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Abstract—Accurate prediction of metro passenger volume
(number of passengers) is valuable to realize real-time metro
system management, which is a pivotal yet challenging task
in intelligent transportation. Due to the complex spatial
correlation and temporal variation of urban subway ridership
behavior, deep learning has been widely used to capture
non-linear spatial-temporal dependencies. Unfortunately, the
current deep learning methods only adopt graph convolutional
network as a component to model spatial relationship, without
making full use of the different spatial correlation patterns
between stations. In order to further improve the accuracy of
metro passenger volume prediction, a deep learning model
composed of Parallel multi-graph convolution and stacked
Bidirectional unidirectional Gated Recurrent Unit (PB-GRU)
was proposed in this paper. The parallel multi-graph con-
volution captures the origin-destination (OD) distribution
and similar flow pattern between the metro stations, while
bidirectional gated recurrent unit considers the passenger
volume sequence in forward and backward directions and
learns complex temporal features. Extensive experiments on
two real-world datasets of subway passenger flow show the
efficacy of the model. Surprisingly, compared with the existing
methods, PB-GRU achieves much lower prediction error.

Keywords—Passenger volume prediction, Graph convolu-
tional network, traffic patterns, spatial-temporal correlation

I. INTRODUCTION

Traffic prediction is one of the fundamental tasks of
urban traffic management, which provides necessary in-
formation for intelligent transportation applications such
as travel route planning and travel demand assessment
[1]. With the rapid expansion of cities, metro plays an
improving role in the urban public transportation system,
and the prediction of metro ridership has gradually become
a hot topic.

In recent years, the development of deep learning pro-
vides new paradigms for traffic forecasting, which promotes
the vigorous progress of this area [2]. In particular, Graph
Convolutional Network (GCN) provides a more feasible
way for modeling spatial dependencies in traffic networks
[10]. Given the inherent graph structure of the transporta-
tion network, GCN is able to preserve the real topology and
capture the dependencies between metro stations. However,
the effective construction of the graph and the structure of
the GCN network are still two important problems remain
to be solved. For the first issue, previous work directly
uses the physical topology to build the graph [3]. However,

besides the physical adjacency relationship, two stations
may also have other semantic correlations. For example,
two stations may share similar passenger volume patterns
or have stable passenger flows between them. Considering
these facts, in this paper additionally utilizes two useful
station connections which are shown in the Fig. 1. More
specifically, they are:

Flow Pattern Similarity: Intuitively, two different sta-
tions in the city that belong to the same functional area
(e.g. residential area) may have the same passenger flow
pattern.

Origin-Destination Flow Direction: The Origin-
Destination (OD) distribution of ridership represents the
correlation between two stations. For example, if most of
the passenger flow at a residential area station flows into
a commercial area station, the two stations are related.
The connection between them is undoubtedly valuable
for future passenger volume prediction. However, using
only the physical topology of the metro system would
unfortunately miss this useful information.

Fig. 1. The spatial correlation

On the other hand, there is still no appropriate graph
convolutional network that could elegantly incorporate
such three kinds of semantic correlations, namely physical
adjacency, flow pattern similarity, and origin-destination
flow direction. This motivates us to proposes Parallel multi-
graph convolution and stacked Bidirectional unidirectional
gated recurrent unit model (PB-GRU) for metro passenger
volume prediction. In PB-GRU, two graph convolution
modules with different structures, FSGCN and FDGCN,
are constructed to model the Flow Pattern Similarity and
OD Flow Direction respectively. The Stacked bidirectional
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unidirectional temporal Attention Gated Recurrent Unit
(SAGRU) is used to deal with time series and is capable of
capturing long-term temporal dependencies. This network
structure focuses on modeling different spatial correlations
in the metro system simultaneously, and decouples the
prediction of inflow and outflow series to reduce network
complexity. In summary, the key contributions can be
summarized as follows:

• We propose a new deep learning model termed
PB-GRU for spatial-temporal representation learning.
It incorporates three predefined graph and historical
passenger flow series for passenger volume prediction.

• We design different graph convolution networks
to capture Flow pattern similarity and OD flow
direction between metro stations. We introduce
Simple Graph Convolution (SGC) to decouple the
message passing mechanism from GCN. This allows
the graph convolution modules to incorporate custom
transform learning network for better performance.

