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Abstract—DBSCAN has been widely used in density-based
clustering algorithms. However, with the increasing demand
for Multi-density clustering, previous traditional DSBCAN can
not have good clustering results on Multi-density datasets. In
order to address this problem, an adaptive Multi-density DB-
SCAN algorithm (AMD-DBSCAN) is proposed in this paper. An
improved parameter adaptation method is proposed in AMD-
DBSCAN to search for multiple parameter pairs (i.e., Eps
and MinPts), which are the key parameters to determine the
clustering results and performance, therefore allowing the model
to be applied to Multi-density datasets. Moreover, only one
hyperparameter is required for AMD-DBSCAN to avoid the
complicated repetitive initialization operations. Furthermore, the
variance of the number of neighbors (VNN) is proposed to
measure the difference in density between each cluster. The
experimental results show that our AMD-DBSCAN reduces
execution time by an average of 75% due to lower algorithm
complexity compared with the traditional adaptive algorithm.
In addition, AMD-DBSCAN improves accuracy by 24.7% on
average over the state-of-the-art design on Multi-density datasets
of extremely variable density, while having no performance loss
in Single-density scenarios. Our code and datasets are available
at https://github.com/AlexandreWANG915/AMD-DBSCAN.

I. INTRODUCTION

DBSCAN [1] is one of the most widely used density-
based clustering methods in data mining [2]. Since objects
within a cluster are similar and objects in different clusters are
dissimilar [3], DBSCAN is able to classify the objects with
the similar characteristics into one cluster [4] and to identify
clusters of different shapes and sizes accurately from noise
[5]. Due to its specialties, it is widely used in various fields
such as ship detection [6], wafer classification [7], astronomy
[8], robotics [9]and disease diagnosis [10].

However, traditional DBSCAN has two drawbacks. Firstly,
DBSCAN clustering relies on two parameters (i.e., Eps and
MinPts). For a point, Eps is the radius of the circle whose
center is that point. All the points in that circle could be
considered as neighbors of that point. MinPts is a threshold
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value that can be utilized to search core points during the
process of DBSCAN clustering. However, in most cases, the
dataset has a dimensionality greater than three dimensions,
which leads to the inability of the visualization. Therefore, it
is hard to determine these two parameters, and it would take
a lot of time and effort to modify the parameters artificially.
And when the dimensionality of the data is high, there will be
a curse of dimensionality [11], leading to a lower clustering
accuracy.

Furthermore, traditional DBSCAN only offers a single
parameter pair and it has a low accuracy on Multi-density
datasets of extremely variable density. To be more specific, the
density of each cluster varies greatly. Giving parameters at the
density of the sparse clusters would lead to merging similar
datasets, while giving parameters at the density of the dense
clusters would result in many clusters with less density being
incorrectly identified as noise. Therefore, traditional DBSCAN
that uses only a fixed parameter pair could not give good
clustering results on Multi-density datasets where different
regions have various densities.

Some algorithms (e.g., YADING [12]) propose Multi-
density DBSCAN to address this problem. Specifically, the
data points with the highest density are firstly clustered,
then the data points that have been clustered are saved, and
then the remaining points that have not been clustered are
continued to be clustered. Repeat the above process until all
points are clustered. This means that different density clusters
should utilize different parameter pairs. To obtain multiple
parameter pairs, most of these algorithms utilize the kdis curve.
To determine a kdis curve, the Euclidean distance matrix, a
square matrix containing the euclidean distances between the
elements of a set, is supposed to be obtained first and sorted in
ascending order. The kdis curve is comprised of the values of
the kth column of this sorted distance matrix. And k means kth

neighbor of a point and different k values determine different
curves, resulting in different parameter pairs. However, these
methods mostly use a fixed k, which is not well based on the
distribution properties of the dataset. In addition, to search for
multiple candidate parameter pairs, they introduce additional
hyperparameters that are required to be set manually.
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To enable DBSCAN to be applied to Multi-density datasets
of extremely variable density, AMD-DBSCAN is proposed.
To the best of our knowledge, the proposed approach in this
paper is a novel exploration of the kdis value, which is the kth

nearest neighbor of a point, to search for multiple parameter
pairs matching the distribution of the dataset.

The contributions of this paper are summarized as follows:

1) An improved parameter adaptation method is proposed
to locate the adaptive k based on the distribution of the
datasets and the binary search algorithm is utilized to
speed up this adaptive process.

2) A new method for utilizing the kdis value is proposed
to search for multiple candidate Eps.

3) An adaptive Multi-density clustering algorithm is pro-
posed to provide matching parameter pairs (i.e., Eps
and MinPts) for each density cluster.

