-ReStepRec outperform the other candidates? 64
8.2 Why do the baselines fail? . 65

9 Conclusion, Lesson Learned, and Future Work 66

Appendix Classification Tasks Performance 68

References . 70

viii

LIST OF TABLES
Table page

6–1 Attribute description . 43

6–2 Parameter settings for the embedding components 47

6–3 Parameter settings for the embedding components 50

7–1 Binary classification on test set . 54

7–2 Three-Class classification on test set 55

9–1 Binary classification performance on test set (0,1 indicate the F1-
score on the benign class and the anomalous class respectively. m
indicates the micro-average F1-score.) 68

9–2 Three-Class classification performance on test set (0, T1, T2, indicate
the F1-score on the benign class, T1 anomalous class, and T2
anomalous class respectively. m indicates the micro-average F1-
score.) . 69

ix

LIST OF FIGURES
Figure page

1–1 A claim record . 1

3–1 A neuron . 23

3–2 The activation functions . 24

3–3 The feed-forward fully connected neural network 25

3–4 A fully connected layer (dense layer) 26

3–5 The recurrent layer . 27

3–6 The mechanism of an RNN cell . 28

3–7 Compare the complexity of a vanilla RNN cell and an LSTM cell . . 29

4–1 An example sequence of claims . 31

4–2 An example of dependent relation: services 1001, 1002 and 1003
are usually requested in order. A patient with misordered service
records is flagged suspicious. 32

5–1 An overview of the architecture . 34

5–2 EC-Flatten . 35

5–3 EC-Recurrent . 36

5–4 EC-Step . 37

5–5 EC-FlaRec . 38

5–6 EC-StepRec . 39

5–7 EC-ReStepRec . 40

6–1 The default main classifier . 44

x

6–2 The implementation of EC-Flatten 45

6–3 The implementation of EC-Recurrent 45

6–4 The implementation of EC-Step . 45

6–5 The implementation of EC-FlaRec . 46

6–6 The implementation of EC-StepRec 46

6–7 The implementation of EC-ReStepRec 47

6–8 Training models with the proposed embedding components 49

6–9 Training autoencoders . 51

7–1 Lollipop plot visualizing the micro-average F1-scores on the binary
classification task . 54

7–2 Lollipop plot visualizing the micro-average F1-scores on the three-class
classification task . 56

7–3 t-SNE visualization of the EC-Flatten, EC-Recurrent, EC-Step, EC-
FlatRec, EC-StepRec, and EC-ReStepRec embeddings (low granu-
larity) . 57

7–4 t-SNE visualization of the AE8 and AE9 embeddings(low granularity) 59

7–5 t-SNE visualization of the mSDA embedding(low granularity) 59

7–6 t-SNE visualization of the EC-Flatten, EC-Recurrent, EC-Step, EC-
FlatRec, EC-StepRec, and EC-ReStepRec embeddings (high granu-
larity) . 60

7–7 t-SNE visualization of the AE8 and AE9 embeddings(high granularity) 62

7–8 t-SNE visualization of the mSDA embedding(high granularity) 62

xi

Chapter 1
Introduction

Health insurance claims data are the bills between health service providers and

insurance companies for the services obtained by a patient. A typical claiming pro-

cess begins with a patient receiving health services from a provider. Next, the service

provider submits a claim directly to an insurance company. The claim goes through

validation checks followed by rules based on the patient’s plan for pricing. Then, the

insurance company pays the service provider [20]. Health insurance claims could be

generally categorized into medical, pharmaceutical, and dental based on the services

and service providers under request. As shown in Figure 1–1, each claim record gen-

erally contains information about the patient, the service provider, and the service.

The exact attributes included in a claim depend on its category. For pharmaceutical

claims, typical patient attributes include name, date of birth, address, etc. Typical

service provider attributes include pharmacy code, pharmacist code, etc. Typical

service attributes include medication code, quantity, date of service, etc.

Figure 1–1: A claim record

1

Health insurance claims have been increasingly studied, resulting in many ana-

lytical insights that contribute to healthcare applications. Koh et al. [19] summarize

the applications into four categories: evaluation of treatment effectiveness, healthcare

management, customer relationship management, and anomaly detection.

Among the aforementioned applications, anomaly detection deserves special at-

tention from insurance companies and governments. In the context of health insur-

ance claims, there are three types of anomalies: frauds, abuses, and errors. Frauds

indicate intentional acts of deception, misrepresentation, or concealment in order to

get paid. Abuses indicate excessive or improper use of services that are inconsistent

with acceptable business or medical practice and that result in unnecessary costs. Er-

rors are unintentional mistakes made in processing claims. The boundaries between

the three categories are not always clear. Frequent errors could suggest an abuse.

Besides, intention is hard to be reflected in a claim itself. All three types of anomaly

deserve special attention. Further manual examinations are required to determine

the actions followed. The general goal is to accurately identify the anomalies.

In reality, however, it is hard to conduct analyses or perform machine learning

tasks directly on health insurance claims data, which are often high dimensional

and in the form of interleave sequences. Prevailing data analytical techniques are

typically applied to datasets where the records are relatively small in dimension [21].

The same analytical dilemma also appears in other domains such as accounting and

banking [25, 5, 36, 27, 9, 3, 37].

Traditionally, feature engineering plays an important role in addressing the issue

of high dimensionality. Based on the knowledge for the target dataset, a relatively

2

small set of indicators would be selected as the input of the detection models. Re-

cently, through the development of deep learning techniques, embedding has been

widely studied as a solution to tackle the curse of dimensionality.

Driven by the business requirements of our industrial partner, Solution Segic

Inc., a Canadian technology company that proposes solutions in the group insurance

industry, we have been working on their health insurance claims data. We aim

for embeddings that can effectively represent the health insurance claims data in

low-dimensional space but still be descriptive, and thus the embeddings could be

effectively applied in the analytical scenario of anomaly detection.

To obtain an effective embedding, we propose six embedding components for

health insurance claims data. The embedding components that we present are care-

fully designed based on different assumptions made on the nature of the data. Each

embedding component has a clear but very different learning preference. By training

each embedding component as part of a deep learning model, respectively, we obtain

the corresponding embeddings and evaluate them on two anomaly detection tasks of

different granularity.

Our main contributions are summarized as follows:

• This is the first embedding study on health insurance claims for anomaly de-

tection. With embedding, we effectively address the curse of dimensionality

without heavily relying on domain knowledge for feature selection.

• We propose six embedding components to perform health insurance claims em-

bedding. We thoroughly consider the possible assumptions on health insurance

3

claims. Based on different assumptions, we design the embedding components

so that each has a distinct learning preference.

• We conduct extensive experiments on real-life health insurance claim data pro-

vided by our industrial partner. Results suggest that the embedding obtained

by our proposed embedding component, EC-ReStepRec, is of outstanding qual-

ity and significantly outperforms other embeddings under comparison.

This thesis is organized as follows. Chapter 2 describes the works related to

health insurance claims embedding. Chapter 3 is a brief overview of the machine

learning concepts used in this thesis. Chapter 4 formally defines the research problem.

Chapter 5 presents each proposed embedding component in detail. Chapter 6 shows

the experiment on a real-life health insurance claims dataset. Chapter 7 is the

evaluation of the embeddings by two anomaly detection tasks with visualization.

Chapter 8 contains our interpretation of the results and lists future work directions.

Chapter 9 concludes the thesis.

4

Chapter 2
Literature Review

2.1 Anomaly Detection

The development of information technology and the trend of digitization of in-

surance data boost the advancement of techniques for efficient and effective anomaly

detection. Machine learning, as a group of intelligent methods that can learn from

data and solve problems with minimal human intervention, has been widely studied

in anomaly detection in various domain, including the healthcare sector.

Existing machine learning methods for anomaly detection in health insurance

claims can be generally categorized into supervised and unsupervised learning meth-

ods.

Supervised learning methods

Supervised learning methods are good at capturing patterns within the data.

With a supervised learning method, the model learns from a labeled dataset so that

it can predict a label when a new sample comes in. Classical supervised machine

learning methods, such as support vector machine (SVM) [18], decision tree [16],

and logistic regression [22] have been employed for detecting anomalies. Lots of

analysis software provide good support to these classical machine learning methods,

which greatly decreases the technical difficulty in conducting experiments and thus

the contribution of studies with classical methods mostly lies in their processing

procedure and reasoning rather than modeling. Kirlidog et al. [18] use an SVM with

5

the linear kernel to predict the probability of anomaly and give a detailed analysis

on the discovered anomalous records according to three criteria. Johnson et al. [16]

propose a multi-stage method to classify with decision tree upon an aggregated risk

measure. Liou et al. [22] employ logistic regression, neural network and decision tree,

a.k.a. classification tree and their experiment results show that all three methods

can achieve accuracy over 90%.

Artificial neural networks also have been increasingly used in detection problems

in the healthcare sector because of their solid performance on diverse application

problems [1, 22]. Ortega et al. [1] propose a system consisting of multiple committees

of neural networks, where each committee is a sub-model corresponding to one of

the entities involved in the problem.

Unsupervised learning methods

However, to gather the labeled data required by supervised learning methods is

not easy, especially in the context of anomaly detection. Labeling requires domain

knowledge and experiences and thus usually it is guided by professional examiners.

