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ABSTRACT

Real-world classification domains, such as medicine, health and safety, and finance, often exhibit
imbalanced class priors and have asynchronous misclassification costs. In such cases, the classification
model must achieve a high recall without significantly impacting precision. Resampling the training
data is the standard approach to improving classification performance on imbalanced binary data.
However, the state-of-the-art methods ignore the local joint distribution of the data or correct it as a
post-processing step. This can causes sub-optimal shifts in the training distribution, particularly when
the target data distribution is complex. In this paper, we propose Radial-Based Combined Cleaning
and Resampling (RB-CCR). RB-CCR utilizes the concept of class potential to refine the energy-based
resampling approach of CCR. In particular, RB-CCR exploits the class potential to accurately locate
sub-regions of the data-space for synthetic oversampling. The category sub-region for oversampling
can be specified as an input parameter to meet domain-specific needs or be automatically selected via
cross-validation. Our 5× 2 cross-validated results on 57 benchmark binary datasets with 9 classifiers
show that RB-CCR achieves a better precision-recall trade-off than CCR and generally out-performs
the state-of-the-art resampling methods in terms of AUC and G-mean.

1 Introduction

Machine learning classifiers are quickly becoming a tool of choice in application areas ranging from finance to robotics
and medicine. This is largely owing to the growth in the availability of labeled training data and declining computing
costs. When applied correctly, machine learning classifiers have the potential to improve safety and efficiency and
reduce costs. However, many of the most important domains, such as those related to health and safety, are limited by
the problem of class imbalance. In binary classification, the class imbalance is defined as occurring when the prior
probability of one class (referred to as the minority class) is significantly lower than the prior probability of the other
class (majority class).

The induction of binary classifiers on imbalanced training data results in a predictive bias toward the majority class and
has been associated with poor performance during application [1]. Detailed empirical studies have demonstrated that
class imbalance exacerbates the difficulty of learning accurate predictive models from complex data involving class
overlap, sub-concepts, non-parametric distributions, etc. [2, 3].
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Traditional methods of improving the predictive performance of classification models trained on imbalanced data
involve resampling (random undersampling the majority class, random oversampling the minority class and generating
additional synthetic minority samples) or cost-adjustment [1]. Synthetic minority sampling methods, such as SMOTE
and its derivatives [4, 5, 6, 7, 8], generate synthetic minority samples to balance the training set. Generation-based
methods of this nature are widely applied because they are classifier independent and can reduce the risk of overfitting.

In addition to elevating the learning challenge, in many cases, imbalanced training data results from sensitive application
domains that exhibit asymmetric misclassification cost [9]. For example, in medicine, misclassifying benign cases as
cancerous (false positive) can have negative consequences in terms of mental anguish and additional tests. Whilst false
positives should be kept to a minimum, misclassifying a cancerous case as benign (false negative) can significantly
increase cost in terms of delayed treatment and premature death. In domains of this nature, additional effort must be
made to induce a classifier with good predictive performance on the minority class.

To achieve satisfactory performance on sensitive imbalanced domains with asymmetric misclassification costs, the
resampling strategy ought to prioritizing high recall whilst having minimal impact on precision. In this work, we
propose a refinement to the CCR algorithm [10] that utilizes the radial-based (RB) approach to calculate the class
potential to satisfy this objective. Specifically, CCR is a resampling algorithm that cleanses majority class training
samples and randomly generates synthetic minority samples in the regions around the minority class. Whilst this
technique has been shown to improve the recall of the induced classifier, the specific resampling strategy employed
may limit the improvement in recall and risks harming the precision. To improve upon this, we propose the RB-CCR
resampling algorithm. It focuses the generation processes in sub-regions of the data-space that satisfy the user-specified
class potential targets. The ability to do this gives the user better control over the precision-recall trade-off. This, for
example, enables higher recall on domain for which this is critical.

We empirically compare RB-CCR to CCR and the state-of-the-art resampling methods on 57 benchmark datasets with
9 classifiers. Our empirical results show that resampling with RB-CCR can be exploited to control the precision-recall
trade-off in a domain-appropriate way. On average, RB-CCR outperforms the state-of-the-art alternatives in terms of
AUC and G-mean.

The main contributions of this paper can be summarized as follows:

• Proposition of the RB-CCR resampling algorithm, which employs the radial-based approach to calculate the
class potential, so that a classifier trained on modified data improves recall and has less impact on precision.

• Analysis of the impact of sampling region on algorithms behavior and performance.

• Showing that the proposed method can outperform the quality of the CCR algorithm.

• Experimental evaluation of the proposed approach based on diverse benchmark datasets and a detailed
comparison with the state-of-the-art approaches.

The paper is organized as follows. The next section discusses the related work and situates RB-CCR concerning the
state-of-the-art in imbalanced binary classification. Section 3, provides the details of CCR and RB-CCR, demonstrates
resampling with RB-CCR and contrasts its run-time complexity with that of CCR. In Section 4, we describe the
experimental setup, report the results along with our analysis, and finally, Section 5 includes our concluding remarks
and a discussion of future work.

2 Related work

Imbalance ratio (IR) [11] is defined as the ratio between the number of majority and minority class observations. A
moderate to high IR (typically greater than 10 : 1) can pose a significant challenge to learning a sufficiently accurate
classifier across all classes. This is particularly the case when it is combined with other adverse data properties, such as
class overlap, sparsity, complex clustering, and noise [2, 12]. In such cases, the classifier is at great risk of becoming
biased towards the majority class [2], and / or overfitting the training data [13]. Problems of this nature are a focus of
intense research [4, 14, 15].

Measuring the quality of a model on imbalanced data requires some attention. It is well-known that using classic
metrics, such as accuracy and error rate, on imbalanced datasets can cause misleading interpretations of the efficacy of
the model [16]. As a result, the imbalanced learning community has shifted to use metrics, such as precision, recall
(sensitivity), specificity, G-mean, Fβscore, and AUC [17, 18]. More recently, however, it has been noted that the
widely used metrics Fβscore, and AUC can be sub-optimal for evaluating performance on imbalanced data. Brzeziński
et al. [19] demonstrated that Fβscore is usually more biased towards the majority class than AUC and G-mean. The
flaws of Fβscore are also discussed in a study by Hand and Christen [20], in which authors suggest that to make a fair
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comparison, precision and recall have to be weighed separately for each problem, depending on the imbalance ratio.
Alternatively, the authors in [21] argue that ROC curves, and AUC by extension, can present an overly optimistic view
of an algorithm’s performance if there is a large skew.

Classification strategies to deal with imbalanced data can be divided into three main groups [22]: inbuilt mechanism,
data-level methods, and hybrid methods.

Inbuilt mechanisms. In this approach, existing classification algorithms are adapted to imbalanced problems by
ensuring balanced accuracy for instances from both classes. Two of the most popular areas of research of these methods
are: using one-class classification [23], where the goal is to learn the minority class decision boundaries, and because
of the frequently assumed regular, closed shape of the decision borders it is adequate for the clusters created by
minority classes [24]. Secondly, algorithms employing kernel functions [25], splitting criteria in decision trees [26], to
make them cost-sensitive methods employing different forms of the loss function [27], where the algorithm assigns a
higher misclassification cost for instances from the minority class [28, 22, 2, 29]. Unfortunately, such methods can
cause a reverse bias towards the minority class. Worth noting are methods based on ensemble classification [30], like
SMOTEBoost [31] and AdaBoost.NC [32], or Multi-objective Genetic Programming-Based Ensemble [33].

Data-level methods. This work focuses on data preprocessing to reduce imbalance ratio by decreasing the number
of majority observations (undersampling) or increasing minority observations (oversampling). After applying such
preprocessing, the data can be classified using traditional learning algorithms. The most straightforward approaches to
dealing with the imbalanced data are Random Oversampling (ROS) and Random Undersampling (RUS). When applying
ROS, new minority class instances are generated by duplicating randomly chosen minority instances. This procedure
can create small, dense clusters of replicated minority objects leading to overfitting. The most recognized data-level
method is the SMOTE [4] algorithm. It reduces the risk of overfitting by generating synthetic minority instances via
random interpolation in-between existing minority objects.

The well-studied limitations of SMOTE have inspired many new synthetic oversampling techniques, such as [34, 35].
The most significant shortcomings of SMOTE are that it assumes a homogeneous minority class cluster, and it does not
consider the majority objects in the neighborhood when generating synthetic objects. In cases where the minority class
forms many small disjointed clusters, SMOTE may cause an increase the class overlapping, and thus, the complexity of
the classification problem [36]. Numerous methods have been proposed to address these weaknesses by considering
both classes during generation, or as a post-hoc cleaning step.

Safe-level SMOTE [14] and LN-SMOTE [37] are specifically designed to reduce the risk of introducing noisy synthetic
observations inside the majority class region. Other SMOTE alternatives aim to focus the generation process on
challenging regions of the dataspace. Borderline-SMOTE [38], for example, focuses the process of synthetic observation
generation on the instances close to the class boundary, and ADASYN [6] prioritizes the difficult instances. The SWIM
[39] method uses the Mahalanobis distance to determine the best position for synthetic samples, taking into account
the existing samples from both classes. Radial-Based Oversampling (RBO) [40] is a method that employs potential
estimation to generate new minority objects using radial basis functions. The Combined Cleaning and Resampling
(CCR) [10] method combines two techniques – cleaning the decision border around minority objects and guided
synthetic oversampling.

RUS preprocesses the data by randomly removing majority class samples. It is conceptually simple and risks removing
important objects from the majority class. This can cause the induced classifier to underfit less dense majority class
clusters. Guided undersampling approaches aim to avoid this by analyzing the minority and majority class instances
in the local neighborhood. Edited Nearest Neighbor, for example, removes majority examples if their set of three
nearest neighbors does not include at least one other majority object. Radial-Based Undersampling, on the other hand,
employs the concept of mutual class potential to direct undersampling [41]. Koziarski introduced Synthetic Minority
Undersampling Technique (SMUTE), which leverages the concept of interpolation of nearby instances, previously
introduced in the oversampling setting in SMOTE [42].