• Extensive experiments on two real-world metro
ridership benchmark datasets show that our method
has much improved performance compared to the
existing methods on station-level passenger volume
prediction. The ablation studies further verify the
effectiveness of the two proposed graph convolution
modules.

II. REALATED WORK
Deep learning’s achievements in computer vision [29]

and natural language processing have made it widely used
in traffic prediction [14], [15]. In early works, traffic data
was directly used to train a Recurrent Neural Network
(RNN) for learning long or short-term dependencies [19].
Cui et al. studied the performance of stacked LSTM in
traffic prediction and obtained promising results by using
pure RNN structure [20]. Nonetheless, RNN still has
inherent shortcomings in capturing spatial relationships,
which led the researchers to introduce CNN as a spatial
module. Shi et al. embedded convolution into the gate
mechanism and built Conv-LSTM to solve precipitation
nowcasting [22]. Zhang et al. designed an end-to-end
residual convolution network to predict the crowds in every
city region [21].

In fact, traditional convolutional neural network can only
be applied for Euclidean data. [17], [18] However , the
graph convolution generalizes the traditional convolution
to non-Euclidean structure data. In recent years, the devel-
opment of graph-neural networks with different structures
has promoted the research of spatial correlations in traffic
prediction [23]–[25]. Graph convolution method consists
of spectral-based and spatial-based methods. The spectral-
based methods process the graph signal by introducing fil-
ters, while the spatial methods directly aggregating feature
information from node’s neighbors. Li et al. [4] proposed
to model the spatial dependence of traffic as a diffusion
process, and designed the DCRNN model with Encode-
Decode structure by integrating GRU and spectrum-based

GCN. Yu et al. [5] used Gated Linear Unit Convolution to
replace RNN and selected Chebyshev convolution operator
to construct a pure convolutional structure to extract spatial-
temporal features. Wu et al. [6]proposed a method to
generate the adaptive adjacent matrix. This spatial-based
approach can learn spatial associations without predefined
graphs. However, the adjacent matrix obtained by node
embedding only learned the overall similarity of nodes in
the training set, resulting in the risk of over-fitting. Liu et al.
[7] incorporated the physical topology, ridership similarity,
and inter-station ridership into a Graph Convolution Gated
Recurrent Unit. However, due to the large number of
parameters in PVGCN, the model is hard to be trained.
Thanks to the research on parallel deep learning structure
[8], Chen et al. [9] proposed a parallel GCN-SUBLSTM
framework for subway passenger volume prediction. The
results show that this parallel structure can significantly
improve the accuracy of prediction and has high training
efficiency. Nevertheless, GCN-SUBLSTM lacks the design
of graph convolutional network structure. Therefore , it is
unable to completely surpass PVGCN in accuracy.

To address these limitations, this paper proposes a
parallel multi-graph convolution and stacked Bidirectional
Unidirectional Gated Recurrent Unit improving the GCN-
SUBLSTM. After carefully investigating the recent re-
search about graph convolution structure [26]–[28], we
use SGC as graph convolution operation, [11] and design
different network structures for transform learning. This
enables our model to obtain lower prediction error.

III. PRELIMINARIES

A. Problem Definition

The inflow and outflow volumes of station i at time
interval t are denoted as a two-dimensional vector xt

i ∈ R2,
where the first element represents inflow volume while the
second element captures outflow volume. The whole metro
system at time interval t is represented as (xt

1,x
t
2,· · · ,xt

n)
∈ R2×n, where n is the number of stations. Assume future
volume series is (Xt+1,Xt+2,· · · ,Xt+T ) ∈ R2×n×T , our
model can be viewed as learning a mapping function f (·)
that:(

X1, X2, · · · , Xt
) f(·)⇒

(
Xt+1, Xt+2, · · · , Xt+T

)
(1)

B. Graph Definition Units

Multi-hop Physical Graph. It is widely recognized that
there is a close ridership relationship between two stations
that are physically adjacent to each other. Therefore, this
paper designs a multi-hop physical graph to describe the
spatial structure of the subway network. Given a positive
integer K, if station i only can reach station j by a minimum
of K edges, we set A(k)

ij to 1.

