
Simulating Spreading of Multiple Interacting
Processes in Complex Networks

1st Michał Czuba
Department of Artificial Intelligence

Wrocław University of Science and Technology
Wrocław, Poland

michal.czuba@pwr.edu.pl

2nd Piotr Bródka
Department of Artificial Intelligence

Wrocław University of Science and Technology
Wrocław, Poland

piotr.brodka@pwr.edu.pl

Abstract—Investigating the interaction between spreading pro-
cesses in complex networks is one of the most important chal-
lenges in network science. However, whether we would like to
know how the information campaign will affect virus spreading
or how the advertising campaign of the new iPhone will affect the
sales of Samsung phones, we need an environment that will allow
us to evaluate under what conditions our spreading campaign
will be effective. Network Diffusion is a Python package that
should help do that. In this paper, we introduce its operating
principle and main functionalities, including simple examples of
simulations that can be performed using it.

Index Terms—interacting spreading processes, epidemics, net-
work science, multilayer network

I. INTRODUCTION

For almost two years now, the resources of the entire world
have been used for the fight against the "invisible" enemy.
We spent countless hours and trillions of dollars to stop the
COVID-19 pandemic, and still, millions of people have died
from the virus or the collapse of healthcare systems around
the world. One of the challenging tasks is understanding how
different countermeasures, such as information campaigns,
lockdowns, or vaccinations, affect the progression of the virus
to choose those that will save both human lives and the
economy.

In this paper, we would like to present the Network Diffusion
package [1]that allows simulating the spread of many coexist-
ing processes in single and multilayer networks. An example
of such processes would be, of course, coronavirus spread,
interacting with an information campaign and vaccinations,
but also the interaction between two advertising campaigns
(e.g. iPhone vs Samsung or Cannon vs Nikon), two political
campaigns (e.g. Biden vs Trump), diseases (e.g., AIDS and
Tuberculosis), to name just a few [2]. However, before we
can present the Network Diffusion package, we would like to
introduce a few key concepts from network science [3].

A. Complex networks

Complex networks are the backbone of all complex sys-
tems [3] starting from the nervous system of living organ-
isms [4], through our infrastructure systems (electric grid, wa-
ter pipes, airports, etc.) [5], [6], and ending with relationships

This work was partially supported by the Polish National Science Centre,
under Grant no. 2016/21/D/ST6/02408

between people [7]. Complex networks can be represented
and analysed in multiple ways, e.g., adjacency matrix [3] or
property vectors [8], however, the most common approach is to
represent a complex network as a graph [3] or a set of graphs
(for multilayer networks) [9], [10]. The multilayer network,
according to [9], is defined as quadruple M = (N,L, V,E);
where: N is a set of actors; L is a set of layers; V is a set of
nodes, V ⊆ N × L; E is a set of edges (v1, v2) : v1, v2 ∈ V ,
and if v1 = (n1, l1) and v2 = (n2, l2) ∈ E then l1 = l2.

B. Spreading phenomena

Spreading phenomenon covers a wide spectrum of pro-
cesses, starting from information diffusion [11], through
virus [12], opinion [13], innovation [14] spreading and end-
ing with the spread of influence [15]. Fortunately, all these
processes are similar if we look at their high-level compo-
nents [3] (i) What phenomenon is spreading (e.g. information,
opinion, virus), (ii) How/Who it is spreading (e.g. network
nodes, actors, agents), and (iii) Where it is spreading (i.e.
network type). All these elements carry a different context
to the simulation results, but, at the same time, they can be
imagined as "containers" for algorithmic structures, which will
be introduced later. An example of those three components
can be a viral video that spreads on a social networking site.
Here, what is the video or digital content, how/who is a link
to the website or a post on social media, and where is a
social network that is the foundation of this particular social
networking site.

1) Epidemic modelling framework: The initial models
developed by epidemiologists are based on two assump-
tions [3]: compartmentalisation and homogeneous mixing.
The first condition says that the state of each individual is
discrete. This means (continuing with epidemiological analo-
gies) that the relation of a given node to a disease can
be described by n states, e.g. healthy, sick. The second
assumption concerns the ability of the nodes to change
their states. Each individual can interact with all nodes in
a given time unit. Using that hypothesis, we can build
many various spreading models like SI (Suspected-Infected),
SIS (Suspected-Infected-Suspected), SIR (Suspected-Infected-
Recovered), SIRS (Suspected-Infected-Recovered-Suspected),
and so on. Epidemic models can be used to simulate other

ar
X

iv
:2

21
0.

06
01

0v
1

 [
cs

.S
I]

 1
2

O
ct

 2
02

2

spreading processes. The most common example would be
information spreading, where we have models like UAU [16]
(Unaware-Aware-Unaware) or UAF [17] (Unaware-Aware-
Forgot), which are based on SIS and SIR models, respectively.