In addition, labeling is expensive considering the human resource involved and the

time cost. Therefore, unsupervised learning methods, which does not require labels,

attract the attention of researchers.

Typical unsupervised learning methods include clustering [23, 17], outlier de-

tection methods [33] and association rule based methods [31]. Liu et al. [23] and

Joudaki et al. [17] both employ clustering techniques. Joudaki et al. [17] cluster us-

ing indicators which are carefully created based on logical inference about suspicious

behaviors. Suspicious groups are identified according to the clustering result. Liu et

6

al. [23] especially point out that geo-location information is potentially an important

indicator of fraudulent behavior. Thornton et al. [33] mark suspicious claims by us-

ing multiple analysis techniques and outlier detection methods. The idea behind is

that different techniques and analyses can reveal different types of anomaly. Shan

et al. [31] achieve the same goal by mining positive and negative association rules.

After domain experts verify those rules, rule-breaking claims would be regarded as

risky and suspicious.

Hybrid methods

Unsupervised learning methods do not require labels and thus they are in lack

of guidance comparing with supervised learning methods. Besides, even for methods

in the same categories, every learning method has its own advantages and disadvan-

tages. In order to take advantages from multiple learning algorithms, hybrid methods

are proposed. Here we select a few of them and explain the ideas behind.

Shin et al. [32] first develop a scheme to compute the composite degree of

anomaly (CDA) score of a service provider. The CDA score is a weighted sum of the

degree of anomaly (DA) score for each selected indicator. The weights are suggested

to compute in a supervised fashion, involving six statistical techniques including cor-

relation analysis, logistic regression, and discriminant analysis, etc. Providers are

arranged into groups based on the CDA score and then the grouped providers would

be used to build a decision tree classifier, which classifies providers into groups with

different CDA level. Providers classified into to top-scored groups will be highly

suspected as anomalies. This method is flexible and can be easily customized ac-

cording to user’s setting. The decision tree brings the method good interpretability

7

on the relationship between indicators and prediction result. The involvement of the

proposed CDA scoring scheme improves the interpretability of the modeling process

and to some extent reduce the model’s dependence on the reliable labels indicating

anomaly.

Ngufor et al. [26] propose unsupervised learning algorithms for labeling noisy

data streams characterized by drifting concepts and suggest that these methods could

be applied whenever there is a need for unsupervised labeling of data streams for

the purpose of supervised learning. In another work [38], the authors illustrate an

example system, which starts with the unsupervised learning algorithm to assign

labels then goes to supervised rule-based models.

The aforementioned learning methods face the same challenge of high dimen-

sionality in real-life data. Most of the existing works address this issue based on

preliminary knowledge, for example, by manual selection [32], by computing metrics

or aggregated features on the raw data and then using those advanced indicators in

the detection model [33, 17, 16, 22, 2]. The knowledge required to figure out the ap-

propriate indicators mostly comes from in-depth case studies and literature reviews

or from the help of experienced domain experts. Considering the advancement of

deep learning techniques, learning the latent features is becoming feasible and prac-

tical. This thesis explores embedding learning for a specific domain as an alternative

to traditional feature engineering.

8

2.2 Embedding

Embedding has been increasingly studied in different domains, such as natural

language processing [25], graph analysis [5], and network analysis [36]. Generally,

there are two categories of embedding learning methods:

Mathematical-based methods

These methods are unsupervised and relate to matrix computation in closed

form. The computation cost is relatively low, and they are not limited to any specific

domain [34, 7]. Baldassini et al. [3] obtained client embeddings on current account

transactions with a marginalized stacked denoising autoencoder (mSDA) [7]. We

experimentally compare our embeddings with the embedding obtained by mSDA on

health insurance claims.

Learning-based methods

Learning-based methods dominate the state-of-the-art embedding studies. One

of our baseline methods, autoencoder, is one of the popular methods. In a typical

autoencoder, an encoder maps the input into an embedding, a decoder reconstructs

the embedding back to the original input, and the whole model is trained to reduce

the reconstruction loss. Schreyer et al. [30] introduced a few deep autoencoders for

anomaly detection on accounting data. We implement and employ their models on

health insurance claims and compare with the obtained embeddings in experiments.

Alternatively, an embedding component is trained as part of a large model for a

domain-specific task in a supervised way. Optimizing algorithms such as stochastic

gradient descent (SGD) would be involved in these methods in order to learn the

parameters [6, 25, 5, 36, 27, 9, 3, 37].

9

Word embedding models, as one of the most well-studied branches of embedding

learning, have been adapted to health insurance claims for embeddings of medical

concepts, including diseases, medicines, and procedures, and have been proven to be

able to capture medical semantic relatedness [10, 8]. Yet, no related work has been

done on health insurance claims embedding in the context of anomaly detection.

This thesis fills this gap.

10

Chapter 3
Technical Background

In this chapter, we will introduce a few machine learning concepts used in this

work, so that the readers can better understand the contents in the following chap-

ters.

3.1 Classical Machine Learning Classifiers

Essentially, a classifier can be formulated as a mapping function F , given a

feature space X and a finite set of discrete classes Y . There are two types of learning

approaches to build a classifier.

• Discriminative learning

Discriminative learning methods estimate the mapping function F directly.

They could be further divided into probabilistic methods and non-probabilistic

methods, depending on whether F has a probabilistic meaning. Probabilistic

methods learn P (Y |X) and predict the class based on probability, while non-

probabilistic methods learn the mapping from the feature space to the discrete

classes directly.

• Generative learning

Generative learning methods are always probabilistic. They estimate P (X|Y)

and P (Y) respectively and then estimate P (Y |X) with the Bayes rule, as shown

in Formula 3.1.

11

P (Y = k|X = x) =
P (X = x|Y = k)P (Y = k)

P (X = x)

=
P (X = x|Y = k)P (Y = k)∑
kP (X = x|Y = k)P (Y = k)

(3.1)

For simplicity, in this chapter, we use fk(x) to represent the class-conditional

density of X in class k, that is P (X = x|Y = k). We use πk to represent the prior

probability of class k, P (Y = k), where
∑

k P (Y = k) = 1.

Additionally, there are ensemble methods, which makes use of multiple base

methods in order to achieve better predictive performance than could be achieved

from any single constituent method. The base methods can be generative or discrim-

inative learning methods.

3.1.1 Generative Learning Methods

Linear Discriminant Analysis (LDA)

Linear Discriminant Analysis (LDA) is a generative learning method which has

been well applied in data classification and dimensionality reduction. While the

obvious disadvantage is that LDA can only learn linear boundaries, the advantages

of LDA include:

• closed-form and thus relatively low computation cost.

• inherently support multi-class classification.

• no hyperparameter to tune.

LDA models fk(x), the class-conditional density of X in class k, as a multivariate

gaussian distribution with mean µk and covariance matrix Σk [35]:

12

fk(x) =
1

(2π)d/2 |Σk|1/2
e−

1
2

(x−µk)TΣ−1
k (x−µk) (3.2)

where d is the dimension. LDA assumes that Σk is the same for every class so we

will simply use Σ to denote the covariance matrices.

According to Formula 3.1, after taking the logarithm and absorbing the terms

that do not rely on the class k, we can define the linear discriminant function as:

δk(x) = xTΣ−1µk −
1

2
µTkΣ−1µk + log πk (3.3)

To compute δk, we need to estimate πk, µk, and Σ. Suppose a set of training

data of size N is available. D = 〈(x1, y1), (x2, y2), . . ., (xN , yN)〉. Then δk, πk, and µk

can be approximated as shown below.

π̂k =
Nk

N
(3.4)

µ̂k =
1

Nk

∑
yi=k

xi (3.5)

Σ̂ =
1

(N −K)

∑
k

∑
yi=k

(
xi − µ̂k

) (
xi − µ̂k

)T
(3.6)

where K is the number of classes, Nk is the number of observations of class k, and

(xi, yi) is the ith sample in the training set.

With the estimates, we can make an inference by computing ŷ = argmaxk δ̂k(x),

where ŷ is the predicted class for x, a previously unseen instance from the feature

space.

13

Quadratic Discriminant Analysis (QDA)

The theory behind Quadratic Discriminant Analysis (QDA) is almost the same

as LDA, except that QDA does not assume a common convariance matrix for every

class [35]. Σk needs to be computed separately as shown in Formula 3.7.

Σ̂k =
1

(Nk − 1)

∑
yi=k

(xi − µ̂k) (xi − µ̂k)T (3.7)

The different assumption allows QDA to learn quadratic boundaries and thus

QDA is more flexible.

Näıve Bayes

Näıve bayes is another prevailing generative learning method. It is under the

assumption of conditional independence between every pair of features given the

value of the class [39]. Therefore, for class k,

fk(x) =
d∏
j=1

fkj (xj) (3.8)

where d is the number of features, a.k.a. dimension, xj indicates the jth feature, and

fkj indicates the class-conditional density of the jth feature in class k.

In practice, näıve bayes can work very well for tasks such as document classifi-

cation and spam filtering. Although the strong assumption is rarely true in reality,

näıve bayes is preferred due to the following advantages:

• only require a small training set.

• relatively low computation cost.

• less sensitive to the curse of dimensionality.

14

There are different types of näıve bayes classifier based on different assumption

made on the distribution of fkj. Here we just introduce bernoulli näıve bayes and

gaussian näıve bayes.