A
(K)
ij =

{
1, ∂ = K
0, otherwise (2)

where ∂ represents the minimum number of edges required
to connect from station i and station j. When K=1, the first-
order physical graph can be regarded as a special case of
multi-hop graph, which does not affect the realization of
traditional graph convolution. The advantage of multi-hop



physical graph is that it extends the representation ability
of traditional graph convolution.
Passenger Volume Pattern Similarity Graph. If the
passenger volume curves of two metro stations are similar,
the two stations may have similar functions in the physical
world and similar passenger volume patterns. Considering
the order of magnitude difference of passenger volume in
different metro stations, Dynamic Time Warping (DTW) is
engaged for constructing thus share similar graphs. [16]
According to the definition of the DTW algorithm, the
passenger volume pattern similarity matrix is given by:

Sij = exp (DTW (xixj)) (3)

where xi and xj represent the historical sequence of the
node i and j. S is the passenger volume pattern similarity
matrix obtained through DTW algorithm. Finally, Top-k
and threshold method are used to further filter out the edges
with smaller values to avoid the matrix being too dense.
OD Flow Direction Graph. Ridership direction is also an
important of correlation between metro stations, reflecting
the regular daily migration of urban population. The model
uses the origin and destination distribution of ridership to
construct the OD flow direction graph. Let F(i, j) be the
total number of passengers from station j to station i in the
whole training set. The weight Cij is calculated as follow:

Cij =
F (i, j)∑N

n=1 F (i, n)
(4)

where N represents the number of nodes with passenger
flow to station i, and C represents the overall OD flow
direction matrix. Since the sum of each row in the matrix
is always less than or equal to 1, only some edges with
very small weight will be removed to eliminate the noise.
Multi-hop Degree Matrix. Graph regularization can effec-
tively improve the performance of graph neural network in
feature extraction. In this section, a new multi-hop degree
matrix is proposed to achieve more flexible and reasonable
graph regularization for the multi-hop random diffusion
process of passenger flow in the metro system. The multi-
hop matrix can be expressed as:

D(k) =

 d
(
A

(k)
ij

)
, k = 1

D(k−1) + d
(
A

(k)
ij

)
, otherwise

(5)

where d(·) represents the operation of the degree matrix,
k stands for the hops of the physical graph, and Dk is
a unique diagonal matrix. Note that the adjacency matrix
A

(k)
ij of the physical graph is defined as a symmetric matrix.

IV. THE PB-GRU MODEL

Our model mainly consists of three modules: Stacked
bidirectional unidirectional temporal Attention Gated Re-
current Unit (SAGRU), Flow Similarity Graph Convolution
Network (FSGCN), and Flow Direction Graph Convolution
Network (FDGCN). SAGRU is used to learn the complex
time dependency from the historical passenger flow series.
Considering the differences in graph structure and seman-
tics, two completely different structures are designed for the
graph convolution modules to better extract the spatial and
temporal correlations between the station nodes. Finally,

the output embeddings of all modules are passed through
the dropout layer, and two fully connected layers to predict
the inflow and outflow volumes respectively.

A. Stacked Bidirectional Unidirectional Temporal Attention
Gated Recurrent Unit

As a variant of LSTM, GRU has been widely used
for time series modeling. We would like to point out
that the single-layer GRU can only capture the positive
dependencies within the time series due to the presence
of reset gates, which inevitably loses useful information in
the implicit states when new inputs are absorbed.

Bidirectional GRU (Bi-GRU) can help address this issue
by building a two-directional GRU layer. It uses hidden
states from both directions to compensate for the informa-
tion loss in forward propagation. Therefore, for time series
prediction, the Bi-GRU has better ability to capture long-
term dependencies and make more accurate predictions.
As shown in Fig. 2, the bidirectional GRU contains two
parallel GRU layers in forward and backward directions
respectively. In SAGRU, the output of bidirectional GRU
can be formulated as:

~ht = GRUforward(X
t,~ht−1) (6)

~ht = GRUbackward(X
t,
←−
h t+1) (7)

bt = ~ht +
←−
h t (8)

where GRUforward and GRUbackward represent the for-
ward and backward GRU respectively, and ~ht and

←−
ht are

two hidden states learned from the Bi-GRU. bt represents
the output of each time step. Bidirectional hidden states
can be fused in the form of concatenation or addition.
The addition function is chosen in the model, which can
effectively reduce the number of parameters in the next
layer.