II. RELATED WORK

The clustering results of DBSCAN are significantly affected
by two parameters (i.e., Eps and MinPts) and the distribution
of datasets. As for parameters, larger MinPts and smaller
Eps lead to incomplete clustering (many core points are
considered as noise). In contrast, small MinPts and large
Eps result in over-clustering (two or more clusters of points
are clustered into a single cluster). In the case of datasets’
distribution, only one pair of Eps and MinPts is unlikely
to cope with the Multi-density datasets whose points are not
evenly distributed. In this section, previous work on these two
aspects is discussed and compared with AMD-DBSCAN.

A. Configuration of parameters

To obtain appropriate parameters for DBSCAN, many ap-
proaches have been proposed. These methods can be divided
into two categories, adapting one of the two parameters (i.e.,
Eps and MinPts) and configuring both of them.

1) Single Parameter: Reversing the nearest neighbor has
been proposed by method [13] to estimate the density around
a point for adapting MinPts automatically. Besides, the kdis
curve, which is comprised of the distance of points of the
dataset and their k-nearest neighbors in ascending order, is
leveraged by [12], [14], [15] to adapt appropriate Eps by
locating the flat part of the curve. However, the analysis of the
kdis curve proposed by [12], [15] requires another two param-
eters and is with a relatively large complexity (O(nlog(n))).
ISB-DBSCAN [16] algorithm utilizes an input parameter k
as the number of the nearest neighbor to reduce the input
parameters of DBSCAN. AA-DBSCAN [17] algorithm utilizes
the approximate adaptive Eps for each density. Hence, it can
find the clusters in the Multi-density datasets.

However, all the approaches above can only adapt one pa-
rameter automatically. The advantage of the AMD-DBSCAN
over the above algorithms is that our method can adapt both
parameters at the same time.

2) Multiple Parameters: The following method is proposed
to provide two parameters. In GMDBSCAN [18], centers of
clusters are generated by GD to adapt both two parame-
ters. However, it has a lower accuracy compared to AMD-
DBSCAN when dealing with the Multi-density datasets.

B. Properties of Datasets

1) Multi-density Datasets: Many algorithms are proposed
for tackling the situation of Multi-density datasets with un-
evenly distributed points. For instance, VDBSCAN [19] pro-
posed to automatically customize clustering parameters for
different density regions. Furthermore, AEDBSCAN [14] im-
proves the kdis curve by using the second-order difference
method to improve the accuracy of the Multi-density clus-
tering. Also, YADING [12] estimates the density by deter-
mining the Eps based on VDBSCAN [19], and it optimizes
the clustering speed. DVBSCAN [20] can deal with local
density variation within a cluster, but it cannot determine
parameters automatically. HDBSCAN [21] is a hierarchical
clustering method that allows it to perform well on Multi-
density datasets. However, it has a long execution time.

Since AMD-DBSCAN can adapt a parameter pair for
each layer during the Multi-density DBSCAN process, it can
achieve good clustering results on Multi-density datasets.

2) Large-scale Datasets: Some algorithms are proposed to
be applied under large-scale datasets. Some methods [22]–[24]
use a partitioning strategy and a distributed structure that allow
them to be applied to large-scale datasets. SDBSCAN algo-
rithm [25] combines sampling techniques with DBSCAN for
clustering large spatial databases. In IDBSCAN [26] method,
the greater I/O cost and memory requirements involved in
clustering are addressed by using marked boundary objects
to directly scale the computation without the need for actual
dataset selection.

However, all of these methods above have a low accuracy
on Multi-density datasets. AMD-DBSCAN can have good per-
formance in this scenario because it can adapt two parameters
according to the distribution of large-scale datasets.

III. PROPOSED ALGORITHM

A. Overview

In this section, the details of the three steps of AMD-
DBSCAN are analyzed and the complexity of the overall
algorithm is given at the end. Figure 1 gives the information
of the framework proposed in this paper.

1) Parameter Adaptation of k: To achieve Multi-density
clustering on the datasets of extremely variable density,
it is first necessary to obtain k required to determine the
kdis value. An improved parameter adaptation method is
proposed to locate k. The spatial distribution properties
of the dataset itself are utilized to generate a list of
candidate Eps and MinPts parameters, which are
required by DBSCAN. The Eps and MinPts parameter
lists are sequentially input into the DBSCAN to obtain
the number of clusters. After that, by using the binary
search algorithm, Eps and MinPts pairs that are the



Fig. 1. Framework of AMD-DBSCAN

most match the distribution of the dataset for clustering
is selected, where MinPts is used as k required for the
next step.

2) To obtain Candidate Eps List: The kdis value, which
is defined as kth neighbor of a point, is determined by
k derived from the last step. And the kdis frequency
histogram can be obtained by a series of kdis values
arranged in ascending order. The K-means algorithm is
utilized to cluster the kdis values to obtain N candidate
Eps, where N refers to the number of peaks by directly
observing the kdis frequency histogram.