Bernoulli näıve bayes assumes that fkj is given by a bernoulli distribution. Each

feature is assumed to be binary. For feature xj of class k,

fkj (x) = πkjx+ (1− πkj) (1− x) (3.9)

where πkj represents P (xj = 1|y = k).

Gaussian näıve bayes assumes that fkj is given by a gaussian distribution. For

feature xj of class k,

fkj (x) =
1√

2πσ2
kj

e
−

(x−µkj)
2

2σ2
kj (3.10)

where µkj is the mean and σkj is the variance.

According to Formula 3.1 and Formula 3.8, the objective function is defined as:

δk(x) = πk

d∏
j=1

fkj (xj) (3.11)

To compute δk, the unknown variables are estimated with a training set D of

size N . We estimate πk as Formula 3.4. If it is for bernoulli näıve bayes, πkj is

estimated as shown in Formula 3.12.

π̂kj =
Nkj

Nk

(3.12)

15

where Nk is the number of observations of class k, Nkj is the number of observations

of class k with xj = 1.

If it is for gaussian näıve bayes, we can approximate µkj and σkj with maximum

likelihood estimation. Suppose that in the training set D, there are Nk class k

training samples, Dk = 〈(x1, k), (x2, k), . . ., (xNk , k)〉, then

µ̂kj =
1

Nk

∑
i

xij (3.13)

σ̂2
kj =

1

Nk

∑
i

(
xij − µ̂jk

)2
(3.14)

where xij indicates the jth feature of xi.

3.1.2 Discriminative Learning Methods

Logistic Regression

Logistic regression is a discriminant learning method. It is probably the most

widely used learning algorithm as it is simple and easy to implement.

Logistic regression models P (Y = k|X) linearly with the logistic function as

shown in Formula 3.15.

σk(x) =
1

1 + e−(wTk x+bk)
(3.15)

To estimate wk and bk, we minimize the sum of cross-entropy loss for all the

training samples, which leads to the objective function:

16

argminwk,bk −

[
N∑
i=1

yi log
(
σk
(
xi
))

+
(
1− yi

)
log
(
1− σk

(
xi
))]

(3.16)

With the estimates, an inference can be made by computing ŷ = argmaxk σ̂k(x).,

where ŷ is the predicted class for x, a previously unseen instance from the feature

space.

Support Vector Machine (SVM)

Support Vector Machine (SVM) is also a typical discriminative learning method.

The advantages of SVM include:

• memory efficient. Only a subset of training points is required as support vec-

tors.

• versatile. The kernel functions can be customized.

• less sensitive to the curse of dimensionality.

In the meanwhile, SVM also has disadvantages including:

• relatively high computation cost.

• do not directly provide probability estimates.

The main idea behind SVM is to find a hyperplain that can separate different

classes in the high-dimensional space [14]. And the margin around the hyperplain is

expected to be as wide as possible. The idea could be formally framed as an optimiza-

tion problem. Given a training set of size N , D = 〈(x1, y1), (x2, y2), . . ., (xN , yN)〉,

where xi is a d-dimensional feature vector, we have the problem as defined in For-

mula 3.17.

17

minw,b
1
2
wTw + C

∑N
i=1 ξ

i

subject to yi
(
wTφ(xi) + b

)
≥ 1− ξi

ξi ≥ 0

where w ∈ Rd, ξ ∈ RN

(3.17)

φ maps the feature vectors to a high dimensional space. ξ1, ξ2,. . . , ξN are slack

variables. C is a penalty parameter that controls the trade-off between slack penalty

and margin.

Choosing the feature mapping function φ is equivalent to choosing the kernel

for the algorithm. A kernel is defined as: K (xi, xj) ≡ φ (xi)
T
φ (xj). Typical kernels

include:

• Linear kernel:

K (xi, xj) = (xi)Txj

• Radial basis function kernel (RBF kernel):

K (xi, xj) = exp
(
−γ ‖xi − xj‖2

)
, γ > 0

The ŵ and b̂ returned after resolving Formula 3.17 would be used in the in-

ference stage. For binary classification, we can make an inference by computing

ŷ = sign
(
ŵTφ(xi) + b̂

)
, where ŷ is the predicted class for an unseen instance xi.

For multi-class classification, a common practice is to train multiple pairwise SVMs

and select the class inferred by the majority of pairwise SVMs as the final predicted

class.

18

Decision Tree

Decision tree is a discriminative learning method. The main advantage of deci-

sion tree is that it is easy to understand and interpret. Essentially, a decision tree

is a set of simple decision rules [15]. However, the limitation is the expressivity.

Decision trees cannot easily express relations such as XOR and parity. Additionally,

in practice, it is reported that decision tree is inclined to overfit.

A decision Tree is constructed by performing recursive binary splitting. Given a

training set D = 〈(x1, y1), (x2, y2), . . ., (xN , yN)〉, where xi is a d-dimensional feature

vector. xi = (x1, x2, . . . , xd), a decision tree can be built by following the steps below.

Step 1: Considering all the features and all the possible cutpoint value, select

a feature xj and a cutpoint value s which leads to the greatest decrease in

minimum classification error rate. The selected xj and s constitute a test,

which corresponds to an internal node.

Step 2: The data space is split into subspaces R1(j, s) = {x|xj < s} and

R2(j, s) = {x|xj ≥ s}.

Step 3: Recursively repeat Step 1 and Step 2 on each subspace, until all the

training samples are in the same class. Then create a leaf node with that class

label and quit.

The classification error rate is the percentage of the samples in a space that do

not belong to the most common class. In addition to the classification error rate, it

is also common to use entropy in practice.

The inference process is described as below. With x = (x1, x2, . . . , xd),

Step 1: Run the test at each internal node.

19

Step 2: Go to the branch depending on the test outcome.

Step 3: Recursively repeat Step 1 and Step 2 until reaching a leaf node. The

predicted class for x is the majority class of the training samples that fall in

that leaf node. Quit.

K-nearest Neighbors (KNN)

K-nearest neighbors (KNN) assumes that samples that are closer in terms of the

distance metric are more likely to belong to the same class. For an unseen instance x

from the feature space, KNN looks for the K closest samples in the training set and

predict the class for x as ŷ = argmaxk
∑K

i=1 I (yi = k). Therefore, to some extent,

KNN does not actually learn or generalize anything but infer based on memory.

Distance metric plays a critical role in KNN. The performance mainly relies on

how well the distance metric reflects the sample similarity. The most commonly used

metric is euclidean distance.

Considering the nature of KNN, the advantages of KNN include:

• simple and easy to implement.

• no assumption made on data distribution.

And in the meanwhile, the main disadvantage is its high memory space require-

ment, as KNN stores all the training data for inference.

3.1.3 Ensemble Learning Methods

Random Forest

Random Forest is an ensemble learning method based on the idea of bagging.

Basically, bagging means building a diverse set of base classifiers and combining the

20

prediction of the base classifiers to finalize the final prediction. Random forest is

based on multiple decision trees with certain randomness [4].

The training procedure could be summarized as:

Step 1: Given the training set D, construct M bootstrap replicates. Ev-

ery bootstrap replicate R contains the same number of samples by randomly

selecting from D with replacement.

Step 2: Train decision trees Ti with a bootstrap replicate Ri. For each internal

node, determining the test only with p randomly selected features.

Step 3: Repeat Step 2 until M decision trees are created.

As we briefly mentioned above, the final prediction of a random forest is based

on the prediction of all the M decision trees. A common practice is to return the

majority class.

Adaboost

Adaboost is an ensemble learning method based on the idea of boosting. The

main idea behind boosting is to train multiple weak classifiers in order. The weight of

the training samples would be adjusted according to the performance of the previous

weak learner [11].

Below we summarize the training procedure of a variant of adaboost which sup-

ports multi-class classification, stagewise additive modeling using a multi-class expo-

nential loss function (SAMME) [12].

Step 1: Given a training set of size N , D = 〈(x1, y1), (x2, y2), . . ., (xN , yN)〉,

where xi is a d-dimensional feature vector. xi = (x1, x2, . . . , xd). Initialize the

weight distribution of each training sample as wi = 1
N

.

21

Step 2: Train a weak classifier, ht, with weight distribution w.

Step 3: Compute εt, the weighted error rate of ht.

εt =

∑N
i=1wi · I (yi 6= ht (xi))∑N

i=1wi
(3.18)

where I(c) is a conditional function which returns 1 when the condition c holds

true and returns 0 otherwise.

Step 4: Compute αt, the importance of ht.

αt = log
1− εt
εt

+ log(K − 1) (3.19)

where K is the number of classes.

Step 5: Adjust the weights for the training samples.

wi = wi exp
(
αt · I

(
yi 6= ht

(
xi
)))

(3.20)

Step 5: Normalize w.

Step 6: Repeat Step 2 to Step 5, until T weak classifiers are trained. Quit.

Adaboost finalizes the prediction based on the prediction of all the T weak learn-

ers weighted by importance α.

arg max
k

T∑
t=1

αt · I (ht(x) = k) (3.21)

22

3.2 Artificial Neural Networks

Artificial neural networks are computational models inspired by biological neural

networks. They are discriminant models which have been widely used to approximate

mapping functions, especially for complicated functions.

Typically, artificial neural networks are organized in layers. A typical artificial

neural network is stacked by at least three layers, an input layer, a hidden layer, and

an output layer. A layer consists of a number of interconnected neurons.