The predictive ability of neural networks can be im-
proved by deepening the model structure. Stacked Unidirec-
tional Bidirectional Recurrent Neural Network (SUBRNN)
has been shown to be able to generate higher level feature
representations from time series [13]. Therefore, this study
constructed SAGRU to learn the temporal dependence of
passenger volume sequences. As Fig. 2, the output Ht of
the bidirectional GRU is fed into the stacked GRU layer
for higher-level representation learning. The output of the
stacked forward GRU is given as:

ut = GRUstack(bt, ut−1) (9)

where GRUstack represents the stacking GRU, and ut−1

is the output of time step t. In existing methods, vector ut

can be directly fed into a decoding network for prediction,
but SAGRU additionally adopts a lightweight temporal
attention to assign more weights to important features in
the fusion tensor. Formally,

et = tanh (Wuut + bu) (10)

at =
exp(et)∑H
t=1 exp(et)

(11)

OGRU =
H∑
t=1

atut (12)



Fig. 2. The overall architecture of PB-GRU

where Wu, bu represent weight and bias parameters
respectively, and at stands for the weight of attention after
normalization. Finally, the hidden states ut are weighted
and added to obtain the output representation ORGU of
SAGRU.

B. Flow similarity Graph Convolution Network

GCN has become a new and effective mean in spatial
modeling. However, it was originally designed for graph
classification tasks and is equipped with a number of neural
network operations. Existing studies have pointed out that
the most common feature transformation and nonlinear
activation operations in GCN contribute little to some tasks
and make the model difficult to train [12].

In this paper, SGC is introduced as a graph convolution
operation. Its advantage is that SGC only uses the message
passing mechanism to aggregate the original graph signals
and avoids the multi-channel linear transformation. The FS-
GCN module uses first-order physical graph and ridership
pattern similarity graph to capture the similarity of ridership
patterns.

HP =
(
D−1/2AijD

−1/2
)
Xt (13)

HS =
(
D−1S

)
Xt (14)

where D is the first-order degree matrix, Aij is the first-
order physical adjacency matrix, and S is the ridership
pattern similarity graph. According to the difference of
prior knowledge, Laplace regularization is used for physical
graphs and random walk regularization is used for similar
graphs. It has been proven that message passing and feature
transformation of graph neural network can be completely
decoupled [11],[26]. Our model also adopts a residual linear
layer at the end. In order to avoid overfitting, Hp and Hs are
separated after SGC and concatenate as inflow embedding
Hif and outflow embedding Hof .

OFSif = Relu (Hif + (WifHif + bif )) (15)

OFSof = Relu (Hof + (WofHif + bof )) (16)

where Wif , bif , Wif , bif are all trainable parameters.
The nonlinear residual layer realizes the decoupling of
feature transformation and message passing. It is designed
to capture the potential node relationship better.

C. Flow Direction Graph Convolution Network

Due to the lack of prior knowledge of passenger flow,
FDGCN models the passenger flow as a multi-hop random
diffusion process. Given a constant K without considering
few passengers coming in and out of the same station,



the model assumes that the passengers are equally likely
to arrive at all stations within K hop, and builds a group
of K-hop flow direction graphs to aggregate fine-grained
hierarchical flow information.

h(K) =
((

A(K) � C
)
D(K)−1

)
Xif (17)

where A(k) represents the k-hop physical graph, C repre-
sents the OD Flow Direction graph, D(k) represents the
K-hop degree matrix, � represents the Hadamard product,
and K is a hyper parameter. We denoted the this set of
graph convolution results as hhid , which represents the
potential passenger flow between subway stations in k hop.

For a station in the metro system, the farther the station,
the later the arrival time. The K-hop potential passenger
flow can be regarded as time series, and due to the predicted
time interval, the beneficial flow for prediction should be
a subset of hhid. Next, a causal convolution is applied to
further extract the potential passenger flow, as shown in
Fig. 3 Before each convolution layer, zero padding was
applied. Thus, the output has the same length as the input,
and the network can only use the information of past time
steps. In addition, gate mechanism is also used in causal
convolution:

P = w1 ∗ hhid + b1 (18)

Q = w2 ∗ hhid + b2 (19)

hout = tanh (P + hhid)� sigmoid(Q) (20)

P and Q are the results of input hhid through different
convolution kernels w1 and w2, parameters b1 and b2 are
bias, and � represents Hadamard product. By stacking a
small number of causal convolution layers, the model can
obtain the appropriate size of the receptive field to capture
the local continuous passenger flow. The final output is
represented as OFDof after being cut.

Fig. 3. Causal Convolution

D. Output layer

Finally, the model uses two independent fully connected
layers to fuse the embeddings in order to predict the future
inflow and outflow volumes respectively. It can obtain the
predicted value of T time steps at one time.