3) Multi-density Clustering: Multi-density DBSCAN can
perform well on Multi-density datasets and it is in-
troduced in this study. Each Eps in the obtained
CandidateEpsList is sorted in ascending order and
used to generate the corresponding MinPts. The pa-
rameters of each layer are input into Multi-density
clustering respectively to obtain the final results.

B. Parameter Adaptation of k
There are many algorithms [12], [15] that utilize kdis value,

which represents the kth nearest neighbor of each point,
to obtain the important parameter Eps for clustering. They
require manual input of the parameter k. And our model
proposes a novel exploration of kdis value using the kdis
frequency histogram. The clustering results depend directly
on the selection of the parameter k.

According to our experiments shown in the latter section, a
small k leads to a large number of clusters (what should be
one large cluster is clustered into many small clusters), while
a large k results in a small number of clusters (what should
be multiple clusters are clustered into one cluster). Therefore,
k affects the clustering results significantly.

To avoid the randomness of manually setting k during
clustering, a parameter adaptation algorithm is proposed in this

study to search for k. This approach adapts a k that responds
to the distribution properties of the dataset. Our subsequent
experiments demonstrate that this adaptive k is an important
guide for determining the kdis value, making parameter pairs
can have good performance for Multi-density clustering. The
specific process of parameter adaptation of k is as follows.

1) To compute Eps List: First of all, the Euclidean distance
matrix DISTn×n of the dataset D is calculated:

DISTn×n = {dist(i, j), 1 ≤ i ≤ n, 1 ≤ j ≤ n} (1)

where n = |D| represents the number of points in the dataset
D, DISTn×n is a symmetric matrix with n rows and n
columns, and each element represents the Euclidean distance
from ith point to jth point in the dataset D.

By arranging each row in DISTn×n in ascending order, a
SORTED DISTn×n is obtained. The distance data of the kth

column in SORTED DISTn×n is noted as vector Dk. And
Dk is obtained by averaging the data in the vector Dk, which
yields a list of Eps as shown in Equation 2.

EpsList =
{
Dk, 1 ≤ k ≤ n

}
(2)

The whole process is encapsulated as a function
obtainEpsList(data) which will be used in the pseudo-code.
The input is the dataset D and the output is EpsList.

2) To compute MinPts List: For a given EpsList, each
Eps value in it is utilized to calculate a MinPts, which is
the number of neighbors corresponding to each Eps. And
MinPtsList consists of multiple MinPts, as shown in
Equation 3 and Equation 4.

MinPtsList = {MinPtsj , 1 ≤ j ≤ n} (3)

MinPtsj =
1

n

n∑
i=1

Pointi (4)



where Pointi is the number of neighbors of the ith point
within the range of Epsj , and n represents the number of
points in the dataset D.

The whole procedure above is encapsulated as a function
obtainMinPtsList(data,Epslist). The input are the dataset
D and EpsList and the output is MinPtsList.

(a) cluster number (b) NMI score

Fig. 2. Variation of the clusters numbers and NMI score. (a)Best index is
the maximum index when the number of clusters is stable for the first time.
(b)The index of the highest NMI score is exactly equal to the best index.

3) To locate the adaptive k: The algorithm is based on two
conclusions obtained by analyzing the image of the number
of clusters and the image of the effect of clustering.

1) EpsList is in ascending order, which means that as
the index increases, Eps increases. An experiment is
designed in which each pair of Eps and MinPts pa-
rameters are input sequentially into DBSCAN to obtain
the number of clusters. By observing the change in the
number of clusters with index, our experimental results
show that the number of clusters decreases monotoni-
cally with increasing index, as shown in Figure 2(a).
That is because as Eps increases, more points in the
dataset are clustered into one class, and thus the number
of clusters is monotonically decreasing.

2) When the number of clusters is stable for the first time,
which means the number of clusters is the same three
times in a row shown in the Figure 2(a), the point
with the largest index in this stable part of the curve
corresponds to the best clustering. Normalized Mutual
Information (NMI) [27] is utilized to judge the clustering
effect. An experiment is designed whereby the NMI
of each DBSCAN result is recorded. By analyzing the
change in NMI with index, our experimental results
shown in Figure 2(b) indicate that the NMI increases
until reaches the largest index when the number of
clusters is stable, which is noted as the best index.

Based on the above conclusions, an improved parameter
adaptation method is proposed. The specific implementation
is shown below. The EpsList and MinPtsList are chosen
as the Eps candidates and MinPts parameters, respectively.
And then each parameter pair is input into DBSCAN for
clustering to obtain the number of clusters. As illustrated
in Algorithm 1, when the number of clusters is the same
three times in a row for the first time, the clustering result is
considered to be stable. The number of clusters n is considered
to represent the number of true clusters of the dataset. And the

best index where the NMI value is the greatest is the largest
index when the number of clusters is equal to n.