Hybrid methods. Data preprocessing methods can be combined with in-built classification methods for imbalanced
learning. Galar et al. proposed to hybridize under- and oversampling with an ensemble of classifiers [43]. This approach
allows the data to be independently processed for each of the base models. It is worth also mentioning SMOTEBoost,
which is based on a combination of the SMOTE algorithm and the boosting procedure [31]. In addition, the Combined
Synthetic Oversampling and Undersampling Technique (CSMOUTE) integrates SMOTE oversampling with SMUTE
undersampling [42].
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3 Radial-Based Combined Cleaning and Resampling

In this paper, we propose an extension to the original CCR [10] algorithm that refines its sampling procedure. In
short, CCR is an energy-based oversampling algorithm that relies on spherical regions, centered around the minority
class observations, to designate areas in which synthetic minority observations should be generated. These spherical
regions expand iteratively, with the rate of expansion inversely proportional to the number of neighboring observations
belonging to the majority class, while computationally efficient and conceptually simple, using spherical regions to
model the areas designed for oversampling has two limitations. First of all, it enforces a constant rate of expansion
of the sphere in every direction, regardless of the majority neighbors’ exact position. Secondly, it does not utilize the
information about the neighboring minority class observations. We propose a novel sampling procedure to address
these issues, which is refining the original spherical regions. In the remainder of this section, we describe the proposed
sampling procedure and its integration with the CCR algorithm.

3.1 Guided sampling procedure

We base the proposed sampling procedure on the notion of class potential, previously used in the imbalanced data
setting by Krawczyk et al. [36]. The potential function is a real-valued function that, in a given point in space x,
measures the cumulative closeness to a given collection of observations X . More formally, using a Gaussian radial
basis function with a spread γ, a potential function can be defined as

Φ(x,X , γ) =

|X |∑
i=1

e
−
(
‖Xi−x‖2

γ

)2

. (1)

Of particular interest in the imbalanced data oversampling task will be the potential computed concerning either the
collection of majority class observations Xmaj (majority class potential), or minority class observations Xmin (minority
class potential). Such class potential can be regarded as a measure reflecting the degree of certainty we assign to x
being a member of either the majority or the minority class. It can also be used to model the regions of interest in
which oversampling is to be conducted, which was previously demonstrated in Radial-Based Oversampling (RBO) [36]
and Sampling With the Majority (SWIM) [44] algorithms. SMOTE and its derivatives define the regions of interest
as the lines connecting nearby minority observations. Also, the probability of sampling within any given region of
interest is typically uniform. Alternatively, using class potential, as proposed here, offers an informationally richer
framework. First of all, by using the majority class potential, we can leverage the information about the position
of majority observations, which is not used by SMOTE. Secondly, when using potential, we are not constrained to
sampling from within a set a lines. Rather, we can sample smoothly from the space around the minority observations.
Moreover, the sampling region is non-linear, which enables it to better adapt to the underlying data distribution.

To reiterate, the drawbacks of the original CCR algorithm are that the sphere expansion procedure progresses at a
constant rate in every direction, regardless of the exact position of the majority neighbors, and it does not utilize the
information about the position of neighboring minority class observations. Intuitively, neither of these is the desired
behavior since it can lead to a lower than expected expansion in the direction of minority observation clusters and higher
than expected expansion in the direction of majority observation clusters. While in theory, an obvious modification that
could address these issues would be to exchange the spheres used by CCR to more robust shapes, such as ellipsoids,
and adjust the expansion step accordingly, in practice, it is not clear how the latter could be achieved. Alternatively, we
propose to exploit the efficiency of first defining the sphere around the minority observation and then partitioning it into
sub-regions based on the class potential to more effectively guide sample generation.

The proposed strategy partitions a given sphere into three target regions, low (L), equal (E), and high (H), based on the
class potential. Synthetic samples are generated in a user-specificity target region by randomly generating candidates
with uniform probability throughout the sphere. A random subset of these is selected from the target region and added
to the training set. The target region and number of samples are specified as parameters of the algorithm. A more
detailed formulation of the proposed strategy is presented in Algorithm 1, and an illustration of the sphere partitioning
procedure is presented in Figure 1.

The CCR algorithm generates samples with uniform probability from within entire sphere. Alternatively, Figure 1
illustrates that RB-CCR divides the original sphere into three regions (L, E, H). The regions are defined according to
the shape of the globally calculated minority class potential. Subsequent to the partitioning, sample generation can
be restricted to a specific region. Intuitively, samples in the high potential regions can be regarded as having a higher
probability of coming from the underlying minority class distribution than samples in the low potential regions. This,
to some extents, parallels different variants of SMOTE, such as Borderline-SMOTE [5] or Safe-Level-SMOTE [14],
which focus on different types of observations to guide the sampling process. However, contrary to SMOTE variants,
RB-CCR provides a flexibility to chose an appropriate sampling region for the target data within a single framework.
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Algorithm 1 Guided sampling procedure
Input: sampling seed x, sampling radius r, collection of minority observations Xmin
Parameters: radial basis function spread γ, sampling region from which returned samples will be drawn, number of
candidates c used for potential range estimation, number of returned candidate samples n
Output: collection of synthetic minority observations S located in the sampling region around x

1: function sample(x, r, Xmin, γ, region, c, n):
2: Φ0 ← Φ(x,Xmin, γ) {seed score}
3: C ← ∅ {collection of candidate samples}
4: Z ← ∅ {collection of candidate potentials}
5: for i in 1 to c do
6: Ci ← random sample inside a x-centered sphere with radius r
7: Zi ← Φ(Ci,Xmin, γ)
8: end for
9: boundL ← Φ0 − 1

3 (Φ0 −minZ) {estimated low potential bound within the sphere}
10: boundH ← Φ0 + 1

3 (maxZ − Φ0) {estimated high potential bound within the sphere}
11: S ← {x} {collection of suitable candidates}
12: for i in 1 to c do
13: if Zi ≤ boundL then
14: regi ← L {i-th candidate in the low potential region}
15: else if Zi ≥ boundH then
16: regi ← H {i-th candidate in the high potential region}
17: else
18: regi ← E {i-th candidate in the equal potential region}
19: end if
20: if regi = region then
21: S ← S ∪ {Ci}
22: end if
23: end for
24: S ← n samples randomly selected with replacement from S
25: return S

Figure 1: An example of a sphere generated around a specific minority observation, partitioned into three regions: high
potential (H), indicated with a green color, equal potential (E), indicated with a yellow color, and low potential (L),
indicated with a red color. Note that the shape of the regions aligns with that of the produced potential field, indicated
with a contour plot.

3.2 Integrating guided sampling with the CCR algorithm

We begin with a brief description of the original CCR algorithm, as described in [45], where more in-depth discussion
of the design choices can be found. The algorithm itself consists of two main steps: cleaning the neighborhood of the
minority observations, and second of all, selectively oversampling in the produced, cleaned regions. After describing
the original algorithm, we discuss how it can be integrated with the proposed guided sampling procedure.
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Figure 2: An illustration of the sphere creation for an individual minority observation (in the center) surrounded by
majority observations (in red). Sphere expends at a normal cost until it reaches a majority observation, at which point
the further expansion cost increases (depicted by blue orbits with an increasingly darker color). Finally, after the
expansions, the majority observations within the sphere are being pushed outside (in green). Source: [45].

Cleaning the minority neighborhoods. First step of the proposed approach is cleaning the minority class neighbor-
hoods from the majority observations. This is achieved via an energy-based approach, in which spherical regions are
being designated for cleaning. The size of the regions is constrained by the presence of majority neighbors and is
determined in an iterative procedure, during which spheres expand up to the point of depleting the allocated energy
budget. More formally, for a given minority observation denoted by xi, current radius of an associated sphere denoted
by ri, a function returning the number of majority observations inside a sphere centered around xi with radius r denoted
by fn(r), a target radius denoted by r′i, and fn(r′i) = fn(ri) + 1, we define the energy change caused by the expansion
from ri to r′i as

∆e = −(r′i − ri) · fn(r′i). (2)
During the sphere expansion procedure, the radius of a given sphere increases up to the point of completely depleting
the energy, with the cost increasing after each encountered majority observation. Finally, the majority observations
inside the sphere are being pushed out to its outskirts. The whole process was illustrated in Figure 2.

Selectively oversampling the minority class. After the cleaning stage is completed, new synthetic minority observa-
tions are being generated in the produced spherical regions. The ratio of the synthetic observations generated around a
given minority observation is proportional to the sphere’s radius, calculated in the previous step. More formally, for a
given minority observation denoted by xi, the radius of an associated sphere denoted by ri, the vector of all calculated
radii denoted by r, collection of majority observations denoted by Xmaj , collection of minority observations denoted
by Xmin, and assuming that the oversampling is performed up to the point of achieving balanced class distribution, we
define the number of synthetic observations to be generated around xi as

gi = b r−1i∑|Xmin|
k=1 r−1k

· (|Xmaj | − |Xmin|)c. (3)

This procedure can be interpreted as weighing the difficult observations more heavily, similar to the technique used in
ADASYN [6]. The difficulty of observation is determined based on the proximity of nearest majority observations:
minority observations with nearby majority neighbors will have a constrained sphere radius, which will result in a
higher allocation of produced synthetic observations.

Combining guided sampling with CCR. The proposed sampling strategy can easily be integrated into the original
CCR algorithm. Instead of the original sampling within the whole sphere, RB-CCR uses the guided sampling strategy
described in the previous section. In initial steps of RB-CCR are the same as CCR. Specifically, they are sphere radius
calculation, translation of majority observations, and calculation of the number of synthetic observations generated
for each minority observations. We present pseudocode of the proposed RB-CCR algorithm in Algorithm 2. It should
be noted that, except for the addition of a guided sampling procedure, the algorithm is presented as it was previously
proposed in [45].