The neurons [29], as the small units in an artificial neural network, play an

important role in learning. Every neuron could be considered as a small learning

device. It takes in a vector x = (x1, x2, . . . , xm) and output a scalar o while handling

a set of weights w = (w1, w2, . . . , wm) and a scalar bias b. As shown in Figure 3–1,

the mechanism of a neuron can be described as:

o = activation
(
wTx+ b

)
(3.22)

Figure 3–1: A neuron

23

A neuron is always accompanied by an activation function. An activation func-

tion greatly impacts the behavior of a neuron and eventually impacts the learning

performance of the model. Here we briefly introduce two activation functions, rec-

tified linear unit (ReLU) and sigmoid, as they will be mentioned in the following

chapters.

ReLU: γ(x) = x+ = max(0, x)

A non-linear activation function that only returns the positive part of the input

signal. Empirically ReLU can alleviate the vanishing gradient problem which

frequently happens in deep neural network training.

Sigmoid: σ(x) = 1
1+e−x

A non-linear activation function, which is also known as the logistic function.

It maps an input signal into a value between 0 and 1.

(a) ReLU (b) Sigmoid

Figure 3–2: The activation functions

The most classic artificial neural network is the feed-forward fully connected

neural network, which is also known as multi-layer perceptron (MLP), as shown in

Figure 3–3.

24

Figure 3–3: The feed-forward fully connected neural network

The intuition behind the stacked layers is that each layer processes and abstracts

information that passed from the last layer with the adjusting weights and bias.

Therefore, generally the more layers stacked, the more complex patterns could be

captured. In addition to the number of stacked layers, another factor that greatly

impacts the complexity of the learned pattern is the selection of layers.

3.2.1 The Fully Connected Layer

The fully connected layer, which is also known as the dense layer, is the most

commonly used layer. All the neurons in the layer receive the input values and each

neuron outputs a value.

A fully connected layer can be described as a mapping function:

o = activation
(
WTx+ b

)
(3.23)

x is am-dimensional input vector, where x = (x1, x2, . . . , xm). o = (o1, o2, . . . , op)

is the p-dimensional output of the layer, where p is also denoted as dimension and

25

has to be set explicitly when defining the layer. p also corresponds to the number of

neurons in the layer.

W is a m× p matrix of weights and b is the vector of the bias for the neurons.

W and b is the core of the mapping function and they are the parameters to be

learned during training.

We also visualize a fully connected layer in Figure 3–4 for better illustration.

Figure 3–4: A fully connected layer (dense layer)

3.2.2 The Recurrent Layer

The recurrent layer is good at exploring sequential data and capturing temporal

information. It is widely used in deep learning applications in text and speech.

A recurrent layer is made up of a recurrent neural network cell (RNN cell). An

RNN cell keeps a hidden state h which gets updated over time. h is a p-dimensional

vector that represents the useful information collected. At each time step, the cell

26

takes in an input xt and the latest hidden state ht−1, then it outputs the new hidden

state ht.

(a) An recurrent layer is made up of an RNN
cell (b) Unroll the recurrent layer over time

Figure 3–5: The recurrent layer

The mechanism of an RNN cell is shown in Figure 3–6. It can also be described

as a mapping function:

ht = activation
(
WT [xt, ht−1] + b

)
(3.24)

t is the current time step between 1 and T , where T is the number of total

time steps explicitly set when defining the layer. xt = (xt,1, xt,2, . . . , xt,m) is a m-

dimensional input vector generated at time step t. ht = (ht,1, ht,2, . . . , ht,p) is the

p-dimensional hidden state at time step t. p also corresponds to the number of

neurons needed in a cell, which should be explicitly set when defining the layer. W

27

is a (p+m)× p matrix of weights and b is the vector of the bias for the neurons. It

is worthy to note that W and b is shared between all time steps.

Figure 3–6: The mechanism of an RNN cell

3.2.3 The Long Short-Term Memory (LSTM) Layer

An LSTM layer is a variant of the vanilla recurrent layer [13]. Other than the

hidden state h, an LSTM cell also manages the cell state C, which is updated ad-

ditively. The cell state C can be interpreted as long-term memory. In fact, LSTM

is proposed to address two main drawbacks of the vanilla recurrent neural network.

One is to deal with long-term dependencies. Another is the gradient vanishing and

exploding issue, resulting by the fact that the hidden state h is updated multiplica-

tively.

28

(a) A vanilla RNN cell (b) An LSTM cell [28]

Figure 3–7: Compare the complexity of a vanilla RNN cell and an LSTM cell

An LSTM cell encodes more complex computational logic inside. Figure 3–7a

and Figure 3–7b visualize the operations within a vanilla RNN cell and an LSTM cell

respectively. Behind the seemingly complex logic within an LSTM cell, it is three

gates that control the information flow.

• Forget gate:

ft = σ
(
Wf

T [xt, ht−1] + bf
)

(3.25)

• Input gate:

it = σ
(
Wi

T [xt, ht−1] + bi
)

(3.26)

• Output gate:

ot = σ
(
Wo

T [xt, ht−1] + bo
)

(3.27)

29

And then the cell outputs Ct and ht accordingly.

C̃t = tanh (WC · [ht−1, xt] + bC) (3.28)

Ct = ft ∗ Ct−1 + it ∗ C̃t (3.29)

ht = ot ∗ tanh (Ct) (3.30)

30

Chapter 4
Problem Description

Mostly, it is the characteristics of data that prohibit direct utilization and drive

the involvement of embeddings. In the case of health insurance claims, the challeng-

ing characteristics are sequentiality and dimensionality.

Figure 4–1: An example sequence of claims

Sequentiality The claims could be processed into sequences by grouping. Fig-

ure 4–1 shows a sequence of claims identified by patient and medication code. By

sorting the claims within a sequence by the date of service, the resulting sequence

represents the medication history of a patient.

Generally, there exist two genres of relations in the claims:

• Independent relation: the relation among the attributes within the same claim.

• Dependent relation: the relation among the attributes across multiple claims

in the same sequence.

Dependent relations, which only exist in sequences, are important in the con-

text of health insurance claim anomaly detection. For example, they can represent

31

persistent behavioral patterns or ordered patterns that are likely to be suspicious

but are generally hard to capture. Figure 4–2 shows an example.

Figure 4–2: An example of dependent relation: services 1001, 1002 and 1003 are
usually requested in order. A patient with misordered service records is flagged
suspicious.

Dimensionality The dimension for an encoded claim could be extremely large.

The challenge amplifies if the data are in sequence, where multiple claims are assem-

bled as one input. This is a challenge because the curse of dimensionality renders

many traditional machine learning algorithms ineffective on many machine learning

tasks.

In order to resolve those challenges, we resort to embeddings. An embedding

is a relatively low-dimensional space into which high-dimensional vectors are trans-

formed. Embeddings are helpful because they reduce the dimensionality of data

while still effectively representing the relations within the original data in the map-

ping space. Good embeddings could well serve for various purposes. For example,

32

they could be the input for a specific target task or be directly visualized in order to

intuitively illustrate the distribution of the original data.

Lastly, we formally define our research problem here. A claim is defined as

T=(x1, x2, . . . , xm), where xi is an attribute or a feature. Given a set of sequences,

D=〈S1, S2, . . . , Sn〉 where each sequence Sj is constituted by varying length of claims,

Sj={T1, T2, . . . , Tk}, our problem is to find a mapping function f : D → Rd and thus

every sequence Sj is mapped to a continuous vector of length d, E=(e1, e2, . . . , ed),

where m, n, k, and d are all positive integers. d should be significantly smaller

than m× k. The mapping should be of high quality so that the mapping space can

effectively represent the original data.

33

Chapter 5
Model: Embedding Component Design

Figure 5–1: An overview of the architecture

Figure 5–1 provides an overview of the architecture, which consists of two com-

ponents. The embedding component, which is the focus of this thesis, is the alterna-

tive of the traditional feature engineering process for learning an embedding. In this

work, the classifier is a small fully-connected neural network responsible to classify

the embedded sequences into classes depending on the user-defined customized task.

In the training phase, both the embedding component and the classifiers are trained

34

as a whole. In the evaluation phase, only the embedding components are evaluated.

The whole model takes a sequence of claims Sj as an input. Ti is the ith claim in the

sequence, denoted by Ti=(xi1, x
i
2, . . . , x

i
m).

We have explored, proposed, and evaluated different embedding components

that are developed based on different assumptions that can be imposed on health

insurance claim data. Each embedding component is customized for one type of

assumption and thus is endowed with a specific learning preference, enabling the

embedding component to explore certain relationships effectively. Here we discuss

six architectures of embedding components.

5.1 EC-Flatten

Figure 5–2: EC-Flatten

In EC-Flatten, there is no explicit assumption made in terms of the relationship

between attributes, as we want to grant the model maximal flexibility. The claims

in a sequence are concatenated into a one-dimensional vector. Therefore, attributes

that come from the same claim and the attributes that come from different claims

35

are treated equally. Figure 5–2 illustrates the architecture of EC-Flatten, where

(h1, h2, . . . , hm∗k) is an intermediate output with m× k dimensions.