2) Independent cascade model: Independent cascade model
(ICM) [15] has a much different mechanism and is widely
used to simulate influence diffusion. Its principles reject the
homogeneous mixing assumption because of the way the
phenomenon propagates - it cannot be captured holistically
for a given network. Here, the spreading takes the form of a
cascade. Each newly activated node has one chance to activate
its neighbours in each step. It is based on the likelihood of
activation (aka. propagation probability) stored at the edge
connecting them [18].

3) Linear threshold model: This model is based on the
concept of the activation threshold that is defined for each node
of the network [15]. It determines a minimum value of the
influence of its neighbours to change its state. In other words,
the minimum value above must be the sum of the intensity
of the connections from the neighbouring activated nodes to
result in activation [18]. When comparing ICM and Linear
Threshold Model (LTM), one can say that the first one is based
on the push mechanism, i.e., a node pushes its influence to its
neighbours. In contrast, LTM is based on the pull mechanism,
i.e. the node pulls the influence from its neighbours.

C. Interacting spreading processes in networks

When analysing how various phenomena in networks prop-
agate, we have to ask the following questions: what is being
propagated? and where is it being propagated?. As an answer,
we get four general possibilities: (1) a single process in a
single network, (2) a single process in a multilayer network,
(3) multiple processes in a single network, and (4) multiple
processes in a multilayer network.

The last two options bring the possibility of spreading
multiple processes that can interact with each other. Thus,
in addition to modelling each phenomenon, we also need to
model the interactions between them, i.e., how they influence
each other (and that is exactly a problem that Network Dif-
fusion solves). Below, we briefly describe the four possible
variants of interactions.

Firstly, we can distinguish supporting processes (about 11%
of research in the domain [2]) that mutually support each other
by increasing coverage and velocity. Here, a good illustration
is that chronic diseases (such as asthma) are a catalyst for
contracting COVID-19.

The next genres are competing processes (about 36% pub-
lications [2]). In this case, one process causes suppression of
the propagation of the other. A good example of this is the
presidential election: if the number of people influenced by
candidate X increases, the number of people influenced by
candidate Y has to decrease, and at the end of the day, only
one candidate can win.

The third case, the mixed approach, covers about 46% of
the publications [2]. It considers instances where one process
supports the second, but the second competes with the first.

An interaction between disease and awareness can be a good
example. People who get sick become aware of a disease,
so the more people get sick, the more people will be aware.
On the other hand, people aware of the pandemic will take
preventive actions to limit its spreading.

The last case is when processes do not interact with each
other. It appears only in 7% of the papers in the domain [2].

II. SIMILAR SOFTWARE PACKAGES

To gain valuable recognition of similar solutions to Net-
work Diffusion, an appropriate tool review methodology was
adopted. For this, the general state of the software available
in the field was taken into account. We started from a simple
reconnaissance using a search engine and focused more on the
tools available for the Python language; however, it was not
a strict condition. Our final goal was to see a general cross-
section of state-of-the-art. As a result, information on more
than twenty different tools was obtained. We analysed them
and divided them into two groups: packages dedicated for
network spreading simulations and general complex network
analysis software.

A. Software for spreading processes simulations

1) GLEaMviz: The first application that has functionali-
ties corresponding to the designed software is a GLEaMviz.
It works with real data, population density, and migration
around the world, combined with stochastic models of disease
propagation. As a result, it provides a sophisticated simulation
environment. Due to the large scale of the experiments (the
whole world), a single node is a population of a given size
(defined by the user). A very interesting feature is the manual
definition of the epidemiological model. GLEaMviz makes
this possible by manipulating the compartments (understood in
the same way as in sec. I-B1). Allowable transitions between
them are also fully definable. The user can also select the
geographical start of the disease, the initial percentages of
individuals belonging to a given compartment, its duration, etc.
There is also an option to generate various visualisations at the
end of the experiment. Despite the interesting functionalities
mentioned above, GLEaMviz has a rather large disadvantage:
it only allows the propagation of one process at a time [19].

2) NDLIB: Network Diffusion LIBrary is a Python package
based on the NetworkX library. It allows performing simula-
tions with many predefined epidemiological models (such as:
SIS, SIR, SEIR, etc.), influence group (LTM, ICM, Profile,
etc.), opinion group (Voter, Sznajd, etc.), and even dynamics
(models with the capacity to change the topology of network).
Moreover, the user can create its own customised models.
Results visualisation is also possible via Matplotlib or Bokeh
with the flexibility to append a custom graphical engine.
NDLIB also has some interesting run-time features. First
of all, it includes an option to perform a "multi-execution"
of the simulation by parallel computing. As this kind of
experiment is generally stochastic, this feature gives a chance
to see the general behaviour of the observed phenomena.
It also enables running the simulation on a server (as well

TABLE I
TOOLS WITH CORRESPONDING FUNCTIONALITIES TO Network Diffusion.