The behavior of the proposed algorithm changes depending on the choice of its three major hyperparameters: RBF
spread γ, energy used for sphere expansion, and sampling region. The impact of γ was illustrated in Figure 3. As
can be seen, γ regulates the smoothness of the potential shape, with low values of γ producing a less regular contour,
conditioned mainly on the position of minority neighbors located in close proximity. On the contrary, higher γ values
produce a smoother, less prone to overfitting potential, with a smaller number of distinguishable clusters. Secondly, the
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Algorithm 2 Radial-Based Combined Cleaning and Resampling
Input: collections of majority observations Xmaj and minority observations Xmin
Parameters: energy budget for expansion of each sphere, radial basis function spread γ, sampling region from which
returned samples will be drawn, number of candidates c used for potential range estimation
Output: collections of translated majority observations X ′maj and synthetic minority observations S

1: function RB-CCR(Xmaj , Xmin, energy, γ, region, c):
2: S ← ∅ {synthetic minority observations}
3: t← zero matrix of size |Xmaj |×m, withm denoting the number of features {translations of majority observations}
4: r ← zero vector of size |Xmin| {radii of spheres associated with the minority observations}
5: for all minority observations xi in Xmin do
6: e← energy {remaining energy budget}
7: nr ← 0 {number of majority observations inside the sphere generated around xi}
8: for all majority observations xj in Xmaj do
9: dj ← ‖xi − xj‖2

10: end for
11: sort Xmaj with respect to d
12: for all majority observations xj in Xmaj do
13: nr ← nr + 1
14: ∆e← −(dj − ri) · nr
15: if e+ ∆e > 0 then
16: ri ← dj
17: e← e+ ∆e
18: else
19: ri ← ri + e

nr
20: break
21: end if
22: end for
23: for all majority observations xj in Xmaj do
24: if dj < ri then

25: tj ← tj +
ri − dj
dj

· (xj − xi)

26: end if
27: end for
28: end for
29: X ′maj ← Xmaj + t
30: for all minority observations xi in Xmin do

31: gi ← b
r−1i∑|Xmin|

k=1 r−1k
· (|Xmaj | − |Xmin|)c

32: add sample(xi, ri, Xmin, γ, region, c, gi) to S
33: end for
34: return X ′maj , S

value of energy affects the radius of the produced spheres, which controls the size of sampling regions and the range of
translations, as illustrated in Figure 4. It is worth noting that as the energy approaches zero, the algorithm degenerates
to random oversampling. The choice of the energy is also highly dependent on the dimensionality of the data. It has to
be scaled to the number of features a given dataset contains, with higher dimensional datasets requiring higher energy
to achieve a similar sphere expansion. Finally, the choice of the sampling region determines how the generated samples
align with the minority class potential. This is demonstrated in Figure 5. Sampling in all of the available regions (LEH)
is equivalent to the original CCR algorithm. This completely ignores the potential and uses whole spheres as a region
of interest. Sampling in region E constrains samples to areas with class potential that is approximately equal class
potential of real minority observation. Sampling in region H pushes the generated observations towards areas of the
data space estimated to have a higher minority class potential. This can be interpreted as focusing the sampling process
on generating samples that are safer, and better resemble the original minority observations. The opposite is true for
sampling in the region L. This was further illustrated on a simplified dataset in Figure 6.
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(a) γ = 0.1 (b) γ = 0.25 (c) γ = 0.5 (d) γ = 1.0

Figure 3: Visualization of the impact of γ parameter on the shape of minority class potential.

(a) energy = 0.1 (b) energy = 0.25 (c) energy = 0.5 (d) energy = 1.0

Figure 4: Visualization of the impact of energy parameter on the sphere radius and corresponding region in which
synthetic minority observations (indicated by dark outline) are being generated. Note that the majority observations
within the sphere are being pushed outside during the cleaning step.

(a) LEH (b) H (c) E (d) L

Figure 5: An example of the choice of sampling region on the distribution of generated minority observations. Baseline
case, equivalent to sampling in all of the possible regions (LEH), was compared with sampling in the high (H), equal (E)
and low (L) potential regions. Note that the distribution of generated observations aligns with the shape of the potential
field.

Finally, it is worth discussing how RB-CCR compares to the other oversampling algorithms. An illustration of
differences between several popular methods was presented in Figure 7, with a highly imbalanced dataset characterized
by a disjoint minority class distribution used as a benchmark. As can be seen, when compared to the SMOTE-based
approaches, RB-CCR tends to introduce lower class overlap, which can occur for SMOTE when dealing with disjoint
distributions, the presence of noise or outliers. RBO avoids sampling in the majority class regions. However, it produces
very conservative and highly clustered samples. These can cause the classifier to overfit in a manner similar to random
oversampling. RB-CCR avoids the risk of overfitting with larger regions of interest. Moreover, the larger regions enable
a greater reduction in the classifier’s bias towards the majority class. The energy parameter facilitates the control of
this behavior, with higher values of energy leading to less conservative sampling. Information provided by the class
potential is used to fine-tune the shape of regions of interest within the sphere. It enables better control of the sampling.

8
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(a) original data (b) CCR (c) RB-CCR (L) (d) RB-CCR (E) (e) RB-CCR (H)

Figure 6: Comparison of CCR and RB-CCR with different sampling regions on a simplified dataset.

(a) original data (b) SMOTE (c) Bord

(d) RBO (e) CCR (f) RB-CCR

Figure 7: A comparison of data distribution after oversampling with different algorithms on a highly imbalanced dataset
with disjoint minority class distributions. SMOTE introduces a high degree of class overlap; Borderline-SMOTE (Bord)
solves the problem only partially, still introducing some overlap, at the same time completely omitting to oversample
around selected observations. RBO does not produce artificial overlap, but at the same time, it is very conservative
during sampling, in particular within originally overlapping regions. CCR and RB-CCR produce a distribution that
leads to a higher bias towards the minority class, both due to synthesizing observations around all of the instances
and the conducted translation of majority observations while minimizing class overlap. Compared to CCR, RB-CCR
produces more constrained samples based on the underlying potential.

3.3 Computational complexity analysis

Let us define the total number of observations by n, the number of majority and minority observations by, respectively,
nmaj and nmin, the number of features by m, and the number of candidate samples used in a single sampling step
of Algorithm 1 by c. As previously described in [45], the original CCR algorithm can be divided into three steps:
calculating the sphere radii, cleaning the majority observations inside the spheres, and synthesizing new observations,
with each of the steps done iteratively for every minority observation. The same applies to the RB-CCR, for which only
the complexity of the third step will differ from that of CCR.

• As described in [45], the first step consists of a) calculating a distance vector, b) sorting said vector, and c)
calculating the resulting radius. Combined, these operations have complexity equal to O((m+ log n)n2).

• As described in [45], the second step, cleaning the majority observations inside the spheres, has complexity
equal to O(mn).

9
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• Finally, the third step, synthesizing new observations, consists of a) calculating the proportion of samples
generated for a given observation gi, with the complexity equal toO(nmin) [45], and b) sampling the synthetic
observations. In the case of the original CCR algorithm, as discussed in [45], this sub-step consists of
nmaj − nmin operations of sampling a random observation inside the sphere, each with complexity equal to
O(m), leading to a total complexity of the third step of CCR that can be simplified to O(mn). On the other
hand, the sampling used by RB-CCR has a higher complexity due to the chosen guided strategy. In particular,
when considering the procedure described in Algorithm 1, its complexity is dominated by the potential
calculation for all of the candidate samples. Potential calculation, defined in Equation 1, when computed with
respect to the collection of minority class observations Xmin, consists of nmin summations and nmin RBF
function computations, with the later having complexity equal to O(m). As a result, a single computation of
the minority class potential has a complexity that can be simplified to O(mn). Whole sampling step, which
requires c potential function computations per minority observations, has therefore a total complexity equal to
O(cmnnmin), which can be simplified to O(cmn2).

As can be seen, for the original CCR algorithm, the complexity is dominated by the first step and is equal to O((m+
log n)n2). On the other hand, in the case of RB-CCR, both the first and the third step influence the total complexity of
the algorithm, which is equal to O((cm+ log n)n2).

4 Experimental study

To empirically evaluate the usefulness of the proposed RB-CCR algorithm, we conducted a series of experiment, the
aim of which was to answer the following research questions:

RQ1 Is it possible to improve the original CCR algorithm’s performance by focusing resampling in the specific
regions?

RQ2 Are the trends displayed by the RB-CCR consistent across different classification algorithms and performance
metrics? Is it possible to control the behavior of the algorithm by a proper choice of parameters?

RQ3 How does RB-CCR compare with state-of-the-art reference methods, and how does the choice of classification
algorithm affect that comparison?

4.1 Set-up

Datasets. We based our experiments on 57 binary datasets taken from the KEEL repository [46], the details of which,
namely their names, imbalance ratios (IR), number of contained samples and features, were presented in Table 1. We
employed a dataset selection procedure previously used in [41], that is we excluded datasets for which AUC greater
than 0.85 was achieved with a linear SVM without any resampling. Prior to the resampling and classification, all
datasets were preprocessed: categorical features were converted to integers first, and afterward, all of the features were
normalized to zero mean and unit variance.

Classification algorithms. During the conducted experiments, we considered classification with a total of 9 different
algorithms: CART decision tree, k-nearest neighbors classifier (KNN), support vector machine with linear (L-SVM),
RBF (R-SVM) and polynomial (P-SVM) kernels, logistic regression (LR), Naive Bayes (NB), and multi-layer perceptron
with ReLU (R-MLP) and linear (L-MLP) activation functions in the hidden layer. We considered a relatively high
number of classification algorithms to examine how the choice of base learner affects the usefulness of RB-CCR.
Implementations of all of the classification algorithms were taken from the scikit-learn library [47], and their default
parameters were used.