According to the first conclusion, the number of clusters
decreases monotonically with index. To avoid traversing all
combinations of parameters and reduce the time significantly,
the binary search algorithm is utilized to locate the best index.
The search array is from the first index equal to n to the last
index. The search process starts from the middle index. If
the number of clusters corresponding to the middle index is
exactly n, the search starts from the right half of the array. If it
is less than n, the search starts from the left half of the array.
Repeat this process until the largest index that the number
of clusters is equal to n is located, that is, the best index.
Finally, the MinPts corresponding to the best index in the
MinPtsList is our adaptive k.

The pseudo-code of locating k is shown in Algorithm 1.

Algorithm 1: Parameter Adaptation of k
input : data
output: k

1 Eps← obtainEpsList(data)
2 MinPts← obtainMinPtsList(data,Eps)
3 counter ← 0
4 for i ≤ len(data)− 1 do
5 ClusterNum[i]← DBSCAN(Eps[i],MinPts[i])
6 if ClusterNum[i] == ClusterNum[i+ 1] then
7 counter ← counter + 1
8 end
9 else

10 counter ← 0
11 end
12 if counter > 3 then
13 n← ClusterNum[i]
14 left← i
15 right← len(data)− 1
16 while start ≤ end do
17 mid← (start+ end)/2
18 if DBSCAN(Eps[mid],MinPts[mid]) < n

then
19 right← mid
20 end
21 else if

DBSCAN(Eps[mid],MinPts[mid]) > n then
22 Left← mid
23 end
24 else
25 best index← mid
26 k ←MinPts[bext index]
27 return k
28 end
29 end
30 end
31 end

C. To obtain Candidate Eps List

To have a good performance on Multi-density datasets,
multiple Eps are required for Multi-density clustering. This
part is to obtain the candidate Eps list. In the step above, an
adaptive k is obtained based on the distribution property of
the dataset D, which is utilized to determine the kdis value.



To better locate candidate Eps, several algorithms (e.g.,
YADING [12]) have been proposed. These algorithms look
for the inflection point (i.e., the part where the second-order
differential is zero) of the kdis curve. In YADING [12] method,
the flat part of the kdis curve indicates that the density of points
is consistent, while the steep part indicates that the density
of points is significantly different. However, our experimental
results show that the candidate Eps list derived from such
methods does not give good clustering results. Furthermore,
these methods introduce additional hyperparameters.

Inspired by YADING [12], our AMD-DBSCAN proposes
a new method of searching for candidate Eps using the
kdis frequency histogram, which is a frequency histogram of
the kdis values. The peak of the kdis frequency histogram
corresponds to the flat part of the kdis curve. Therefore, the
kdis value of the peak of the histogram can be considered
as a candidate Eps because it ensures that there are a large
number of points in this range that can be clustered into one
class. To automatically distinguish between different peaks in
the frequency histogram, the K-means algorithm is utilized to
divide the kdis frequency histogram into different parts. And
the clustering center of each part is considered as the candidate
Eps. This process will allow more similar kdis values to be
clustered in one class, and it is more representative of the Eps
of this part of the points.

The specific steps are as follows. The kdis value can be
determined by using the adaptive k derived from the last step
and the kdis frequency histogram can be obtained by a series
of kdis values. N is considered as the number of clustering
centers of the kdis values which is determined by observing
the number of peaks of the kdis frequency histogram. And
this N is exactly equal to the number of clustering centers
required for the K-means algorithm (i.e., K). Therefore, it
is straightforward to utilize the K-means algorithm because
K required by the K-means algorithm can be easily located.
Moreover, our experiments in the latter section show that it
is also effective because it has higher clustering accuracy.
For example, as shown in Figure 1, it can be observed that
there are three peaks in the frequency histogram. Therefore,
N is equal to 3, which means that there are three candidate
Eps. The K-means algorithm with K equal to 3 can be used
to cluster the kdis values. As shown in Figure 1, the kdis
values corresponding to the center of the clustering result are
considered as the candidate Eps. After the above process, N
candidate Eps can be obtained, which means that most of the
similar kdis values are clustered around these N candidate
Eps. These candidate Eps can be used for Multi-density
clustering.

The pseudo-code for obtaining candidate Eps list is shown
in Algorithm 2.