5.2 EC-Recurrent

In EC-Recurrent we assume that the inter-claim relationship in sequential con-

text is important. Thus, each claim is fed into the model as one step. An abstraction

persists and is updated from one step to the next. Finally, the output embedding

is a global abstraction of the whole sequence. Figure 5–3 illustrates the architecture

of EC-Recurrent, where (hi,1, hi,2, . . . , hi,p) is the p-dimensional global abstraction at

step i. The final global abstraction, (hk,1, hk,2, . . . , hk,p) could be directly used as

the outputted embedding so d equals to p. It also makes sense to further process

(hk,1, hk,2, . . . , hk,p).

Figure 5–3: EC-Recurrent

5.3 EC-Step

In EC-Step we assume that claims in the same sequence do not closely rely

on each other. Instead, the inter-attribute relationship within each single claim is

36

more important. As shown in Figure 5–4, each claim is fed into the model as one

step. However, instead of allowing the information to evolve along the steps as EC-

Recurrent, at each step the information exposed to the model is isolated. Abstraction

is made step by step. (h1
i,1, h

1
i,2, . . . , h

1
i,p) is the p-dimensional abstraction on the input

of step i. Next, the step-wise abstractions are concatenated into an intermediate

output with p× k dimensions, which is (h2
1, h

2
2, . . . , h

2
p∗k). The intermediate output

is further mapped into a continuous space.

Figure 5–4: EC-Step

5.4 EC-FlaRec

EC-FlaRec is a hybrid architecture of EC-Flatten and EC-Recurrent. Therefore,

while assuming the existence of inter-claim relationship, EC-FlaRec also benefits from

certain flexibility. After concatenating the q-dimensional abstraction (h2
1, h

2
2, . . . , h

2
q)

produced by EC-Flatten with one intermediate layer, and the p-dimensional global

abstraction (h1
k,1, h

1
k,2, . . . , h

1
k,p) produced by EC-Recurrent, the concatenated vector

37

is mapped to a continuous space. Figure 5–5 illustrates the architecture of EC-

FlaRec.

Figure 5–5: EC-FlaRec

5.5 EC-StepRec

In EC-StepRec we still assume that the inter-claim relationship in sequential

context is critical. Yet, in addition to the global abstraction, the partial abstractions

obtained during the intermediate steps are also informative. EC-StepRec is similar

to EC-Recurrent, where a piece of information persists and is updated among the

steps. Instead of outputting the last step abstraction only, here the abstractions

obtained at each step are outputted, further abstracted, concatenated and mapped to

a continuous space. Figure 5–6 illustrates the architecture of EC-StepRec. The first

layer abstraction on the input of step i is represented as (h1
i,1, h

1
i,2, . . . , h

1
i,p), where p is

38

the dimension. The first layer outputs are further abstracted into (h2
i,1, h

2
i,2, . . . , h

2
i,q),

where q is the dimension. The second layer abstractions are concatenated into a

(q × k)-dimensional intermediate output (h3
1, h

3
2, . . . , h

3
q∗k), which is then mapped to

the embedding space.

Figure 5–6: EC-StepRec

5.6 EC-ReStepRec

In EC-ReStepRec we assume that the sequence-wise inter-attribute relationship

is important. By introducing a reshape trick, the input unit per step is no longer

a claim, but the values for one attribute across all claims in sequence. Instead

39

of capturing the inter-claim relationship, here the intermediate layer captures the

sequence-wise inter-attribute relationship. Next, similar to EC-StepRec, step-wise

abstractions are outputted, further abstracted, concatenated, and mapped to a con-

tinuous space. Figure 5–7 illustrates the architecture of EC-ReStepRec. Due to the

reshape trick, the input of step i is (x1
i , x

2
i , . . . , x

k
i). The rest of the symbols used in

Figure 5–7 are in line with Figure 5–6.

Figure 5–7: EC-ReStepRec

40

Chapter 6
Experiments

6.1 Data Preparation

6.1.1 The Pharmaceutical Claims Dataset

The experiments are performed on a pharmaceutical claims dataset provided

by our industrial partner. A labeled dataset is assembled with the help of domain

experts. The dataset consists of both anomalous and benign samples. Each sample is

a sequence of claims of different length. The anomalous class can be further divided

into two types of anomalies:

• T1: exaggeration of claim amount

• T2: persistent early-refill behaviors on narcotics

The labeling process simulates the traditional rule-based anomaly detection

method. Domain experts explain the anomalous patterns. Based on the patterns

we design validation rules accordingly. All claims go through the validation rules

for T1 anomaly detection individually. All claims are grouped by medicine code and

patient identifier first, then go through the validation rules for T2 anomaly detection

as part of a sequence of claims. Upon the accepted pharmaceutical claims ranging

from April 2015 through October 2018, we have 1,908 T1 anomalies, 7 T2 anomalies,

and 8,760 benign cases. It is clear that the dataset is highly imbalanced. To avoid

the impact of imbalance, 5,000 T1 anomalies and 2,500 T2 anomalies are simulated

41

by utilizing the validation rules reversely. Therefore, we finally obtain a raw dataset

with 6,908 T1 anomalies, 2,507 T2 anomalies, and 8,760 benign cases.

A real-life health insurance claim database has abundant attributes. However,

usable attributes are limited. Many attributes have to be excluded because of two

main reasons.

• Excessive missing value: This happens frequently for non-mandatory fields of

the claims.

• Unreliable filling: This happens frequently for fields whose format is ambiguous.

After consulting the domain experts, we only use mandatory and reliable at-

tributes in our study. Additionally, we also apply necessary transformations which

intuitively can help the model to learn faster and easier. The involved attributes and

their descriptions are listed in Table 6–1.

42

Table 6–1: Attribute description

Attribute Description

medication code The identifier of the medication ordered.

quantity The number of unit of the medication ordered.

age The age of the patient when the claim is submitted.

claim amount
The total cost in dollar, including prescription drug

cost, and pharmacist’s professional fee.

transaction day of year
The day when the claim is submitted in the year. It

is a number between 1 and 365 (366 if it is a leap year).

day of supply
The number of days the supply of dispensed

medication will last.

6.1.2 Data Processing

norm(X) =
X −min(X)

max(X)−min(X)
(6.1)

The raw data would go through a standard preprocessing procedure. The cate-

gorical attribute, medication code, is one-hot encoded into a 558-dimensional vector.

Each numeric attribute is normalized to a range between 0 and 1, according to For-

mula (6.1). Finally, each claim is processed into a 563-dimensional vector. Since

the claim sequences are of varying length, before a sample, whether an anomaly or

a benign case, goes into the model, it will be either truncated or zero-padded into

a sequence of 15. Note that we do not further process the sequence to take account

43

of classic considerations for sequences, such as time gaps, etc. Those considerations

will be handled by the embedding components.

We randomly split the full dataset into a training set and a testing set. The

training set accounts for 80% of the full dataset. 10% of the training set is reserved

as a validation set.

6.2 Model Implementation

Figure 6–1: The default main classifier

To implement the framework described in Figure 5–1 we train a model, which

consists of an embedding component and a main classifier, for a binary classification

task that differentiates the anomalous class and the benign class. As shown in

Figure 6–1, the default main classifier is a three-layer fully connected neural network,

with 64 neurons, 8 neurons, and 1 sigmoid neuron in order. The output is a value

between 0 and 1 which we interpret as the probability of being an anomaly.

Since our models are all implemented using TensorFlow in Python, here we illus-

trate our implementation of the proposed embedding components with TensorFlow

44

layers. To understand the most important layers, please refer to Chapter 3.2. It will

not be difficult to find their equivalents in other libraries, such as PyTorch and Caffe.

Figure 6–2 illustrates the implementation of EC-Flatten by stacking the flatten

layer and the dense layer. A flatten layer reshapes and converts an input into a

one-dimensional data structure.

Figure 6–2: The implementation of EC-Flatten

Figure 6–3 illustrates the implementation of EC-Recurrent by using the LSTM

layer.

Figure 6–3: The implementation of EC-Recurrent

Figure 6–4 illustrates the implementation of EC-Step. A time-distributed dense

layer is used to make step-wise abstraction in isolation. The flatten layer and the

dense layer are followed.

Figure 6–4: The implementation of EC-Step

45

Figure 6–5 illustrates the implementation of EC-FlaRec. The concatenate layer

is used to merge the intermediate outputs from two previous sources.

Figure 6–5: The implementation of EC-FlaRec

Figure 6–6 illustrates the implementation of EC-StepRec. It is worth noting that

the LSTM layer has to be explicitly configured to return the output at every step.

This is done by turning on the return sequences parameter in TensorFlow.

Figure 6–6: The implementation of EC-StepRec

Figure 6–7 illustrates the implementation of EC-ReStepRec. The transposition

is done by the reshape layer on top. Also, the LSTM layer needs to be explicitly

configured to return the output at every step.

46

Figure 6–7: The implementation of EC-ReStepRec

The parameter settings for the embedding component are shown in Table 6–2.

Each embedding component is regularized by dropout with 0.6 drop out rate and by

batch normalization. The models are trained until convergence or reaching a running

time limit.