Reference methods. In addition to the original CCR algorithm, we compared the performance of RB-CCR with several
over- and undersampling strategies, namely: SMOTE [4], Borderline-SMOTE (Bord) [5], Neighborhood Cleaning Rule
(NCL) [48], SMOTE combined with Tomek links (SMOTE+TL) [49] and Edited Nearest Neighbor rule (SMOTE+EN)
[50]. The hyperparameters for each resampling method were tuned individually for each dataset. The SMOTE variants
considered the values of k neighborhood in {1, 3, 5, 7, 9}. In addition to K, the Bord method considered the values of
m neighborhood in {5, 10, 15}. For NCL, we considered the value k of its neighborhood in {1, 3, 5, 7}. Finally, for all
methods in which the resampling ratio was an inherent parameter, resampling was performed up to the point of achieving
a balanced class distributions. Implementation of all of the reference methods was taken from the imbalanced-learn
library [51].

Performance metrics. We utilize 6 performance metrics for classifier evaluation. This includes precision, recall, and
specificity of the predictions, and the combined metrics AUC, F-measure, and G-mean. This set of metrics is standard
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Table 1: Summary of the characteristics of datasets used throughout the experimental study.
Name IR Samples Features Name IR Samples Features

glass1 1.82 214 9 glass016vs5 19.44 184 9
pima 1.87 768 8 yeast1458vs7 22.10 693 8
glass0 2.06 214 9 glass5 22.78 214 9
yeast1 2.46 1484 8 yeast2vs8 23.10 482 8
haberman 2.78 306 3 flareF 23.79 1066 11
vehicle1 2.90 846 18 yeast4 28.10 1484 8
vehicle3 2.99 846 18 winequalityred4 29.17 1599 11
ecoli1 3.36 336 7 poker9vs7 29.50 244 10
ecoli2 5.46 336 7 yeast1289vs7 30.57 947 8
yeast3 8.10 1484 8 winequalitywhite9vs4 32.60 168 11
ecoli3 8.60 336 7 yeast5 32.73 1484 8
pageblocks0 8.79 5472 10 winequalityred8vs6 35.44 656 11
yeast2vs4 9.08 514 8 ecoli0137vs26 39.14 281 7
ecoli067vs35 9.09 222 7 abalone17vs78910 39.31 2338 8
yeast0359vs78 9.12 506 8 abalone21vs8 40.50 581 8
glass015vs2 9.12 172 9 yeast6 41.40 1484 8
yeast0256vs3789 9.14 1004 8 winequalitywhite3vs7 44.00 900 11
ecoli01vs235 9.17 244 7 winequalityred8vs67 46.50 855 11
ecoli0267vs35 9.18 224 7 abalone19vs10111213 49.69 1622 8
yeast05679vs4 9.35 528 8 krvskzerovseight 53.07 1460 6
glass016vs2 10.29 192 9 winequalitywhite39vs5 58.28 1482 11
ecoli0147vs2356 10.59 336 7 poker89vs6 58.40 1485 10
glass0146vs2 11.06 205 9 winequalityred3vs5 68.10 691 11
glass2 11.59 214 9 abalone20vs8910 72.69 1916 8
cleveland0vs4 12.31 173 13 poker89vs5 82.00 2075 10
yeast1vs7 14.30 459 7 poker8vs6 85.88 1477 10
glass4 15.46 214 9 abalone19 129.44 4174 8
pageblocks13vs4 15.86 472 10
abalone918 16.40 731 8
zoo3 19.20 101 16

in the imbalanced classification literature and provides a diverse perspective on model performance. Precision, recall,
and specificity provide insight into the class specific errors that are to be expected from each algorithm. The combine
metrics, AUC, F-measure, and G-mean, provide a more wholesome perspective on performance by taking into account
the trade-off between the performance on majority and minority class. As mentioned in the related work, AUC and
F-measure have previously been criticized in the context of imbalance learning. Nonetheless, we include them as they
remain standard benchmarks in the literature and provide orthogonal perspective on performance.

Evaluation procedure. To ensure the stability of the results, we used 5 × 2 cross-validation [52] during all of
the experiments. Furthermore, during the parameter selection for resampling algorithms we used additional 3-fold
cross-validation on the training partition of the data, with AUC used as the optimization criterion.

Statistical analysis. To assess the statistical significance of the results, we used two types of statistical tests. We used
a one-sided Wilcoxon signed-rank test in a direct comparison between the original CCR algorithm and the proposed
RB-CCR algorithm. Secondly, when simultaneously comparing multiple methods, we used the Friedman test combined
with Shaffer’s posthoc. In all cases, unless p-values were specified, the results were reported at the significance level
α = 0.10.

Implementation and reproducibility. To ensure the reproducibility of the results, we made publicly available the
following: the implementation of the algorithm, code sufficient to reproduce all of the described experiments, statistical
tests, and all of the figures presented in this paper, as well as the partitioning of the data into folds and raw results. All
of the above can be accessed at1.

1https://github.com/michalkoziarski/RB-CCR
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Table 2: A summary of sampling strategies that achieved highest average rank for a given classifier and metric
combination. Cases in which the best strategy achieved a statistically significantly better results than at least one of
the other strategies were denoted with a + sign, and cases in which the best strategy achieved statistically significantly
better results than sampling in all of the regions (LEH) were denoted with a ++ sign.

Precision Recall Specificity AUC F-measure G-mean

CART H ++ L + H ++ L + H L
KNN H + L H ++ H H H
L-SVM H + E + H ++ E + H + E +
R-SVM H ++ L + H ++ L + H L +
P-SVM LEH H + LEH H LEH H ++
LR H ++ E H ++ H ++ H ++ H ++
NB L ++ E + H ++ L + L + L
R-MLP H L + H ++ L + L L
L-MLP H ++ LEH + H ++ E H ++ E

4.2 Evaluation of the choice of sampling region on the algorithms performance

In the first stage of the conducted experimental analysis, we examined the suitability of sampling in specific regions.
We compared the performance of four variants of RB-CCR algorithm, in which sampling was performed only in the
low potential region (L), only in the approximately equal potential region (E), and only in the high potential region (H),
as well as the variant in which sampling was performed in all of the regions (LEH), which is equivalent to the original
CCR algorithm. In all of the cases, we selected the energy parameter from {0.5, 1.0, 2.5, 5.0, ..., 100.0}. Furthermore,
except LEH sampling we also selected the value of γ from {0.5, 1.0, 2.5, 5.0, 10.0}. We present a summary of regions
achieving the highest average rank for every classifier and metric combination in Table 2. Detailed p-values for the
conducted experiments can also be found in Appendix A.

Several observations can be made based on the presented results. First of all, the observed performance was consistent
across the classification algorithms concerning the precision, recall, and specificity, at least when comparing sampling
in H region with the remaining variants: in the case of precision sampling exclusively in the H region produced, on
average, the best performance when combined with 7 out of 9 considered classifiers, with the remaining two being
NB and P-SVM. Furthermore, in the case of specificity, this behavior was observed for 8 out of 9 classifiers, once
again except P-SVM. Finally, the reverse was true in the case of recall, were sampling in the H region gave the worst
average rank for 8 out of 9 considered classifiers. All of the trends mentioned above were also statistically significant
in the majority of cases. This indicates that using the guided sampling approach has a non-random influence on the
algorithm’s performance and its bias towards the majority class, particularly when comparing sampling in the H region
with the other variants, which is desirable behavior. Furthermore, from a general resampling perspective, this suggests
that if the problem domain requires high precision or specificity, it is beneficial to focus sampling in the H region. On
the other hand, if a high recall is required, sampling in L or E region is usually preferred.

However, the sampling region’s impact on the combined metrics is less clear in the general case. Although the baseline
variant of CCR that is LEH sampling, achieved the best average rank only in 1 out of 27 cases (for the combination of
P-SVM and F-measure), there was usually either a complete lack of significance, meaning that there were no statistically
significant differences between any of the sampling strategies, or partial significance, meaning that only some of the
variants displayed statistically significant differences. Importantly, when comparing with the LEH sampling, there was
a statistically significant improvement concerning all of the combined metrics for a single classifier, LR; and for a single
metric for the combination of L-MLP and F-measure, as well as the combination of G-mean and P-SVM. In all of the
above cases, the best performance strategy was sampling in the H region. Nevertheless, for the remaining combinations
of classification algorithms and performance metrics there was no clearly dominant strategy, even when at least partial
significance was observed. All of the above leads to the conclusion that while sampling in the specific regions has a
non-random impact that is consistent across the classification algorithms with respect to direction (focusing sampling
in the H region leading to a statistically significantly better precision and specificity, and worse recall), the trade-off
between them, which can be observed using the combined metrics, varies depending on both the classifier and the
dataset.

4.3 Comparison of CCR and RB-CCR

We have empirically demonstrated that no single sample region is optimal for all datasets, classification algorithms,
and performance metrics. It is consistent with a current state of knowledge, particularly the "no free lunch" theorem,
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Table 3: Comparison of the original CCR algorithm with an idealized variant of RB-CCR, for which the sampling
region giving the best performance was chosen individually for each dataset. The number of datasets for which either
CCR or RB-CCR achieved better average performance, as well as p-value, were presented.

AUC F-measure G-mean

Clf. CCR RB-CCR p-value CCR RB-CCR p-value CCR RB-CCR p-value

CART 3 54 0.0000 0 57 0.0000 3 54 0.0000
KNN 3 54 0.0000 1 56 0.0000 3 54 0.0000
L-SVM 2 55 0.0000 0 57 0.0000 2 55 0.0000
R-SVM 2 55 0.0000 1 56 0.0000 2 55 0.0000
P-SVM 1 56 0.0000 3 54 0.0000 1 56 0.0000
LR 0 57 0.0000 2 55 0.0000 0 57 0.0000
NB 3 54 0.0000 0 57 0.0000 3 54 0.0000
R-MLP 1 56 0.0000 3 54 0.0000 1 56 0.0000
L-MLP 3 54 0.0000 3 54 0.0000 4 53 0.0000

Table 4: Comparison of the original CCR algorithm with RB-CCR using cross-validation to select resampling regions.
The number of datasets for which either CCR or RB-CCR achieved better average performance, as well as p-value,
were presented.