D. Multi-density Clustering

Once obtaining the candidate Eps list, the next step is to
perform Multi-density DBSCAN on the dataset D. Unlike
the algorithm of YADING [12], which sets all MinPts to
k by default, our algorithm calculates MinPts based on the

Algorithm 2: To obtain Candidate Eps List
input : data

k ← ParameterAdaptation(data)
output: CandidateEpsList: candidate Eps list for

Multi-density DBSCAN
1 distances← sort(euclidean distances(data))
2 kdis ← distances[k]
3 N ← Number of peak of the kdis frequency histogram
4 CandidateEpsList← K-means(kdis,K=N ).centers
5 return CandidateEpsList

distribution property of the dataset. MinPts is calculated
by the same algorithm as parameter adaptation, using the
Equation 4, which utilizes a candidate Eps and data to
obtain MinPts. This process is encapsulated as the function
obtainMinPts(data,Eps).

The specific process is as follows. The first step is to sort
the obtained candidate Eps list in ascending order, and then
the obtainMinPts function is utilized to obtain the adaptive
MinPts. Then, data, Eps, MinPts are input into DBSCAN
for clustering. After that, the data that has been clustered
is saved and is not clustered in the next loop. Repeat the
above steps until all the Eps are input into the model, and the
remaining data is the noise. The whole clustering is finished.

The pseudo-code for Multi-density DBSCAN is shown in
Algorithm 3.

Algorithm 3: Multi-density DBSCAN
input : data

EpsList← obtainEpsCandidateList(data, k)
output: cluster and noise

1 for Eps in EpsList do
2 MinPts← obtainMinPts(data,Eps)
3 cluster ← DBSCAN(data,Eps,MinPts)
4 Mark data with labels
5 Remove cluster from data
6 end
7 Mark data as noise
8 return cluster and noise

E. Algorithm Complexity Analysis
For a data set containing n points, the complexity of DB-

SCAN is O(n2). By adopting the divide-and-conquer strategy,
the complexity of DBSCAN is O(n log(n)). For uniformity,
the complexity of DBSCAN is denoted as O(f(n)). In the
process of parameter adaptation, by using the binary search
algorithm, the complexity is O(log(n)), and thus the com-
plexity of the whole parameter adaptation is O(log(n)f(n)).
In the process of locating the candidate Eps, the complexity
of K-means algorithm is O(n). The complexity of Multi-
density DBSCAN in the final clustering process is also
O(f(n)). In summary, the time complexity of AMD-DBSCAN
is O(log(n)f(n)) +O(n) +O(f(n)) = O(log(n)f(n)).

IV. EXPERIMENT AND ANALYSIS

In the experimental section, the datasets and evaluation
metrics are introduced, then the AMD-DBSCAN algorithm is



applied to Single-density and Multi-density datasets respec-
tively to compare with different algorithms, and finally an
ablation study is done to justify each step of our algorithm.

A. Experiment platform and dataset

The experimental platform in this paper is an AMD Ryzen
7 5800H processor with 16GB of RAM. To verify the per-
formance of our algorithm, some classical algorithms are
reproduced and compared with our algorithm in the same
experimental platform.

In order to measure the difference in density between
different clusters in a dataset, a new metric, the variance of
the number of neighbors (VNN), is proposed. Equation 2 is
utilized to obtain an EpsList. The first element of the EpsList
is taken as Eps1, which is the average distance between all
points and their nearest neighbors. And Eps1 is utilized as
the search radius to search the number of neighbors within
Eps1 of each data point. Then the variance of the number of
neighbors (VNN) is shown in Equation 5.

VNN = V ar(neighborsi), 1 ≤ i ≤ n (5)

where n represents the number of points of the dataset, and
neighborsi represents the number of neighbors within Eps1
of ith point.

The value of VNN is a metric that reflects the difference in
density of the dataset. For Single-density datasets, the number
of neighbors for each point within a given search radius is
similar, resulting in a smaller value of VNN. In contrast,
for Multi-density datasets with large density differences, the
number of neighbors is large for dense clusters and small for
sparse clusters, leading to a large value of VNN. Therefore, the
larger the value of VNN is, the greater the density difference
of datasets is. In this paper, datasets with VNN less than 10
are considered as Single-density datasets, while datasets with
VNN greater than 10 are considered as Multi-density datasets,
especially datasets with VNN greater than 100 are considered
as extreme Multi-density datasets.

Several datasets are selected for our experiments from UCI
[28]. And because the Multi-density datasets of extremely vari-
able density are hard to obtain, some datasets are generated to
better test the performance of our algorithm. The make blobs1
to make blobs8 datasets are generated by scikit-learn [29].
make blobs1 serves as a base dataset where each cluster has
the same amount of points and varies greatly in density. To
test the robustness of the algorithm, some changes are made
to the base dataset.

The details of the datasets are shown in Table I.

B. Evaluation Metrics

There are two metrics utilized to evaluate the clustering
results.