Ŷ in = Win (OGRU‖OFSif ) + bin (21)

Ŷ out = Wout (OGRU ‖OFSof‖OFDof ) + bout (22)

where Win, Wout, bin, bout represent the trainable weight
and bias parameters, ‖ represents the concatenate operation,
Ŷ in and Ŷ out are the inflow and outflow of all subway
stations respectively. Finally, Ŷ in and Ŷ out are stacked to
Ŷ as the predicted output of our model.

V. EXPERIMENTS

A. Data sets

Two metro ridership benchmark datasets, HZMetro and
SHMetro, are used to evaluate the performance of our
method. The details of these two datasets are summarized
in Table I. The training set, verification set, and test set
are divided according to the proportion of the original
source [7], and only Z-score normalization is used for
preprocessing.

B. Parameter Settings and Evaluation Metrics

Hyper-parameters: When training on HZMetro, the
batchsize is set to 48, the hidden state size of the GRU is
650. As for SHMetro, batchsize and hidden state size are
96 and 1,200 respectively. The ADAM optimizer is used
to minimize the L1 loss to train 350 epochs. The initial
learning rate is set at 10−3 and decays to 0.5 per 40 epochs.
The regularization method is Dropout p = 0.4, for SAGRU
and FDGCN, and p = 0.1 for others.

Evaluation Metrics: Average absolute error (MAE),
mean absolute percentage error (MAPE) and root mean
square error (RMSE) are used to evaluate the performance
of different methods. The three indexes are defined as
follows:

MAE = 1
N

N∑
i=1

∣∣ŷi − yi
∣∣ (23)

MAPE = 1
N

N∑
i=1

|ŷi−yi|
yi (24)

RMSE = 1
N

N∑
i=1

|ŷi−yi|
yi (25)

where yi represents the ground-truth , ŷi represents the
predicted value, and N represents the number of metro
station.

TABLE I: DATA SETS

Dataset HZMetro SHMetro

City HangZhou,
China

ShangHai,
China

Station 80 288

Physical Edge 248 958

Ridership/Day 2.35 million 8.82 million

Time Interval 15min 15min

Training Set 1/01/2019 –
1/18/2019

7/01/2016 –
8/31/2016

Validation Set 1/19/2019 –
1/20/2019

9/01/2016 –
9/09/2016

Testing Set 1/21/2019 –
1/25/2019

9/10/2016 –
9/30/2016



TABLE II. EXPERIMENTAL RESULTS ON HZMetro

Model
15min 30min 60min

MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE
LSTM 23.43 14.41 40.13 24.38 15.54 42.33 26.74 19.88 47.90
GCN 24.21 21.05 49.20 25.75 24.26 52.34 33.44 27.62 62.39

DCRNN 23.24 13.65 41.43 25.78 15.32 43.23 27.15 18.64 48.56
STGCN 23.86 12.48 45.03 26.07 13.72 49.16 31.47 16.95 59.74

Graph-Wavenet 23.50 13.77 41.88 24.75 15.68 43.70 27.85 20.45 48.69
PVGCN 22.20 13.15 38.12 23.13 13.87 40.00 24.55 16.35 42.26

GCN-SUBLSTM 22.22 13.16 39.83 22.84 13.76 41.08 24.58 15.73 44.48
PB-GRU 22.13 13.30 36.55 22.90 13.75 38.33 23.91 14.87 40.02

TABLE III. EXPERIMENTAL RESULTS ON SHMETRO

Model
15min 30min 60min

MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE
LSTM 23.50 20.23 47.08 24.50 22.64 49.63 26.87 26.16 56.53
GCN 24.21 21.05 49.20 25.75 24.26 52.34 31.60 34.25 63.24

DCRNN 23.34 18.02 47.24 25.33 19.12 51.31 29.01 21.52 63.32
STGCN 23.84 18.71 47.18 26.99 19.41 57.40 33.82 23.69 77.00

Graph-Wavenet 23.75 20.23 45.73 27.12 21.42 54.15 31.56 24.92 68.10
PVGCN 22.85 16.95 45.47 24.16 18.83 50.18 26.37 19.67 58.49

GCN-SUBLSTM 22.75 16.50 46.09 23.77 17.62 49.04 25.87 20.21 55.41
PB-GRU 22.70 15.98 43.35 23.74 16.52 46.46 25.72 17.90 51.80