AUC F-measure G-mean

Clf. CCR RB-CCR p-value CCR RB-CCR p-value CCR RB-CCR p-value

CART 22 35 0.2010 24 33 0.2664 21 36 0.0189
KNN 25 32 0.0547 18 39 0.0021 21 36 0.0168
L-SVM 25 32 0.0651 30 27 0.4478 27 30 0.0956
R-SVM 23 34 0.1672 23 34 0.1288 25 32 0.1857
P-SVM 21 36 0.0149 24 33 0.2986 17 40 0.0011
LR 26 31 0.1288 27 30 0.3829 25 32 0.0641
NB 23 34 0.0224 19 38 0.0006 25 32 0.0192
R-MLP 22 35 0.1391 24 33 0.1159 23 34 0.2193
L-MLP 23 34 0.0530 27 30 0.3859 23 34 0.0260

according to which the choice of sampling strategy strongly depends on the dataset characteristics. Instead, we
considered the approach in which we treat the sampling region as a parameter of the algorithm and adjust it on a
per-dataset and per-classifier basis. To this end, we conducted two comparisons.

First of all, considered an idealized variant of RB-CCR. The region is giving the best performance, chosen only from
{L, E, }, was selected individually for each dataset based on the test set results. Importantly, sampling in the LEH region
was not included in the selection of available regions. This approach can be treated as an upper bound of performance
that could be achieved by restricting sampling to a specific region. Once again, this variant of RB-CCR was compared
with the original CCR algorithm, with the results presented in Table 3. As can be seen, by constraining sampling to a
specific region, we were able to achieve improved performance for almost every considered dataset, regardless of the
choice of classifier or performance metric.

Secondly, we conducted a comparison between the original CCR algorithm and RB-CCR with the sampling region
chosen from {L, E, H, LEH} using cross-validation. The results of this comparison were presented in Table 4. As can be
seen, when adjusting the sampling region individually for each dataset we were able to achieve a statistically significant
improvement in performance for at least one of the combined metrics for 7 out of 9 classifiers. This improvement was
observed more often in the case of G-mean and AUC, and only in two cases for F-measure, which can be explained by
the fact that AUC was used as the optimization criterion during cross-validation, and AUC and G-mean tend to be more
correlated than F-measure. We hypothesize that the flexibility in RB-CCR offered by class potential regions enables
the samples to be generated in areas that have the greatest positive impact on the metric being optimized. The results
presented in Table 2, where focusing on the high potential regions produces a significant improvement in precision and
specificity, seem to support this hypothesis. Thus, using F-measure as an optimization criterion for models trained with
RB-CCR would have the opposite effect as AUC (i.e. it would produce better precision, specificity and F-measure,
since these are related, at the expanse of recall, AUC and G-mean.)
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Results of both of the above experiments indicate that, in principle, constraining sampling to a specific region can yield a
clear performance improvement compared to the baseline approach. Using cross-validation to choose the optimal region
for every case is a suitable strategy for picking region, resulting in a statistically significant performance improvement
in most cases. Still, it falls short of the performance of the idealized variant. It indicates that either a better parameter
selection strategy, more suited for the imbalanced datasets, or a specific heuristic for choosing the sampling region,
could improve the proposed method’s overall performance.

4.4 Comparison of RB-CCR with the reference methods

We compared RB-CCR with several over- and undersampling reference methods in the next stage of the conducted
experiments. We presented average ranks achieved by all of the methods, as well as the statistical significance of
the comparison, in Table 5. Furthermore, we presented a visualization of the average ranks achieved by the specific
methods concerning different performance metrics in Figure 8. First of all, as can be seen, the general trend was that
RB-CCR achieved the best recall at the expense of precision and specificity, which held true for all of the classification
algorithms. As in the previous experiments, this had a varying impact on the combined metrics depending on their exact
choice when F-measure was considered, which led to statistically significantly worse performance than the reference
methods.However, at the same time, it improved the performance concerning AUC and G-mean: RB-CCR achieved the
highest average rank in 17 out of 18 cases, with the only exception of AUC observed for L-MLP classifier, for which it
achieved the second-best rank. The results of this comparison were also statistically significant in the majority of cases:
for all of the classifiers when compared to the baseline case with no resampling, Bord and NCL; for 5 out of 9 classifiers
when compared to SMOTE and SMOTE+TL; and in a single case of NB when compared to SMOTE+EN, which was
the second-best performer. The differences between the results measured using F-measure, AUC and G-mean can be
attributed to the previously discussed bias of F-measure towards the majority class performance: since RB-CCR is
heavily skewed towards the recall at the cost of precision, it is natural that using metric weighted more heavily towards
precision produces worse performance. Still, the observed results indicate high usefulness of the proposed RB-CCR
algorithm when compared to the reference methods if a higher cost of misclassification of minority observations is
assigned, as is the case with AUC and G-mean.

Finally, in the last stage of the conducted experiments, we compared different combinations of classification and
resampling algorithms to establish their relative usefulness. We presented the average ranks observed for different
combined metrics in Tables 6 through 8, separately for the individual metrics. As can be seen, when F-measure
was considered, RB-CCR was outperformed by the reference methods, who achieved the best performance when
combined with either R-MLP or R-SVM, which was also the case for RB-CCR. However, when AUC and G-mean were
considered, the combination of algorithms that achieved the highest average rank was RB-CCR and L-MLP, for both of
those metrics. Besides L-MLP, the top-performing classifiers were R-MLP, R-SVM, and LR, in that order, all achieving
the best performance when combined with RB-CCR. Overall, presented rankings indicate the importance of improving
performance due to the resampling method for any given classification algorithm. From that point of view, out of
the statistically significant improvements presented previously in Table 5, of most importance were those achieved
for R-MLP and R-SVM, for which RB-CCR achieved a statistically significantly better performance than all of the
resamplers except SMOTE+EN. On the other hand, it is worth noting that linear methods, that is L-MLP, LR and L-SVM,
achieved relatively high performance, populating 3 out of 5 spots for highest performing classification algorithms,
at the same time achieving less statistically significant improvement due to using RB-CCR when compared to the
reference methods. This may suggest the importance of further work aimed particularly at improving the performance
of RB-CCR for linear methods, which seem to be particularly predisposed to the classification of imbalanced datasets.

4.5 Lessons learned

Based on the described results of the conducted experiments, we will now attempt to answer the research questions
raised at the beginning of this section.

RQ1: Is it possible to improve the original CCR algorithm’s performance by focusing resampling in the specific regions?

We demonstrated that using RB-CCR leads to a statistically significantly better performance than CCR for most
considered classification algorithms when the sampling region is determined using cross-validation. However, selecting
the sampling region individually for each dataset and treating it as another hyperparameter was crucial in achieving
that performance improvement in most cases. Finally, we also demonstrated that in almost every case sampling in a
specific region leads to a better performance than unguided sampling within the whole sphere, indicating that choosing
the optimal sampling region remains a major challenge that cross-validation solves only partially.

RQ2: Are the trends displayed by the RB-CCR consistent across different classification algorithms and performance
metrics? Is it possible to control the behavior of the algorithm by a proper choice of parameters?
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Table 5: A comparison of RB-CCR with the reference methods, with average ranks presented, and the methods for which
RB-CCR achieved a statistically significantly better performance indicated with a + sign, and statistically significantly
worse performance with a – sign.

Clf. Metric None SMOTE Bord NCL SMOTE+TL SMOTE+EN RB-CCR

CART

Precision 2.61 – 3.33 – 3.36 – 4.19 – 3.16 – 5.19 6.16
Recall 6.04 + 4.57 + 5.37 + 3.40 + 4.39 + 2.82 + 1.40
Specificity 1.56 – 3.45 – 2.53 – 4.62 – 3.54 – 5.56 – 6.74
AUC 5.46 + 4.46 + 5.15 + 3.47 + 4.14 + 2.96 2.35
F-measure 4.15 3.68 – 4.24 3.40 – 3.54 – 3.91 – 5.07
G-mean 5.78 + 4.38 + 5.39 + 3.46 + 4.13 + 2.81 2.05

KNN

Precision 2.77 – 3.80 – 3.42 – 2.95 – 3.54 – 5.65 5.88
Recall 6.90 + 3.67 + 4.48 + 5.69 + 3.55 + 2.07 1.63
Specificity 1.10 – 4.37 – 3.45 – 2.25 – 4.12 – 6.19 6.53
AUC 6.74 + 3.04 4.16 + 5.32 + 3.17 2.82 2.76
F-measure 5.57 3.20 – 2.98 – 3.99 2.89 – 4.53 4.84
G-mean 6.73 + 3.15 4.33 + 5.46 + 3.11 2.72 2.49

L-SVM

Precision 2.48 – 3.67 – 3.39 – 3.64 – 3.67 – 5.26 5.89
Recall 6.86 + 3.69 + 4.54 + 5.54 + 3.78 + 2.11 1.48
Specificity 1.08 – 4.25 – 3.54 – 2.61 – 4.06 – 5.84 6.63
AUC 6.55 + 3.21 3.95 + 5.11 + 3.34 2.96 2.88
F-measure 5.06 3.40 – 3.00 – 3.50 – 3.46 – 4.32 5.26
G-mean 6.76 + 3.12 4.16 + 5.45 + 3.09 2.77 2.65

R-SVM

Precision 3.69 – 3.34 – 3.12 – 3.87 – 3.29 – 4.89 5.79
Recall 6.87 + 3.79 + 4.52 + 5.66 + 3.77 + 2.03 1.37
Specificity 1.13 – 4.25 – 3.55 – 2.37 – 4.01 – 5.97 6.72
AUC 6.82 + 3.46 + 4.21 + 5.53 + 3.39 + 2.63 1.96
F-measure 5.97 + 2.87 – 3.04 – 4.29 2.97 – 3.98 4.88
G-mean 6.87 + 3.38 + 4.42 + 5.66 + 3.39 + 2.46 1.82