Table 6–2: Parameter settings for the embedding components

m k p q d

EC-Flatten

563 15

/ /

128

EC-Recurrent 128 /

EC-Step 16 /

EC-FlaRec 128 128

EC-StepRec 128 16

EC-ReStepRec 128 1

We monitor the learning progress by accuracy. Figure 6–8 shows the learning

curves. The blue curve is the training accuracy and the red curve is the validation

47

accuracy. All the models learn well although the gap between training accuracy and

validation accuracy is obvious for most models except EC-ReStepRec. The validation

accuracy for EC-ReStepRec is unstable. The fluctuation might be caused by the size

of the validation set. Limited by the dataset we own, we cannot reserve too many

samples for validation, leading to the possibility that the distribution of the validation

set and the distribution of the training set could be a bit different.

After training we collect the embedding components EC-Flatten, EC-Recurrent,

EC-Step, EC-FlaRec, EC-StepRec, and EC-ReStepRec for further evaluation.

48

(a) EC-Flatten

(b) EC-Recurrent

(c) EC-Step

(d) EC-FlaRec

(e) EC-StepRec

(f) EC-ReStepRec

Figure 6–8: Training models with the proposed embedding components

49

6.3 Baselines

The six proposed embedding components are under comparison with each other.

Additionally, as we mentioned previously, we also involve the following baseline meth-

ods, which have been employed in similar application scenarios. Note that as we

defined in Chapter 4, the research problem is obtaining high-quality embedding. All

the baselines are embeddings instead of anomaly detectors.

• Schreyer et al. [30] employ deep autoencoder to detect anomalies in accounting

data. Here we compare with their best two deep autoencoders, AE8 and AE9,

as two baselines. Since our focus is the embeddings, we have to adapt the

models and fix the dimension of the latent representation as 128. We implement

AE8 and AE9 with TensorFlow. The parameter settings for the autoencoders

are shown in Table 6–3.

Table 6–3: Parameter settings for the embedding components
dense layers and neurons

AE8 256-128-256
AE9 512-256-128-256-512

• Baldassini et al. [3] obtain client embeddings on current account transactions

with a marginalized stacked denoising autoencoder (mSDA) [7]. Yet, mSDA

does not reduce dimension. To be computational efficient and to also guarantee

a fair comparison we first use principal component analysis (PCA) to compact

the inputs into 128 dimensions and then stream the data into mSDA[34]. We

use an open-sourced implementation of mSDA for the experiment.

50

(a) AE8

(b) AE9

Figure 6–9: Training autoencoders

We monitor the learning progress of autoencoders by reconstruction loss, which

is evaluated by mean squared error (MSE). Figure 6–9 shows the learning curves.

The blue curve is the training loss and the red curve is the validation loss. The loss

curves dropping and converging, both AE8 and AE9 learn well.

Similarly, we collect the encoders of AE8 and AE9, and the trained mapping of

mSDA. Each of them maps the original dataset into a R128 embedding space.

51

Chapter 7
Evaluation

Following the convention in [5, 36], we evaluate the 9 embedding devices by two

anomaly detection tasks. Also, we present their t-distributed Stochastic Neighbor

Embedding (t-SNE) visualization as an intuitive evaluation [24].

7.1 Evaluation Tasks

We have two anomaly detection tasks of different granularity. Essentially, the

tasks could be regarded as a binary classification task and a three-class classification

task. For each embedding device, we use it to transform the original data into

the R128 embedding space and then use the embeddings as the input of classical

machine learning classifiers. We experiment with 10 classical classifiers, which we’ve

introduced in Chapter 3.1.

• K-nearest neighbors (KNN) where K = 5

• Support vector machine with the linear kernel (L-SVM)

• Support vector machine with the radial basis function kernel (R-SVM)

• Decision tree (DT)

• Random forest (RF)

• Adaboost (Ada)

• Gaussian näıve bayes (NB)

• Logistic regression (LR)

• Linear discriminant analysis (LDA)

52

• Quadratic discriminant analysis (QDA)

The metric we use here is micro-average F1-score. It is the harmonic mean of

micro-average precision p and micro-average recall r.

p =

∑
k TPk∑

k TPk +
∑

k FPk
(7.1)

r =

∑
k TPk∑

k TPk +
∑

k FNk

(7.2)

F1 = 2 · p · r
p+ r

(7.3)

where TPk, FPk, FNk indicate the number of true positives, false positives, and false

negatives for class k.

We evaluate the quality of a specific embedding in two perspectives.

• Superiority: This is evaluated by the best micro-average F1-score achieved

by any classifier with that embedding. The best micro-average F1-score for an

embedding is in bold.

• Robustness: This is evaluated by the average micro-average F1-score achieved

by all classifiers with that embedding.

53

7.1.1 Binary Classification Task

Table 7–1: Binary classification on test set

score(.) EC-Flatten EC-Recurrent EC-Step EC-FlaRec EC-StepRec EC-ReStepRec AE8 AE9 mSDA

KNN(5) 82 82 81 82 82 92 77 76 51

L-SVM 87 82 81 82 82 92 76 77 50

R-SVM 79 82 78 82 82 93 76 75 50

DT 80 83 78 81 81 92 75 75 50

RF 75 82 77 82 82 92 74 75 50

Ada 84 82 80 82 82 92 76 76 50

NB 57 83 76 72 82 93 54 54 50

LR 85 82 81 82 82 92 76 76 51

LDA 86 82 81 82 82 92 76 76 51

QDA 51 83 78 69 82 93 56 55 49

Average 76.6 82.3 79.1 79.6 81.9 92.3 71.6 71.5 50.2

Figure 7–1: Lollipop plot visualizing the micro-average F1-scores on the binary clas-
sification task

The classifiers are trained to discriminate between the anomalous class and the

benign class.

Table 7–1 reports the micro-average F1-scores on the testing set for each clas-

sifier and Figure 7–1 visualizes the same results with a lollipop plot for easier visual

54

comparison. Table 9–1 in Appendix shows the details of F1-scores per class. It is

clear that the embedding obtained by EC-ReStepRec outperforms the others in both

superiority and robustness, with the best micro-average F1-score as 0.93 and the best

average micro-average F1-score as 0.923. We highlight the best values with square

boxes.

7.1.2 Three-Class Classification Task

Table 7–2: Three-Class classification on test set

score(.) EC-Flatten EC-Recurrent EC-Step EC-FlaRec EC-StepRec EC-ReStepRec AE8 AE9 mSDA

KNN(5) 79 79 80 79 68 88 77 76 40

L-SVM 82 78 80 79 69 79 77 78 40

R-SVM 66 70 72 78 69 79 76 74 40

DT 74 81 76 78 69 81 75 76 38

RF 62 71 64 70 69 82 73 72 40

Ada 78 81 78 79 69 80 62 58 40

NB 51 78 65 66 59 76 54 56 32

LR 81 77 79 79 69 79 76 77 40

LDA 82 80 79 78 69 79 76 76 40

QDA 53 79 63 59 69 71 58 58 42

Average 70.8 77.4 73.6 74.5 67.9 79.4 70.4 70.1 39.2

55

Figure 7–2: Lollipop plot visualizing the micro-average F1-scores on the three-class
classification task

Those classifiers are also trained to discriminate between the T1 anomalous class,

the T2 anomalous class, and the benign class. The way we evaluate embedding

quality is the same as in Section 7.1.1. Table 7–2 summarizes the results and

Figure 7–2 is a lollipop plot visualizing the results. A detailed table with F1-scores

per class is provided in Table 9–2 in Appendix. Again, EC-ReStepRec achieves the

best performance in terms of both superiority and robustness. The best micro-

average F1-score is 0.88 and the average micro-average F1-score is 0.794.

7.2 t-SNE Visualization

t-SNE is a technique that is particularly well suited for the visualization of high-

dimensional data by giving each data point a location in a two-dimensional map. It

has been used in the evaluation of embedding as an intuitive evaluation method

[5, 36]. Here we illustrate the t-SNE visualization on the embeddings with two levels

of granularity.

56

7.2.1 Low Granularity Visualization

(a) EC-Flatten (b) EC-Recurrent

(c) EC-Step (d) EC-FlatRec

(e) EC-StepRec (f) EC-ReStepRec

Figure 7–3: t-SNE visualization of the EC-Flatten, EC-Recurrent, EC-Step, EC-
FlatRec, EC-StepRec, and EC-ReStepRec embeddings (low granularity)

57

The EC-Flatten and EC-Step embeddings are the most chaotic. In Figure 7–3a,

a large number of points of different classes overlap with each other in the central

region. In Figure 7–3c, the points representing the embedding of a benign sample

are visually dense in the region below the diagonal, but above the diagonal it is a

mixture of points of two classes.

The EC-FlatRec and EC-StepRec embeddings are visually well separated. There

is a clear boundary between the two classes. In Figure 7–3d, generally the points

representing the embedding of a benign sample are located in the region below the

diagonal and the points representing the embedding of an anomalous sample are

above the diagonal. But a small number of samples are lost in the adverse region.

In Figure 7–3e, the points representing the benign samples are concentrated in the

central region, but the points representing the anomalous samples are dispersed

elsewhere in curls, instead of in a grouped and compact region.

The EC-Recurrent and EC-ReStepRec embeddings are of the best quality. Points

that belong to the same class are well grouped and the boundary between the groups

is clear. In Figure 7–3b, the points of two classes have a narrow and roughly linear

boundary. In Figure 7–3f, the boundary is wider but non-linear.

58

(a) AE8 (b) AE9

Figure 7–4: t-SNE visualization of the AE8 and AE9 embeddings(low granularity)

Figure 7–5: t-SNE visualization of the mSDA embedding(low granularity)

The visualization of the AE8 embedding AE9 embedding, and mSDA embed-

ding barely show any clear pattern. The data points of different classes overlap

severely.