1) Normalized Mutual Information (NMI) [27] is utilized to
evaluate the clustering results. NMI is between [0,1] and

TABLE I
DATASET PROPERTIES

dataset size clusters VNN Multi-density

Aggregation 788 7 0.49 FALSE
Compound 399 5 5.66 FALSE

D31 3100 31 1.76 FALSE
Flame 240 2 1.12 FALSE
R15 600 15 1.62 FALSE

make blobs1 4998 6 1726 TRUE
make blobs2 5048 6 3743 TRUE
make blobs3 4998 6 2953 TRUE
make blobs4 4998 6 645 TRUE
make blobs5 4998 6 4467 TRUE
make blobs6 4998 6 127 TRUE
make blobs7 4998 6 4100 TRUE
make blobs8 4998 6 5600 TRUE

unbalance 6500 7 17 TRUE

is used to measure the similarity of the clustering results,
the larger the value, the better the clustering results.

2) The accuracy of clustering is utilized as the second
metric. Since all datasets have labels, the accuracy is
the percentage of correct labels after clustering.

C. Parameter Adaptation

The experiment is designed to compare the execution time
of our parameter adaptation approach with the traditional
parameter adaptation approach PDDBSCAN [30] on different
datasets. Two metrics are utilized, one is the shortest execution
time and the other is the average execution time of 100 rounds
of experiments.

The detailed results of the experiments are illustrated in
Table II. As can be seen from Table II, after adopting the
binary search algorithm, the speed of our algorithm is on
average 4 times faster than PDDBSCAN [30], which does
not use the binary search algorithm. In particular, the speed
of AMD-DBSCAN is much faster in some datasets where the
same number of clusters occurs many times because the binary
search algorithm can speed up the search process significantly.
For example, in the unbalance dataset, most of the points
in this dataset are clustered in three classes. After using
our algorithm, the execution time is reduced by nearly 93%.
Therefore, AMD-DBSCAN can speed up the execution time
of the parameter adaptive process significantly on this kind of
Multi-density dataset with a large number of points.

TABLE II
COMPARISONS OF EXECUTION TIME

PDDBSCAN AMD-DBSCAN

dataset t min t average t min t average

Aggregation 0.275 0.291 0.165 0.191
Compound 0.049 0.052 0.031 0.041

D31 2.550 2.820 1.350 2.330
Flame 0.042 0.045 0.021 0.024
R15 0.225 0.234 0.076 0.087

unbalance 95.658 97.782 6.407 6.552
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Fig. 3. Clustering results on Single-density datasets. The number in the lower left corner represents the accuracy of clustering.

D. Single-density Datasets

To compare the performamce on Single-density datasets
(i.e., dataests with VNN less than 10) for our proposed
AMD-DBSCAN, some Single-density clustering approaches
(i.e., ROCKA [15] and PDDBSCAN [30]) are seleted. The
experimental results are illustrated in Table III, Figure 4 and
the visualization effect is shown in Figure 3.

TABLE III
COMPARISONS OF DIFFERENT ALGORITHM ON SINGLE-DENSITY

DATASETS

ROCKA PDDBSCAN AMD-DBSCAN

dataset accuracy NMI t(s) accuracy NMI t(s) accuracy NMI t(s)

Aggregation 0.948 0.94 0.01 0.982 0.97 0.10 0.944 0.93 0.14
Compound 0.902 0.88 0.01 0.900 0.87 0.02 0.905 0.874 0.05

D31 0.894 0.88 0.14 0.892 0.88 1.13 0.876 0.87 1.24
Flame 0.754 0.57 0.01 0.892 0.66 0.02 0.938 0.75 0.04
R15 0.988 0.99 0.01 0.990 0.99 0.06 0.988 0.98 0.09

As shown in Figure 4, compared to the other two algorithms,
AMD-DBSCAN has an average accuracy of 1.6% higher and
achieves the best performance on the Compound and Flame
datasets. Due to the process of parameter adaptation, our
algorithm’s execution time is longer than ROCKA [15] but
still shorter than PDDBSCAN [30].

Fig. 4. Comparisons of accuracy on Single-Density datasets

Figure 3 indicates that, for the Aggregation dataset,
AMD-DBSCAN considers more points as noise compared to
the other algorithms but distinguishes all clusters. However,
ROCKA [15] fails to distinguish two adjacent clusters.

As for the Compound dataset, the D31 dataset, and the
R15 dataset, the three algorithms have similar accuracy, which
shows that they have good performance for datasets with lower
VNN (i.e., datasets with uniform density distribution).

In the case of the Flame dataset, which is comprised of
only two clusters, the accuracy of AMD-DBSCAN is much
higher than that of the other two algorithms, especially 18.3%
higher than that of ROKCA [15]. Because the points in this
dataset are relatively scattered, many of them are considered
as noise, which leads to low accuracy.
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Fig. 5. Clustering results on Multi-density datasets. The number in the lower left corner represents the accuracy of clustering.