P-SVM

Precision 2.80 – 3.64 – 3.68 – 3.41 – 3.46 – 5.18 5.82
Recall 6.82 + 3.72 + 4.15 + 5.65 + 3.84 + 2.19 1.62
Specificity 1.13 – 4.24 – 3.74 – 2.33 – 4.04 – 5.97 6.54
AUC 6.71 + 3.53 + 3.98 + 5.38 + 3.67 + 2.47 2.26
F-measure 5.97 + 3.04 – 3.39 – 4.20 2.98 – 3.88 4.53
G-mean 6.80 + 3.61 + 3.99 + 5.54 + 3.60 + 2.33 2.14

LR

Precision 2.63 – 3.72 – 3.54 – 3.25 – 3.58 – 5.30 5.98
Recall 6.85 + 3.79 + 4.50 + 5.69 + 3.65 + 2.07 1.45
Specificity 1.04 – 4.18 – 3.54 – 2.37 – 4.20 – 6.04 6.63
AUC 6.53 + 3.18 4.10 + 5.39 + 2.93 2.98 2.89
F-measure 5.16 3.47 – 3.04 – 3.68 – 3.21 – 4.32 5.12
G-mean 6.79 + 3.14 4.25 + 5.61 + 2.84 2.89 2.47

NB

Precision 3.68 4.52 3.77 3.63 4.39 4.11 3.89
Recall 4.44 + 3.62 5.12 + 4.44 + 3.66 3.77 2.95
Specificity 3.55 – 4.30 2.92 – 3.78 4.39 4.34 4.72
AUC 4.88 + 4.02 + 4.71 + 4.40 + 3.86 + 3.82 + 2.32
F-measure 4.11 4.38 4.11 3.60 4.13 4.39 3.28
G-mean 5.22 + 3.87 + 4.72 + 4.68 + 3.83 + 3.52 + 2.16

R-MLP

Precision 2.39 – 3.33 – 3.36 – 3.45 – 3.45 – 5.68 6.33
Recall 6.90 + 3.84 + 4.75 + 5.07 + 4.04 + 2.04 1.35
Specificity 1.04 – 4.04 – 3.27 – 2.82 – 3.96 – 6.15 6.73
AUC 6.75 + 3.62 + 4.45 + 4.70 + 3.61 + 2.49 2.37
F-measure 5.29 2.79 – 3.11 – 3.64 – 3.03 – 4.68 5.46
G-mean 6.83 + 3.58 + 4.61 + 4.78 + 3.55 + 2.51 2.14

L-MLP

Precision 2.33 – 3.70 – 3.53 – 3.46 – 3.65 – 5.40 5.93
Recall 6.89 + 3.79 + 4.55 + 5.57 + 3.75 + 1.97 1.47
Specificity 1.03 – 4.11 – 3.56 – 2.56 – 4.08 – 6.12 6.54
AUC 6.60 + 3.32 3.92 5.10 + 3.30 2.81 2.96
F-measure 4.65 3.44 – 3.28 – 3.25 – 3.54 – 4.47 5.37
G-mean 6.84 + 3.23 4.16 + 5.30 + 3.14 2.75 2.58
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Table 6: Average ranks achieved by the specific combinations of classification and resampling algorithms, with AUC
used as the performance metric.

Method Rank Method Rank Method Rank

(RB-CCR, L-MLP) 16.30 (SMOTE+TL, KNN) 24.46 (NCL, KNN) 37.93
(SMOTE+TL, L-MLP) 18.79 (Bord, R-MLP) 24.52 (NCL, R-SVM) 39.84
(RB-CCR, R-MLP) 18.80 (Bord, L-SVM) 24.59 (SMOTE+TL, CART) 40.09
(SMOTE+EN, R-MLP) 19.20 (Bord, KNN) 25.14 (SMOTE+TL, NB) 40.43
(SMOTE+EN, L-MLP) 19.79 (SMOTE, LR) 25.26 (SMOTE+EN, NB) 40.73
(SMOTE, L-MLP) 20.08 (SMOTE, R-SVM) 25.50 (SMOTE, NB) 41.17
(Bord, L-MLP) 20.75 (SMOTE+TL, R-SVM) 25.83 (Bord, CART) 41.18
(RB-CCR, R-SVM) 21.00 (RB-CCR, CART) 26.66 (NCL, LR) 41.59
(RB-CCR, LR) 21.36 (Bord, LR) 27.54 (SMOTE, CART) 41.82
(SMOTE+EN, LR) 21.98 (RB-CCR, P-SVM) 27.54 (Bord, NB) 42.33
(SMOTE+TL, L-SVM) 22.05 (Bord, R-SVM) 27.69 (None, R-MLP) 42.66
(SMOTE+EN, KNN) 22.81 (SMOTE+EN, P-SVM) 31.93 (NCL, NB) 43.02
(SMOTE, L-SVM) 22.99 (NCL, R-MLP) 31.99 (None, NB) 43.14
(SMOTE+EN, L-SVM) 23.05 (RB-CCR, NB) 34.52 (None, CART) 43.92
(RB-CCR, L-SVM) 23.32 (SMOTE+EN, CART) 35.17 (NCL, P-SVM) 46.54
(SMOTE+TL, LR) 23.55 (SMOTE+TL, P-SVM) 35.32 (None, L-SVM) 46.61
(SMOTE, R-MLP) 24.06 (NCL, L-MLP) 35.46 (None, KNN) 48.35
(RB-CCR, KNN) 24.11 (NCL, L-SVM) 35.54 (None, L-MLP) 49.09
(SMOTE+TL, R-MLP) 24.16 (SMOTE, P-SVM) 36.28 (None, LR) 50.47
(SMOTE+EN, R-SVM) 24.28 (NCL, CART) 36.96 (None, R-SVM) 51.25
(SMOTE, KNN) 24.33 (Bord, P-SVM) 37.43 (None, P-SVM) 51.75

Table 7: Average ranks achieved by the specific combinations of classification and resampling algorithms, with
F-measure used as the performance metric.

Method Rank Method Rank Method Rank

(Bord, R-MLP) 15.98 (SMOTE+TL, P-SVM) 29.84 (NCL, R-SVM) 34.18
(SMOTE+TL, R-MLP) 16.25 (NCL, CART) 29.97 (RB-CCR, KNN) 34.60
(SMOTE, R-MLP) 16.87 (SMOTE+EN, P-SVM) 30.28 (SMOTE, CART) 34.94
(SMOTE+EN, R-MLP) 20.08 (NCL, KNN) 30.32 (RB-CCR, L-SVM) 35.37
(Bord, R-SVM) 21.23 (SMOTE, P-SVM) 30.39 (RB-CCR, CART) 36.17
(SMOTE, R-SVM) 21.39 (RB-CCR, R-SVM) 30.46 (RB-CCR, LR) 36.39
(SMOTE+TL, R-SVM) 21.41 (NCL, L-SVM) 30.65 (None, CART) 36.49
(Bord, KNN) 22.68 (RB-CCR, R-MLP) 30.81 (NCL, P-SVM) 38.03
(NCL, R-MLP) 22.84 (SMOTE, LR) 31.04 (None, L-MLP) 38.72
(Bord, L-SVM) 24.08 (Bord, P-SVM) 31.09 (None, KNN) 40.38
(Bord, L-MLP) 24.19 (RB-CCR, P-SVM) 31.35 (None, L-SVM) 40.45
(SMOTE+EN, R-SVM) 25.18 (None, R-MLP) 31.37 (RB-CCR, NB) 42.10
(SMOTE+TL, L-MLP) 26.24 (SMOTE+EN, L-MLP) 31.89 (NCL, NB) 43.42
(SMOTE+TL, KNN) 27.02 (SMOTE+EN, KNN) 32.25 (None, LR) 43.77
(SMOTE, KNN) 27.10 (SMOTE+EN, LR) 32.38 (None, P-SVM) 43.99
(SMOTE+TL, L-SVM) 27.40 (RB-CCR, L-MLP) 32.39 (None, NB) 44.05
(SMOTE, L-SVM) 27.52 (SMOTE+EN, L-SVM) 33.07 (SMOTE+TL, NB) 44.80
(SMOTE, L-MLP) 27.66 (SMOTE+TL, CART) 33.25 (SMOTE+EN, NB) 45.11
(Bord, LR) 28.31 (SMOTE+EN, CART) 33.33 (Bord, NB) 45.24
(SMOTE+TL, LR) 29.09 (Bord, CART) 33.44 (SMOTE, NB) 45.90
(NCL, L-MLP) 29.28 (NCL, LR) 34.11 (None, R-SVM) 46.46
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Figure 8: A visualization of the average ranks achieved by the individual methods with respect to different performance
metrics.

The behavior of RB-CCR was consistent concerning precision, specificity and recall, with sampling solely within the H
region improving precision and specificity at the expense of recall, and sampling within either L or E region having
the opposite effect. As a result, it is possible to control the algorithm’s bias towards the specific classes by properly
choosing the sampling region. However, the performance concerning AUC, F-measure, and G-mean was less consistent,
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Table 8: Average ranks achieved by the specific combinations of classification and resampling algorithms, with G-mean
used as the performance metric.