TABLE IV. EXPERIMENTAL RESULTS OF FSGCN VARIANTS ON HZMETRO

Model
15min 30min 60min

MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE
BASE 23.19 13.86 38.43 23 .75 13.94 42.01 25.23 15.86 43.12

P-BASE 22.31 13.49 37.12 23.20 13.79 39.42 24.01 14.82 40.66
D-BASE 22.45 13.58 37.41 23.23 13.82 39.05 24.17 14.83 40.96

PD-BASE 22.21 13.42 37.01 22.96 13.76 38.51 23.94 14.71 40.47

TABLE V. EXPERIMENTAL RESULTS OF FSGCN VARIANTS ON SHMETRO

Model
15min 30min 60min

MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE
BASE 23.46 16.25 45.78 24 .30 17.72 48.46 26.18 19.61 55.14

P-BASE 23.00 16.03 44.04 23.97 16.50 46.98 26.06 17.77 53.31
D-BASE 23.02 16.03 44.21 24.07 16.51 47.36 26.25 17.70 54.17

PD-BASE 22.80 15.96 43.76 23.79 16.42 46.86 25.79 17.50 52.05

C. Compared Models

We compared our method with a variety of existing
models including:

LSTM: Long-short term memory neural network, this
paper uses encoder - decoder structure to achieve predic-
tion.

GCN: Graph convolution neural network, implemented
according to [10].

DCRNN [4]: The diffusion convolutional recurrent neu-
ral network uses the bidirectional random walk on the graph
combined with the encoder-decoder structure to learn the
spatial-temporal dependence.

STGCN [5]: Spatial and Temporal Graph Convolutional
Network, using Chebyshev Graph Convolution and GLU to
capture spatial-temporal dependence respectively.

Graph-Wavenet [6]: The method proposes an adaptive
dependency matrix to capture hidden spatial correlations
and uses stacked causal convolution to process time series.

PVGCN [7]: The physical virtual graph convolutional
network combines multi-graph convolution with GRU’s
gating mechanism, and uses encode-decoder structure to
achieve multi-step prediction.

GCN-SUBLSTM [9]: This model constructs a compos-
ite graph, which uses double-layer multi-channel general
GCN to capture the spatial correlation of metro stations.



D. Performance Comparison

Performance of different models on HZMetro and
SHMetro datasets are shown in Table II and Table III.
For all the models, only LSTM and GCN capture a single
temporal or spatial correlation. The GCN model performs
the worst since it completely ignores the modeling of
the time dimension. The LSTM achieves competitive
results, but its MAPE is higher than the other models.
This empirical evidence suggests that LSTM has poor
fitting ability for medium and low passenger flow stations.
STGCN and Graph-Wavenet are both time convolution
model with Graph convolution, but MAE and RMSE on
the two data sets are inferior to LSTM. This indicates
that the temporal convolution model is not suitable for
short sequences with long time intervals. Both PVGCN
and GCN-SUBLSTM have relatively accuracy. PVGCN
has a better prediction result on HZMetro, while GCN-
SUBLSTM has a greater advantage in the long-term
prediction of RMSE index in SHMetro. However, these
two models did not use independent graph convolution
method to model different spatial-temporal correlation
patterns of subway passenger flow. Our PB-GRU achieves
the best accuracy in almost all indicators, especially
in SHMetro with complex subway network and large
passenger flow, the prediction performance is better than
all other models. Experimental results show that RMSE
of the model is significantly improved compared with the
suboptimal model. This proves that the model is more
sensitive to the sudden changes of passenger volume and
can better predict the marginal values.

E. Ablation Study

In order to study the contribution of each component
in our method, we further conduct extensive experiments
by removing each individual component respectively. In
particular, we tried the following structures and conducted
performance comparison.

Base: Only SAGRU was used for the prediction.
P-Base: FSGCN with first-order physical graph and

SAGRU were used for prediction.
D-Base: FSGCN with ridership pattern similarity graph

and SAGRU were used for prediction.
PD-Base: Complete FSGCN and SAGRU were used for

co-prediction.