59

7.2.2 High Granularity Visualization

(a) EC-Flatten (b) EC-Recurrent

(c) EC-Step (d) EC-FlatRec

(e) EC-StepRec (f) EC-ReStepRec

Figure 7–6: t-SNE visualization of the EC-Flatten, EC-Recurrent, EC-Step, EC-
FlatRec, EC-StepRec, and EC-ReStepRec embeddings (high granularity)

60

The EC-Flatten, EC-Step and EC-StepRec embeddings present obviously unsat-

isfying separation. In Figure 7–6a, the visualization of the EC-Flatten embedding,

only points representing the embedding of a T2 anomalous sample are well grouped.

The T1 anomalous samples and the benign samples do not form clear clusters but

mix with each other. Figure 7–6c shows that the EC-Step embedding has the simi-

lar issue. The EC-StepRec embedding, as shown in Figure 7–6e, can distinguish the

anomalous samples well but it cannot distinguish the T1 and T2 anomalous samples.

Compared with the aforementioned embeddings, the visualization for the EC-

StepRec embedding and the EC-Recurrent embedding look better. In Figure 7–6d,

it is clear that three groups correspond to three classes. However, there are quite a

few dispersed points, especially those points that representing a benign sample but

located in the region populated with T1 anomalous points. In Figure 7–6b, quite a

few points representing T2 anomalous samples are lost in the region with dense T1

anomalous points.

The EC-ReStepRec embedding presents the best visualization. In Figure 7–6f,

the separation between classes is clear, although the boundary between T2 anomalous

points and T1 anomalous points is not wide and clear enough.

61

(a) AE8 (b) AE9

Figure 7–7: t-SNE visualization of the AE8 and AE9 embeddings(high granularity)

Figure 7–8: t-SNE visualization of the mSDA embedding(high granularity)

Figure 7–7a, Figure 7–7b, and Figure 7–8 show that the AE8 embedding, the

AE9 embedding, and the mSDA embedding are capable to map the samples of

two different anomalous classes into different regions. However, benign samples are

distributed everywhere and overlap with the samples of the other classes.

62

7.3 Result Summary

Overall, the EC-ReStepRec embedding achieves the best performance on both

tasks in terms of both superiority and robustness. The t-SNE visualizations also

suggest that the EC-ReStepRec ccan form clusters for different classes and the clus-

ters have relatively clear boundaries. All the evaluation results show that the EC-

ReStepRec embedding is of the best quality.

63

Chapter 8
Discussion

Here we raise a few questions inspired by our experimental observations. By

analyzing these questions, we interpret the results and reflect on the models.

8.1 Why does EC-ReStepRec outperform the other candidates?

Our evaluation results suggest that EC-ReStepRec yields the best embedding

for anomaly detection. This could be interpreted in two perspective.

• Assumption: Right assumptions is critical to the effectiveness of models. The

outstanding performance of EC-ReStepRec indicates that the learning prefer-

ence of EC-ReStepRec has the best fit of the health insurance claims, which

implicitly means that the assumptions corresponding to EC-ReStepRec describe

the health insurance claim well.

• Regularization: Given the fact that our dataset is relatively small for a deep

learning study, we are under the risk of overfitting. Although we use techniques

such as dropout and batch normalization to alleviate it as much as possible,

we cannot guarantee the techniques have led us to the safe zone. By observing

the learning curves for the models with our proposed embedding components,

we notice that the learning curves for EC-ReStepRec have the minimum gap

between the training performance and validation performance. This might

indicate that EC-ReStepRec has a good regularization effect in nature and

thus it generalizes well.

64

8.2 Why do the baselines fail?

The performance for the baseline methods is disappointing. We have identified

the possible reasons.

• Autoencoder for anomaly detection is commonly used when benign cases sig-

nificantly dominate the dataset. However, our dataset does not really meet

the condition. Besides, the autoencoders are trained based on MSE, which is a

general metric. Considering the training of the embedding components, which

are associated with a domain-specific task, lacking domain background in the

training process of the autoencoders could be a reason.

• mSDA requires domain-specific preliminary treatments before being applied. It

is possible that the standard preprocessing procedure used here is not sufficient

to benefit from the capacity of mSDA.

.

65

Chapter 9
Conclusion, Lesson Learned, and Future Work

In this thesis, we present our method for health insurance claims embedding.

We discuss six embedding components that are designed based on different assump-

tions. Our experiments on health insurance claims show that one of our proposed

embedding components, EC-ReStepRec, achieves the best embedding for anomaly

detection.

Next, we would like to share the lesson learned from this university-industry

collaboration. Both the deep learning domain and the health insurance industry are

complex. There was a steep learning curve for both parties at the early stage of

the project. In addition to tackling technical challenges, a lot of effort was spent

on gathering and labeling the data with the consideration of privacy, security, and

ethical issues. Given our encouraging research results, all these efforts pay off.

Finally, we list some ideas about future work.

• As we mentioned above, limited by the resource we had, the size of data in-

volved in this study is generally insufficient for a deep learning research. In

order to further prove the effectiveness of our proposal, a dataset with more

number of samples and more anomalous patterns should be accumulated and

tested.

• Besides, our evaluation method is highly empirical-based and closely associated

with our specific tasks. A more scientific embedding evaluation method for

66

health insurance claims embedding, or even further, for claim embedding is in

need. There have been advanced embedding evaluation methods in branches

such as natural language processing and computer vision, but for other growing

application branches, it is still hard to find straightforward ways to interpret the

features captured in embeddings and thus it is hard to evaluate. We encourage

efforts and contributions that improve the interpretability of embeddings.

• Additionally, because the assumptions we made on the target data are quite

general, it is possible that our work could also be applied to other similar

datasets, for example, other transactional datasets with the characteristics of

high dimensionality and sequentiality.

67

Appendix Classification Tasks Performance

Table 9–1: Binary classification performance on test set (0,1 indicate the F1-score on
the benign class and the anomalous class respectively. m indicates the micro-average
F1-score.)

score(.) EC-Flatten EC-Recurrent EC-Step EC-FlaRec EC-StepRec EC-ReStepRec AE8 AE9 mSDA

KNN(5)

0 81 81 80 81 82 92 75 74 47

1 83 83 82 82 83 93 78 77 55

m 82 82 81 82 82 92 77 76 51

L-SVM

0 86 82 81 81 82 92 75 75 48

1 87 83 82 83 82 93 77 79 52

m 87 82 81 82 82 92 76 77 50

R-SVM

0 76 82 73 81 81 92 75 74 48

1 81 83 81 82 82 93 77 77 53

m 79 82 78 82 82 93 76 75 50

DT

0 78 82 75 80 81 92 71 72 42

1 81 83 80 82 81 92 78 78 57

m 80 83 78 81 81 92 75 75 50

RF

0 72 81 73 81 81 92 71 71 42

1 78 83 79 83 82 93 77 78 56

m 75 82 77 82 82 92 74 75 50

Ada

0 83 82 78 81 81 92 74 74 43

1 85 83 81 83 82 93 78 79 56

m 84 82 80 82 82 92 76 76 50

NB

0 67 82 72 67 81 92 67 67 42

1 36 84 79 76 83 93 26 24 55

m 57 83 76 72 82 93 54 54 50

LR

0 84 82 80 81 82 92 75 75 49

1 86 83 82 83 82 92 76 78 52

m 85 82 81 82 82 92 76 76 51

LDA

0 86 82 80 81 82 92 75 75 49

1 87 83 82 82 82 92 77 78 52

m 86 82 81 82 82 92 76 76 51

QDA

0 66 82 79 55 82 92 68 68 60

1 14 83 76 76 83 93 27 26 28

m 51 83 78 69 82 93 56 55 49

68

Table 9–2: Three-Class classification performance on test set (0, T1, T2, indicate
the F1-score on the benign class, T1 anomalous class, and T2 anomalous class re-
spectively. m indicates the micro-average F1-score.)

score(.) EC-Flatten EC-Recurrent EC-Step EC-FlaRec EC-StepRec EC-ReStepRec AE8 AE9 mSDA

KNN(5)

0 81 81 80 81 82 92 75 74 47

T1 76 75 76 74 62 86 75 74 41

T2 83 87 92 87 24 75 87 87 13

m 79 79 80 79 68 88 77 76 40

L-SVM

0 86 82 81 81 81 92 75 75 49

T1 78 74 76 74 65 77 75 77 39

T2 77 79 88 86 1 0 88 88 13

m 82 78 80 79 69 79 77 78 40

R-SVM

0 76 82 74 81 81 92 75 74 49

T1 66 67 71 73 65 77 74 74 39

T2 0 13 63 83 0 0 84 76 12

m 66 70 72 78 69 79 76 74 40

DT

0 78 82 77 80 82 92 70 72 40

T1 69 76 73 73 65 79 79 79 43

T2 75 89 84 84 5 30 78 79 14

m 74 81 76 78 69 81 75 76 38

RF

0 75 81 69 75 82 92 71 70 46

T1 57 68 68 70 65 80 76 77 42

T2 0 18 1 44 0 33 69 66 8

m 62 71 64 70 69 82 73 72 40

Ada

0 78 82 78 82 81 92 38 34 34

T1 76 76 75 74 65 78 76 71 50

T2 83 94 88 85 3 9 65 64 0

m 78 81 78 79 69 80 62 58 40

NB

0 61 81 67 62 81 92 25 31 9

T1 36 74 64 71 32 69 68 69 49

T2 48 74 66 62 47 38 63 59 18

m 51 78 65 66 59 76 54 56 32

LR

0 84 82 81 81 81 91 75 75 49

T1 77 72 76 73 65 76 73 76 39

T2 79 74 86 84 1 0 88 87 13

m 81 77 79 79 69 79 76 77 40

LDA

0 86 82 80 81 82 92 75 74 48

T1 79 75 75 72 65 76 74 74 39

T2 79 89 85 83 4 26 87 85 13

m 82 80 79 78 69 79 76 76 40

QDA

0 65 82 60 43 81 92 35 36 61

T1 43 75 63 63 67 56 69 70 0

T2 45 83 67 78 3 48 70 67 17

m 53 79 63 59 69 71 58 58 42

69

References

[1] Pedro A. Ortega, Cristián J. Figueroa, and Gonzalo Ruz. A medical claim
fraud/abuse detection system based on data mining: A case study in chile.
volume 6, pages 224–231, 01 2006.