Method Rank Method Rank Method Rank

(RB-CCR, L-MLP) 14.68 (SMOTE+TL, KNN) 24.19 (SMOTE+TL, NB) 39.21
(SMOTE+TL, L-MLP) 17.57 (SMOTE+TL, R-MLP) 24.79 (SMOTE+EN, NB) 39.42
(RB-CCR, R-MLP) 18.41 (SMOTE, R-MLP) 24.81 (NCL, KNN) 39.72
(SMOTE+EN, L-MLP) 18.97 (SMOTE, R-SVM) 25.08 (SMOTE, NB) 39.87
(SMOTE, L-MLP) 19.21 (RB-CCR, CART) 25.14 (SMOTE+TL, CART) 40.89
(SMOTE+EN, R-MLP) 19.30 (Bord, KNN) 25.32 (Bord, NB) 41.23
(RB-CCR, R-SVM) 19.50 (Bord, R-MLP) 25.55 (NCL, R-SVM) 41.97
(RB-CCR, LR) 19.84 (SMOTE+TL, R-SVM) 25.57 (Bord, CART) 42.04
(Bord, L-MLP) 20.25 (Bord, LR) 26.69 (SMOTE, CART) 42.08
(SMOTE+EN, LR) 20.34 (RB-CCR, P-SVM) 27.06 (NCL, LR) 42.50
(SMOTE+TL, L-SVM) 20.75 (Bord, R-SVM) 28.39 (NCL, NB) 43.79
(RB-CCR, L-SVM) 20.76 (RB-CCR, NB) 30.68 (None, CART) 44.56
(SMOTE, L-SVM) 21.32 (SMOTE+EN, P-SVM) 32.00 (None, NB) 44.57
(SMOTE+EN, L-SVM) 21.42 (NCL, R-MLP) 33.48 (None, R-MLP) 45.43
(SMOTE+TL, LR) 21.96 (SMOTE+EN, CART) 35.16 (NCL, P-SVM) 47.93
(SMOTE+EN, KNN) 22.39 (SMOTE+TL, P-SVM) 35.94 (None, L-SVM) 48.61
(RB-CCR, KNN) 22.47 (SMOTE, P-SVM) 36.75 (None, KNN) 50.18
(SMOTE+EN, R-SVM) 23.58 (NCL, L-MLP) 37.03 (None, L-MLP) 51.12
(SMOTE, LR) 23.59 (NCL, L-SVM) 37.14 (None, LR) 52.29
(SMOTE, KNN) 24.04 (NCL, CART) 37.60 (None, P-SVM) 53.54
(Bord, L-SVM) 24.10 (Bord, P-SVM) 38.59 (None, R-SVM) 53.61

indicating that the choice of sampling region yielding the optimal trade-off between precision and recall is both dataset-
and classifier-specific.

RQ3: How does RB-CCR compare with state-of-the-art reference methods, and how does the choice of classification
algorithm affect that comparison?

RB-CCR, on average, outperforms all of the considered reference methods concerning recall, AUC, and G-mean, and
underperforms concerning precision, specificity and F-measure, with statistically significant differences between the
majority of methods. It indicates that RB-CCR is a suitable choice whenever the performance of the minority class is
the main consideration, which is usually the case in the imbalanced data classification task. Finally, a more significant
improvement in performance due to using RB-CCR was observed for non-linear classification algorithms. Compared
with the fact that linear methods, in general, achieved a favorable performance on the considered imbalanced datasets,
this might indicate the need for further work focused specifically on improving the results for this type of classifiers.

5 Conclusions

In this work, we proposed the Radial-Based Combined Cleaning and Resampling algorithm (RB-CCR). We hypothesized
that the refining resampling procedure employed by CCR could garner additional performance gains. RB-CCR uses the
concept of class potential to divide the dataspace around each minority instance into sampling regions characterized by
high, equal, or low class potential. Resampling is then restricted to the sub-regions with the specified characteristics,
determined by cross-validation or user specification. Our results show that this is superior in the precision-recall
trade-off to uniformly resampling around the minority class instances.

Our empirical assessment utilized 57 benchmark binary datasets, 9 classification algorithms and 5 state-of-the-art
sampling techniques. The results measured as over 5-times 2-fold cross-validation show that sampling the high potential
region with RB-CCR generally produces significantly better precision and specificity, with less impact on recall than
CCR. Thus, RB-CCR achieves a better balance in the precision-recall trade-off. Moreover, on average RB-CCR
outperforms the considered reference methods concerning recall, AUC and G-mean.

Future work may focus on designing a better region selection method than cross-validation, including a strategy for
picking regions individually for each observation, which could not be done using cross-validation. Another potential
direction is adjusting the RB-CCR algorithm to linear classifiers, which generally achieve good performance but are
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least affected by resampler choice and likely require a more drastic shift in the synthetic observation distribution to
display a significant change classifier behavior.
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A Detailed p-values observed during sampling region comparison

Table 9: A comparison of sampling in a specific regions, with precision used as the performance metric.
(a) CART

L E H LEH

Rank 2.58 2.79 1.91 2.72

L - 1.000 0.018 1.000
E 1.000 - 0.002 1.000
H 0.018 0.002 - 0.003
LEH 1.000 1.000 0.003 -

(b) KNN

L E H LEH

Rank 2.79 2.61 2.16 2.44

L - 0.936 0.054 0.440
E 0.936 - 0.178 0.936
H 0.054 0.178 - 0.737
LEH 0.440 0.936 0.737 -

(c) L-SVM

L E H LEH

Rank 2.89 2.51 2.05 2.54

L - 0.331 0.003 0.331
E 0.331 - 0.178 0.885
H 0.003 0.178 - 0.127
LEH 0.331 0.885 0.127 -

(d) R-SVM

L E H LEH

Rank 2.70 2.53 2.02 2.75

L - 1.000 0.014 1.000
E 1.000 - 0.106 1.000
H 0.014 0.106 - 0.014
LEH 1.000 1.000 0.014 -

(e) P-SVM

L E H LEH

Rank 2.37 2.74 2.53 2.37

L - 0.766 1.000 1.000
E 0.766 - 1.000 0.766
H 1.000 1.000 - 1.000
LEH 1.000 0.766 1.000 -

(f) LR

L E H LEH

Rank 3.11 2.72 1.67 2.51

L - 0.221 0.000 0.041
E 0.221 - 0.000 0.384
H 0.000 0.000 - 0.001
LEH 0.041 0.384 0.001 -

(g) NB

L E H LEH

Rank 1.98 3.04 2.46 2.53

L - 0.000 0.106 0.074
E 0.000 - 0.050 0.106
H 0.106 0.050 - 0.772
LEH 0.074 0.106 0.772 -

(h) R-MLP

L E H LEH

Rank 2.44 2.54 2.28 2.74

L - 1.000 1.000 0.652
E 1.000 - 0.830 1.000
H 1.000 0.830 - 0.356
LEH 0.652 1.000 0.356 -

(i) L-MLP

L E H LEH

Rank 3.09 2.50 1.85 2.56

L - 0.045 0.000 0.059
E 0.045 - 0.022 0.800
H 0.000 0.022 - 0.010
LEH 0.059 0.800 0.010 -

Table 10: A comparison of sampling in a specific regions, with recall used as the performance metric.
(a) CART

L E H LEH

Rank 2.06 2.65 3.12 2.17

L - 0.045 0.000 0.663
E 0.045 - 0.138 0.138
H 0.000 0.138 - 0.000
LEH 0.663 0.138 0.000 -

(b) KNN

L E H LEH

Rank 2.35 2.50 2.73 2.42

L - 1.000 0.713 1.000
E 1.000 - 1.000 1.000
H 0.713 1.000 - 0.713
LEH 1.000 1.000 0.713 -

(c) L-SVM

L E H LEH

Rank 2.51 2.17 3.03 2.30

L - 0.471 0.097 0.768
E 0.471 - 0.002 0.768
H 0.097 0.002 - 0.008
LEH 0.768 0.768 0.008 -

(d) R-SVM

L E H LEH

Rank 1.86 2.61 3.63 1.90

L - 0.006 0.000 0.856
E 0.006 - 0.000 0.007
H 0.000 0.000 - 0.000
LEH 0.856 0.007 0.000 -

(e) P-SVM

L E H LEH

Rank 2.90 2.30 2.18 2.61

L - 0.037 0.018 0.575
E 0.037 - 0.637 0.575
H 0.018 0.637 - 0.226
LEH 0.575 0.575 0.226 -

(f) LR

L E H LEH

Rank 2.51 2.32 2.65 2.52

L - 1.000 1.000 1.000
E 1.000 - 1.000 1.000
H 1.000 1.000 - 1.000
LEH 1.000 1.000 1.000 -

(g) NB

L E H LEH

Rank 2.52 2.14 3.11 2.24

L - 0.356 0.045 0.491
E 0.356 - 0.000 0.690
H 0.045 0.000 - 0.001
LEH 0.491 0.690 0.001 -

(h) R-MLP

L E H LEH

Rank 2.11 2.40 3.12 2.36

L - 0.694 0.000 0.694
E 0.694 - 0.009 0.856
H 0.000 0.009 - 0.005
LEH 0.694 0.856 0.005 -

(i) L-MLP

L E H LEH

Rank 2.46 2.32 2.93 2.29

L - 1.000 0.150 1.000
E 1.000 - 0.049 1.000
H 0.150 0.049 - 0.049
LEH 1.000 1.000 0.049 -
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Table 11: A comparison of sampling in a specific regions, with specificity used as the performance metric.
(a) CART

L E H LEH

Rank 2.64 2.52 2.00 2.84

L - 0.808 0.024 0.808
E 0.808 - 0.097 0.539
H 0.024 0.097 - 0.003
LEH 0.808 0.539 0.003 -

(b) KNN

L E H LEH

Rank 2.70 2.66 1.99 2.65

L - 1.000 0.020 1.000
E 1.000 - 0.020 1.000
H 0.020 0.020 - 0.020
LEH 1.000 1.000 0.020 -

(c) L-SVM

L E H LEH

Rank 2.82 2.65 1.96 2.57

L - 0.981 0.003 0.929
E 0.981 - 0.014 0.981
H 0.003 0.014 - 0.037
LEH 0.929 0.981 0.037 -

(d) R-SVM

L E H LEH

Rank 2.77 2.56 1.75 2.92

L - 0.768 0.000 0.768
E 0.768 - 0.002 0.411
H 0.000 0.002 - 0.000
LEH 0.768 0.411 0.000 -

(e) P-SVM

L E H LEH

Rank 2.30 2.72 2.77 2.21

L - 0.245 0.150 1.000
E 0.245 - 1.000 0.122
H 0.150 1.000 - 0.122
LEH 1.000 0.122 0.122 -

(f) LR

L E H LEH

Rank 2.89 2.75 1.80 2.56

L - 0.850 0.000 0.539
E 0.850 - 0.000 0.850
H 0.000 0.000 - 0.005
LEH 0.539 0.850 0.005 -

(g) NB

L E H LEH

Rank 2.18 3.18 2.02 2.62

L - 0.000 0.491 0.139
E 0.000 - 0.000 0.067
H 0.491 0.000 - 0.037
LEH 0.139 0.067 0.037 -

(h) R-MLP

L E H LEH

Rank 2.48 2.48 2.16 2.88

L - 1.000 0.539 0.308
E 1.000 - 0.539 0.308
H 0.539 0.539 - 0.018
LEH 0.308 0.308 0.018 -

(i) L-MLP

L E H LEH

Rank 2.99 2.52 1.80 2.69

L - 0.150 0.000 0.435
E 0.150 - 0.009 0.468
H 0.000 0.009 - 0.001
LEH 0.435 0.468 0.001 -

Table 12: A comparison of sampling in a specific regions, with AUC used as the performance metric.
(a) CART