Therefore, AMD-DBSCAN has a good performance on
Single-density datasets.

E. Multi-density Datasets

In order to evaluate the performamce on extreme Multi-
density datasets (i.e., datasets with VNN larger than 100) for
our proposed AMD-DBSCAN, some classical Multi-density
clustering approaches (i.e., YADING [12], AEDBSCAN [14])
are selected for comparison experiments. The experimental
results are shown in Table IV, Figure 6 and the visualization
effect is shown in Figure 5.

TABLE IV
COMPARISONS OF DIFFERENT ALGORITHM ON MULTI-DENSITY

DATASETS

YADING AEDBSCAN AMD-DBSCAN

dataset accuracy NMI t(s) accuracy NMI t(s) accuracy NMI t(s)

make blobs1 0.658 0.79 1.69 0.666 0.90 3.69 1.000 1.00 3.62
make blobs2 0.666 0.84 1.33 0.666 0.80 4.17 1.000 0.99 3.77
make blobs3 0.800 0.96 1.34 0.500 0.75 4.28 0.900 0.95 3.43
make blobs4 0.909 0.92 0.49 0.912 0.91 4.14 0.946 0.95 3.06
make blobs5 0.678 0.64 2.52 0.800 0.88 6.46 0.950 0.93 4.88
make blobs6 0.695 0.71 1.29 0.800 0.88 5.22 0.950 0.97 12.52
make blobs7 0.600 0.69 1.66 0.600 0.69 4.88 1.000 1.00 3.92
make blobs8 0.747 0.78 1.74 0.500 0.75 4.602 1.000 1.00 3.64

unbalance 0.909 0.91 7.47 0.938 0.95 12.11 0.999 0.99 7.23

Fig. 6. Comparisons of accuracy on Multi-density datasets

As illustrated in Figure 6, AMD-DBSCAN has higher
accuracy and NMI on Multi-density datasets of extremely
variable density than the other two methods. Experimental
results show that our AMD-DBSCAN has the best perfor-
mance on the majority of datasets. Since having the parameter
adaptation process, our algorithm’s execution time is longer
than YADING [12] but still shorter than AEDBSCAN [14].

As shown in Figure 5, different colors are represented in
different clusters. For the make blobs1 dataset, clusters with
small radius have high density while clusters with large radius
have low density. AMD-DBSCAN achieves the best clustering
performance, while the other two algorithms consider the
points at the edge of each cluster as noise. AEDBSCAN
[14] even considers a sparse cluster as noise, resulting in low
accuracy.

As for the make blobs2 dataset, it is proven that our AMD-
DBSCAN is highly resistant to noise by the evaluation of
adding noise to the base dataset.

In terms of the make blobs3 and make blobs4 datasets,
the number of points of different clusters is modified. AMD-
DBSCAN has the highest accuracy. However, the other two
algorithms are not able to distinguish those sparse clusters and
the points at the edge of the clusters.

In the case of from the make blobs5 to make blobs8
datasets, the distribution between each cluster is changed and
the whole dataset is more sparsely distributed. For these sparse
points, the other two algorithms consider them as noise, while
AMD-DBSCAN can distinguish these points from the denser
ones and cluster them correctly.

The unbalance dataset is a Multi-density dataset in which
the vast majority of points are in the three high-density clusters
on the left, while the five on the right are low-density clusters.
Since the number of these low-density clusters is small, these
clusters are considered as noise. The experimental results show
that the other two algorithms can only distinguish three high-
density clusters. In contrast, AMD-DBSCAN can completely



TABLE V
ABLATION STUDY

AMD-DBSCAN Test1(k=4) Test2(k=n/2) Test3(no K-means)

dataset accuracy NMI clusters accuracy NMI clusters accuracy NMI clusters accuracy NMI

Aggregation 0.944 0.931 7 0.675 0.728 24 0.346 0.000 1 0.957 0.939
Compound 0.905 0.874 5 0.782 0.831 5 0.396 0.082 1 0.789 0.867