[2] Alejandro Correa Bahnsen, Djamila Aouada, Aleksandar Stojanovic, and Björn
Ottersten. Feature engineering strategies for credit card fraud detection. Expert
Systems with Applications, 51:134–142, 2016.

[3] Leonardo Baldassini and Jose Antonio Rodŕıguez Serrano. client2vec: towards
systematic baselines for banking applications. arXiv preprint arXiv:1802.04198,
2018.

[4] Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

[5] Shaosheng Cao, Wei Lu, and Qiongkai Xu. Grarep: Learning graph representa-
tions with global structural information. In Proceedings of the 24th ACM Inter-
national on Conference on Information and Knowledge Management (CIKM),
pages 891–900. ACM, 2015.

[6] A P Sarath Chandar, Stanislas Lauly, Hugo Larochelle, Mitesh M Khapra,
Balaraman Ravindran, Vikas Raykar, and Amrita Saha. An autoencoder ap-
proach to learning bilingual word representations. In Proceedings of the 27th
International Conference on Neural Information Processing Systems (NIPS 14),
volume 2, pages 1853–1861. MIT Press, 2014.

[7] Minmin Chen, Zhixiang Xu, Kilian Q. Weinberger, and Fei Sha. Marginal-
ized denoising autoencoders for domain adaptation. In Proceedings of the
29th International Coference on International Conference on Machine Learn-
ing (ICML12), pages 1627–1634. Omnipress, 2012.

[8] Youngduck Choi, Chill Yi-I Chiu, and David Sontag. Learning low-dimensional
representations of medical concepts. AMIA Summits on Translational Science
Proceedings, pages 41–50, 2016.

70

71

[9] Ali Batuhan Dayioglugil and Yusuf Sinan Akgul. Continuous embedding spaces
for bank transaction data. In Proceedings of the 23rd International Symposium,
Foundations of Intelligent Systems (ISMIS 2017), pages 129–135. Springer In-
ternational Publishing, 2017.

[10] Lance De Vine, Guido Zuccon, Bevan Koopman, Laurianne Sitbon, and Peter
Bruza. Medical semantic similarity with a neural language model. In Proceedings
of the 23rd ACM International Conference on Conference on Information and
Knowledge Management (CIKM 14), pages 1819–1822. ACM, 2014.

[11] Yoav Freund, Robert Schapire, and Naoki Abe. A short introduction to boosting.
Journal of Japanese Society for Artificial Intelligence, 14(5):771–780, 1999.

[12] Trevor Hastie, Saharon Rosset, Ji Zhu, and Hui Zou. Multi-class adaboost.
Statistics and its Interface, 2(3):349–360, 2009.

[13] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
Computation, 9(8):1735–1780, 1997.

[14] Chih-Wei Hsu, Chih-Chung Chang, and Chih-Jen Lin. A practical guide to
support vector classification. 2003.

[15] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An in-
troduction to statistical learning, volume 112. Springer, 2013.

[16] Marina Evrim Johnson and Nagen Nagarur. Multi-stage methodology to detect
health insurance claim fraud. Health Care Management Science, 19(3):249–260,
2016.

[17] Hossein Joudaki, Arash Rashidian, Behrouz Minaei-Bidgoli, Mahmood Mah-
moodi, Bijan Geraili, Mahdi Nasiri, and Mohammad Arab. Improving fraud
and abuse detection in general physician claims: a data mining study. Interna-
tional Journal of Health Policy and Management (IJHPM), 5(3):165–172, 2016.

[18] Melih Kirlidog and Cuneyt Asuk. A fraud detection approach with data mining
in health insurance. Procedia-Social and Behavioral Sciences, 62:989–994, 2012.

[19] Hian Koh and Gerald Tan. Data mining applications in healthcare. Journal of
healthcare information management : JHIM, 19:64–72, 02 2005.

[20] Mohit Kumar, Rayid Ghani, and Zhu-Song Mei. Data mining to predict and
prevent errors in health insurance claims processing. In Proceedings of the

72

16th ACM International Conference on Knowledge Discovery and Data Min-
ing (SIGKDD), pages 65–74. ACM, 2010.

[21] Michael Leonard and Brenda Wolfe. Mining transactional and time series data.
In Proceedings of the 30th Annual SAS® Users Group International Conference
(SUGI 30), 2005.

[22] Fen-May Liou, Ying-Chan Tang, and Jean-Yi Chen. Detecting hospital fraud
and claim abuse through diabetic outpatient services. Health Care Management
Science, 11(4):353–358, 2008.

[23] Qi Liu and Miklos Vasarhelyi. Healthcare fraud detection: A survey and a clus-
tering model incorporating geo-location information. In Proceedings of the 29th
World Continuous Auditing and Reporting Symposium (29WCARS), Brisbane,
Australia, 2013.

[24] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne.
Journal of Machine Learning Research, 9:2579–2605, 2008.

[25] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation
of word representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[26] Che Ngufor and Janusz Wojtusiak. Unsupervised labeling of data for supervised
learning and its application to medical claims prediction. Computer Science,
14(2):191, 2013.

[27] Dang Nguyen, Tu Dinh Nguyen, Wei Luo, and Svetha Venkatesh. Trans2vec:
learning transaction embedding via items and frequent itemsets. In Proceed-
ings of the Pacific-Asia Conference on Knowledge Discovery and Data Mining
(PAKDD), pages 361–372. Springer, 2018.

[28] Christopher Olah. Understanding lstm networks.
https://colah.github.io/posts/2015-08-Understanding-LSTMs/, 2015. [On-
line; accessed 19-June-2019].

[29] Frank Rosenblatt. The perceptron: a probabilistic model for information storage
and organization in the brain. Psychological Review, 65(6):386, 1958.

[30] Marco Schreyer, Timur Sattarov, Damian Borth, Andreas Dengel, and Bernd
Reimer. Detection of anomalies in large scale accounting data using deep au-
toencoder networks. arXiv preprint arXiv:1709.05254, 2017.

73

[31] Yin Shan, David Jeacocke, D Wayne Murray, and Alison Sutinen. Mining med-
ical specialist billing patterns for health service management. In Proceedings of
the 7th Australasian Data Mining Conference (AusDM 2008), volume 87, pages
105–110. Australian Computer Society, Inc., 2008.

[32] Hyunjung Shin, Hayoung Park, Junwoo Lee, and Won Chul Jhee. A scoring
model to detect abusive billing patterns in health insurance claims. Expert
Systems with Applications, 39(8):7441–7450, 2012.

[33] Dallas Thornton, Guido van Capelleveen, Mannes Poel, Jos van Hillegersberg,
and Roland M Mueller. Outlier-based health insurance fraud detection for us
medicaid data. In Proceedings of the 16th International Conference on Enter-
prise Information Systems (ICEIS 2014), pages 684–694. SCITEPRESS, 2014.

[34] Michael E Tipping and Christopher M Bishop. Probabilistic principal com-
ponent analysis. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 61(3):611–622, 1999.

[35] Hastie Trevor, Tibshirani Robert, and Friedman Jerome. The elements of statis-
tical learning: data mining, inference, and prediction. New York, NY: Springer,
2009.

[36] Daixin Wang, Peng Cui, and Wenwu Zhu. Structural deep network embed-
ding. In Proceedings of the 22nd ACM International Conference on Knowledge
Discovery and Data Mining (SIGKDD), pages 1225–1234. ACM, 2016.

[37] Shoujin Wang, Liang Hu, Longbing Cao, Xiaoshui Huang, Defu Lian, and Wei
Liu. Attention-based transactional context embedding for next-item recommen-
dation. In Proceedings of the 32nd AAAI Conference on Artificial Intelligence
(AAAI18), pages 2532–2539, 2018.

[38] Janusz Wojtusiak, Che Ngufor, John Shiver, and Ronald Ewald. Rule-based
prediction of medical claims’ payments: A method and initial application to
medicaid data. In Proceedings of the 10th International Conference on Machine
Learning and Applications and Workshops (ICMLA 2011), volume 2, pages 162–
167. IEEE, 2011.

[39] Harry Zhang. The optimality of naive bayes. pages 562–567, 2004.