L E H LEH

Rank 2.12 2.77 2.75 2.35

L - 0.044 0.044 0.691
E 0.044 - 0.942 0.245
H 0.044 0.942 - 0.286
LEH 0.691 0.245 0.286 -

(b) KNN

L E H LEH

Rank 2.51 2.71 2.22 2.56

L - 1.000 0.694 1.000
E 1.000 - 0.253 1.000
H 0.694 0.253 - 0.471
LEH 1.000 1.000 0.471 -

(c) L-SVM

L E H LEH

Rank 2.79 2.14 2.56 2.51

L - 0.044 0.737 0.737
E 0.044 - 0.245 0.383
H 0.737 0.245 - 0.828
LEH 0.737 0.383 0.828 -

(d) R-SVM

L E H LEH

Rank 1.79 2.67 3.37 2.18

L - 0.001 0.000 0.110
E 0.001 - 0.011 0.084
H 0.000 0.011 - 0.000
LEH 0.110 0.084 0.000 -

(e) P-SVM

L E H LEH

Rank 2.75 2.44 2.24 2.58

L - 0.613 0.212 1.000
E 0.613 - 1.000 1.000
H 0.212 1.000 - 0.471
LEH 1.000 1.000 0.471 -

(f) LR

L E H LEH

Rank 3.02 2.32 1.96 2.70

L - 0.011 0.000 0.331
E 0.011 - 0.331 0.331
H 0.000 0.331 - 0.007
LEH 0.331 0.331 0.007 -

(g) NB

L E H LEH

Rank 2.05 2.88 2.60 2.47

L - 0.004 0.074 0.245
E 0.004 - 0.491 0.286
H 0.074 0.491 - 0.612
LEH 0.245 0.286 0.612 -

(h) R-MLP

L E H LEH

Rank 2.07 2.61 2.81 2.51

L - 0.074 0.014 0.209
E 0.074 - 0.850 0.850
H 0.014 0.850 - 0.652
LEH 0.209 0.850 0.652 -

(i) L-MLP

L E H LEH

Rank 2.82 2.30 2.32 2.56

L - 0.177 0.177 0.830
E 0.177 - 0.942 0.830
H 0.177 0.942 - 0.830
LEH 0.830 0.830 0.830 -

B Examination of the impact of energy parameter

In addition to the sampling region, another hyperparameter that can have a significant influence on the performance
of RB-CCR is its energy, which regulates the size of sampling regions and the extent of translation. To assess the
exact impact of energy on the algorithms behavior we conducted an experiment, in which we measured the change in
performance depending on the choice of energy value. Similar to the previous experiments, we used cross-validation to
adjust the values of γ parameter in {0.5, 1.0, 2.5, 5.0, 10.0}, and the choice of sampling regions in {L, E, H, LEH}. In
Figure 9 we presented the impact of energy, with values chosen from {0.5, 1.0, 2.5, 5.0, ..., 100.0}, on the performance
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Table 13: A comparison of sampling in a specific regions, with F-measure used as the performance metric.
(a) CART

L E H LEH

Rank 2.49 2.68 2.19 2.63

L - 1.000 0.652 1.000
E 1.000 - 0.253 1.000
H 0.652 0.253 - 0.253
LEH 1.000 1.000 0.253 -

(b) KNN

L E H LEH

Rank 2.70 2.53 2.19 2.58

L - 1.000 0.212 1.000
E 1.000 - 0.504 1.000
H 0.212 0.504 - 0.331
LEH 1.000 1.000 0.331 -

(c) L-SVM

L E H LEH

Rank 2.93 2.49 2.05 2.53

L - 0.209 0.002 0.209
E 0.209 - 0.209 0.885
H 0.002 0.209 - 0.150
LEH 0.209 0.885 0.150 -

(d) R-SVM

L E H LEH

Rank 2.37 2.61 2.33 2.68

L - 0.929 1.000 0.881
E 0.929 - 0.881 1.000
H 1.000 0.881 - 0.881
LEH 0.881 1.000 0.881 -

(e) P-SVM

L E H LEH

Rank 2.46 2.61 2.51 2.42

L - 1.000 1.000 1.000
E 1.000 - 1.000 1.000
H 1.000 1.000 - 1.000
LEH 1.000 1.000 1.000 -

(f) LR

L E H LEH

Rank 3.11 2.60 1.70 2.60

L - 0.106 0.000 0.106
E 0.106 - 0.001 1.000
H 0.000 0.001 - 0.001
LEH 0.106 1.000 0.001 -

(g) NB

L E H LEH

Rank 2.12 2.95 2.39 2.54

L - 0.004 0.553 0.245
E 0.004 - 0.061 0.286
H 0.553 0.061 - 0.553
LEH 0.245 0.286 0.553 -

(h) R-MLP

L E H LEH

Rank 2.30 2.60 2.44 2.67

L - 0.766 1.000 0.766
E 0.766 - 1.000 1.000
H 1.000 1.000 - 1.000
LEH 0.766 1.000 1.000 -

(i) L-MLP

L E H LEH

Rank 3.18 2.39 1.89 2.54

L - 0.004 0.000 0.027
E 0.004 - 0.071 0.537
H 0.000 0.071 - 0.020
LEH 0.027 0.537 0.020 -

Table 14: A comparison of sampling in a specific regions, with G-mean used as the performance metric.
(a) CART

L E H LEH

Rank 2.18 2.68 2.72 2.42

L - 0.147 0.147 0.830
E 0.147 - 0.885 0.830
H 0.147 0.885 - 0.652
LEH 0.830 0.830 0.652 -

(b) KNN

L E H LEH

Rank 2.46 2.70 2.19 2.65

L - 0.929 0.830 0.929
E 0.929 - 0.212 0.929
H 0.830 0.212 - 0.212
LEH 0.929 0.929 0.212 -

(c) L-SVM

L E H LEH

Rank 2.75 2.12 2.56 2.56

L - 0.054 1.000 1.000
E 0.054 - 0.209 0.209
H 1.000 0.209 - 1.000
LEH 1.000 0.209 1.000 -

(d) R-SVM

L E H LEH

Rank 1.82 2.68 3.37 2.12

L - 0.001 0.000 0.217
E 0.001 - 0.014 0.041
H 0.000 0.014 - 0.000
LEH 0.217 0.041 0.000 -

(e) P-SVM

L E H LEH

Rank 2.81 2.35 2.12 2.72

L - 0.178 0.028 0.717
E 0.178 - 0.691 0.383
H 0.028 0.691 - 0.041
LEH 0.717 0.383 0.041 -

(f) LR

L E H LEH

Rank 2.98 2.35 1.93 2.74

L - 0.027 0.000 0.310
E 0.027 - 0.245 0.245
H 0.000 0.245 - 0.003
LEH 0.310 0.245 0.003 -

(g) NB

L E H LEH

Rank 2.30 2.67 2.54 2.49

L - 0.766 0.929 1.000
E 0.766 - 1.000 1.000
H 0.929 1.000 - 1.000
LEH 1.000 1.000 1.000 -

(h) R-MLP

L E H LEH

Rank 2.18 2.58 2.72 2.53

L - 0.286 0.147 0.440
E 0.286 - 1.000 1.000
H 0.147 1.000 - 1.000
LEH 0.440 1.000 1.000 -

(i) L-MLP

L E H LEH

Rank 2.72 2.20 2.43 2.65

L - 0.194 0.694 1.000
E 0.194 - 1.000 0.194
H 0.694 1.000 - 1.000
LEH 1.000 0.194 1.000 -

averaged across all of the datasets. First of all, as can be seen the choice of energy has, on average, a clear impact on
precision, specificity and recall, with the first two decreasing monotonically proportional to the energy, and the last
one increasing monotonically. This is relevant because it indicates that CCR already has an inbuilt mechanism for
controlling the precision-recall trade-off, and as a result the performance improvement displayed by the RB-CCR cannot
be explained solely due to providing that, rather it provides a more optimal trade-off (with respect to the combined
metrics).
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Furthermore, as can be seen, the value of energy for which RB-CCR achieves the best average performance depends on
the choice of classifier and metric. In the case of F-measure the best performance is observed for the minimal energy,
when the precision-to-recall ratio is the highest. This is another empirical confirmation of the claim made in [19],
according to which F-measure tends to be more biased towards the majority class performance. More importantly, in
the case of AUC and G-mean, both of which tend to be highly correlated, two types of behavior can be observed. First
of all, in the case of linear models, that is LR, L-SVM and L-MLP, the best average performance was observed with
the energy values in {0.5, 1.0, 2.5, 5.0}, with little to no difference between those values. Secondly, in the case of the
remaining classifiers the optimal performance was observed around the value of energy equal to 5.0, with both decrease
and the increase of energy negatively affecting the performance. Considering the fact that as the energy goes down
the methods behavior starts resembling random oversampling more closely, this seems to indicate that the expected
performance gain due to using RB-CCR is highest for non-linear methods, capable of producing more complex decision
boundaries. Finally, irregardless of the choice of classifier, from the practical standpoint observed results also suggest
that using the value of energy equal to 5.0 is a sensible default.
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Figure 9: Visualization of the impact of energy parameter on the performance with respect to different metrics.
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