Fig. 4. Influence of hyper-parameter K on HZMetro

Fig. 5. Influence of hyper-parameter K on SHMetro

The results are shown in Table IV and Table V. It
can be seen from the tables that FSGCN , which is
constructed based on the similarity of traffic patterns
between stations, significantly reduces the prediction error.
As the predicted time interval becomes longer, the RMSE
of PD-Base grows more gently than that of Base, which
proves that FSGCN captures the similar patterns between
metro stations. When only a single similar graph is used
for convolution, the accuracy of P-base is higher than D-
base, especially on SHMetro. In capturing similar traffic
patterns, the first-order physical graph is stronger than the
similar graph constructed by DTW, which means that the
traffic patterns of adjacent subway stations in big cities are
closely correlated. Finally, PD-Base obtained the result with
lower error by integrating the embeddings from two kinds
of graph convolution, which is competitive with PB-GRU
to a certain extent.

Fig. 6. The optimal value of K for different prediction intervals

In order to explore the influence of different K-hop
hyper-parameter in FDGCN, Fig. 4 and Fig. 5 show MAE
and RMSE values of different K values ranging from 1
to 10 in 15min prediction task . In the table, RMSE and
MAE start at a high value, then gradually decrease to a
minimum value, and finally increase as K become larger.
In the predicted time interval of 15min, the optimal K value
of Shanghai Metro and Hangzhou Metro was set to 4 and 5,
respectively. Fig. 6 shows the best hyper-parameter setting



when the minimum error is obtained in different predicted
interval tasks. It is very consistent with the common sense
that the longer the interval is, the larger the travel range of
passengers will be. It effectively proves that FDGCN can
improve the prediction accuracy by modeling the inflow
of the metro station within the K-hop. However, it also
should be noted that the inappropriate K value has a certain
negative impact on the prediction. Due to the differences
between subway and urban planning, how to determine
the value of K in different metro systems remain an open
problem.

Finally, the training time of different methods is further
compared on the same workstation. Table VI shows the
time required to train an epoch for each method. Specif-
ically, PVGCN and GCN-SUBLSTM, which are recently
proposed for passenger volume prediction, are engaged
in the comparison. We can see that PVGCN requires the
longest time to train. This is because the computations
of GRU cannot be paralleled, PVGCN integrates graph
convolution into GRU’s gating mechanism, and three graph
convolution operations are performed for each forward
propagation. PB-GRU and GCN-SUBLSTM require similar
training time. It is worthy pointing out that our model has
less training time. It is due to the fact that both FSGCN
and FDGCN use SGC as graph convolution, which reduces
a large number of parameters compared with the traditional
GCN. In order to prove the efficiency of temporal attention,
the additional training time of SAGRU was provided in the
table. The attention in the model could be regarded as a gate
mechanism with temporal complexity O(n), so increasing
the size of training set will not lead to the exponential level
increase of training time.

TABLE VI. COMPARISON OF TRAINING TIME PER
EPOCH

Model HZMetro SHMetro

PVGCN 190.13s 345.64s

SAGRU 1.05s 1.78s

GCN-SUBLSTM 1.44s 2.83s

PB-GRU 1.27s 2.19s

F. Visualization
We visualized the prediction results of SHMetro to

better demonstrate the model performance. Three instances
are selected to illustrate the performance of PB-GRU on
different passenger volumes. As shown in Fig. 7, PB-
GRU is accurate in fitting both the overall trend and
the peaks. With the help of FDGCN, the model is less
likely to underestimate the out flow peak. This is an
important reason why our model is lower than PVGCN
and GCN-SUBLSTM on RMSE. Besides, we found that
the periodicity of passenger flow in some subway stations
(e.g. #166 station) is quite different. These special stations
are major source of prediction error. However, thanks to
FSGCN and FDGCN, our method is able to handle such
cases according to the visualization of station #166.

VI. CONCLUSION AND FUTURE WORKS

In this paper, a deep learning model PB-GRU is proposed
for metro passenger volume prediction. In the model, We

design two completely different graph convolution modules
to capture flow pattern similarity and OD flow direction
respectively. Based on the experiments on two real-world
datasets, the proposed PB-GRU is superior to the existing
models in terms of precision and training efficiency. More
ablation studies further verify the effectiveness of the two
graph convolution modules. In the future, we would further
consider the variation of the passenger flow pattern within
the daily period and the functions of different stations, so
as to achieve more accurate prediction in specific city area.
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Fig. 7. Snapshot of three prediction instances. Station #277 and #12 are the lowest and highest average passenger volume in SHMetro
respectively, Station #166 is a more general instance with a different passenger volume pattern.
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