D31 0.876 0.870 31 0.555 0.671 101 0.032 0.000 1 0.813 0.820
Flame 0.938 0.748 2 0.925 0.808 2 0.638 0.000 1 0.925 0.718
R15 0.988 0.985 15 0.620 0.660 26 0.105 0.104 2 0.983 0.980

make blobs1 1.000 1.000 6 0.875 0.878 35 0.325 0.411 3 0.825 0.807
make blobs2 1.000 0.992 6 0.904 0.919 10 0.165 0.114 3 0.851 0.834
make blobs3 0.900 0.949 5 0.834 0.871 24 0.580 0.690 4 0.966 0.961
make blobs4 0.946 0.955 7 0.618 0.789 51 0.250 0.000 1 0.834 0.916
make blobs5 0.950 0.973 5 0.603 0.777 17 0.547 0.592 4 0.899 0.888
make blobs6 0.950 0.973 5 0.718 0.772 28 0.450 0.259 2 0.678 0.830
make blobs7 1.000 1.000 6 0.907 0.902 19 0.630 0.688 4 0.756 0.705
make blobs8 1.000 1.000 6 0.840 0.898 23 0.400 0.503 2 0.965 0.958

unbalance 0.999 0.998 9 0.629 0.685 92 0.323 0.322 2 0.997 0.992

distinguish eight clusters with high accuracy.
To sum up, AMD-DBSCAN improves accuracy by an

average of 24.7% over the other two algorithms on Multi-
density datasets of extremely variable density, which proves
that the candidate Eps obtained by our algorithm and their
corresponding MinPts are adapted to the distribution of the
dataset.

F. Ablation Study

In order to verify the rationality of each step of AMD-
DBSCAN, three sets of ablation study are designed.

First, Test1 verifies that the adaptive k derived from pa-
rameter adaptation is valid. In YADING [12] and ROCKA
[15], k is taken as 4 by default. In Test1, k is taken to be
4, and then continue to complete our clustering process. The
experimental results shown in Table V indicate that k obtain
by the parameter adaptation is instructive for determining kdis
value because it can locate an adaptive k according to the
distribution characteristics of the dataset. However, if k is
constant by default 4, the accuracy of DBSCAN decreases
by an average of 20.8%.

Test2 together with Test1 proves the theory presented in
section 3.2, that is, a large k leads to a small number of
clusters, while a small k results in a large number of clusters.
In Test2, n represents the number of points in the dataset, and
k is taken to be n/2, which is a very large value compared
to that in Test1. The comparisons of the number of clusters
from Test1 and Test2 show that when k is small, the number of
clusters is large, and when k is large, the number of clusters is
small, which proves that an appropriate k is important because
it affects the clustering results significantly.

Test3 is to verify that the candidate Eps obtained by the
K-means algorithm is valid. The K-means algorithm in AMD-
DBSCAN is replaced by YADING’s algorithm [12], and then
continue to complete our clustering process. Test3 proves
that the algorithm proposed in this study for processing the
kdis frequency histogram using the K-means algorithm is
valid. This is because K can be easily determined by directly

observing the kdis frequency histogram. And K-means is ef-
fective at clustering one-dimensional data like kdis values [31].
Experimental results show that the clustering accuracy of our
algorithm is on average 8.3% better compared to YADING’s
algorithm [12] without using the K-means algorithm.

In summary, the ablation study shows that each step of
AMD-DBSCAN is necessary because it guides the selection
of better parameter pairs thus improving clustering effect.

V. DISCUSSION

The current AMD-DBSCAN implementation is single-
threaded. From the discussion of the AMD-DBSCAN algo-
rithm, it is clear that the AMD-DBSCAN implementation
can be easily parallelized because it can perform adaptive
operations in multiple partitions at the same time. In specific,
some partitioning strategies and distributed structures (e.g.,
MapReduce [24]) can be utilized in our model. Hence, our
model can be applied to cluster in each small partition and
finally merge the clustering results. In this way, our model
can divide the large-scale dataset into different small partitions,
use a parameter adaptation process to determine the parameter
pairs on each small partition, and use parallelization to speed
up this process. Therefore, our model can be applied to large-
scale datasets. As a result, the performance of AMD-DBSCAN
can be significantly improved by parallelization.

VI. CONCLUSION

In this paper, an adaptive Multi-density DBSCAN algo-
rithm (AMD-DBSCAN) with high robustness and efficiency
is proposed. First, an improved parameter adaptation method
is proposed to locate k. The binary search algorithm is
utilized to speed up the adaptive process and the experimental
results show that the speed of our algorithm is on average 4
times faster than the traditional methods. Second, instead of
calculating the inflection points of the kdis curves, multiple
candidate Eps can be obtained by using the kdis frequency
histogram and the K-means algorithm. And compared to other
approaches, AMD-DBSCAN requires only one hyperparam-
eter that is easily determined. In addition, AMD-DBSCAN



improves the algorithm of Multi-density clustering so that
there is an adaptive parameter pair for each density cluster.
Furthermore, the variance of the number of neighbors (VNN)
is proposed to measure the difference in density. The exper-
imental results show that the clustering accuracy of AMD-
DBSCAN is 24.7% higher than other algorithms on average
on Multi-density datasets of extremely variable density and is
1.6% higher on average on Single-density datasets.
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