Name Type Environment Functionalities Access

GLEaMviz app. desktop single model propagation, high freedom of model definition, visualisation of the experiment [19] free

NDLIB library Python single model propagation, high freedom of model definition, visualisation of the experiment [20] free

SimInf library R propagation of custom model, visualisation [21] free

Sispread app. console SI, SIS or SIR model propagation, returns numerical data [22] free

STEM Eclipse
plugin

desktop single model propagation, visualisation, workflow like finite element method (FEM) environ-
ments [23]

free

as locally). For users unfamiliar with Python, the authors
created NDQL, a query language (based on SQL syntax) that
supports elementary NDLIB commands. For those who cannot
programme, they also provided a "visualisation framework" to
play with some of the models implemented with a GUI-based
tool [20]. NDLIB is a very useful library with many features.
However, it does not directly support experiments where many
processes interact together.

3) SimInf: The next software is SimInf, a process diffusion
package for R. Its API has been designed in a very interesting
way. This tool allows a user to define his own models by
parsing the appropriate string. Interestingly, no network is
needed to run the simulation, as the algorithms work on
the assumption of homogeneous mixing. After a successful
simulation, it is possible to display a summary graph. Never-
theless, we must note that no support for operations on real
networks and the lack of an option to define multiprocess
experiments [21] are distinct shortcomings.

4) Sispread: Sispread is a simple application implemented
in C. It is a console tool without a graphical interface. It
focuses on three models (SI, SIS, SIR) with the possibility of
deep analysis of the experiments performed. This tool supports
very basic IO operations - the user can upload a custom
network that meets certain requirements (without the option
to manipulate it). As a result of the experiment, numerical
data are returned for further analysis [22].

5) STEM: Another advanced system is STEM. As an
extension of the well-known Eclipse IDE, it uses its graphical
layout and the general philosophy of user interaction. It is
reminiscent of FEM systems in the way it works. Just like
them, it requires the user to specify a medium (equivalent
to a model of a physical object) where the simulation is
performed with its discretisation level (i.e. whether the node is
a municipality or an entire county). The next step is to attach
an appropriate solver propagation model and set the starting
parameters of the experiment. Once this is done, it is possible
to visualise the spread progress. As in other programmes, it
does not support multiple spreading processes [23].

B. Software for complex network analysis

Due to the large number of tools found (see tab. II), we
describe below only the most interesting of them.

1) Gephi: Gephi is an application for visualising networks
in many aspects, with extensive graphical capabilities. It allows

the user to perform exploratory data analysis (EDA) in real-
time on basic structures and connections between objects.
Gephi is also designed for social network analysis - it has
an easy way to map different portals (Facebook, Twitter, etc.)
and Small World networks with each other. It can also visually
represent biological data and serve as a tool for creating
scientific posters. Additionally, within Gephi, the basic metrics
for network analysis have also been implemented. The package
works with many file types and supports integration with
plugins written by external developers. In terms of non-
functional aspects, it has an interface that does not require
programming skills [27].

2) iGraph: iGraph is a library designed for several pro-
gramming languages (i.e. C, R, Python, and Mathematica).
The three main paradigms of iGraph are: easy handling of
graph algorithms, fast handling of large networks, and enabling
interaction with high-level languages like R. In many aspects,
this tool is similar to pure NetworkX, but it is also able to
run simple epidemic models like SIR. For clarity, it should be
added that this functionality is rather residual [30].

3) NetMiner: NetMiner is a comprehensive environment
for network analysis and visualisation. Unlike the tools de-
scribed above, it is not free software. Among the functional-
ities that distinguish it from the others, we can list for sure
the possibility of EDA (e.g., analysis of written text and, on
this basis, creation of semantic network analysis), clustering,
classification, etc. NetMiner also has extensive visualisation
capabilities, both static and dynamic, and, what is interesting,
three-dimensional. Another important feature of this tool is the
presence of a Python-based console. It can even be upgraded
by adding external packages. Moreover, NetMiner allows the
compilation of written programmes, which is a big advantage
of it in terms of securing the code against third parties [34].

4) NetworkX: NetworkX is one of the most important
packages among Python data science libraries. Its capabilities
are large and mainly concern static network analysis. Net-
workX also has visualisation functionality, but in its official
documentation, it recommends the use of Cytoscape, Gephi,
and Graphviz to perform any visualisation [36]. Furthermore,
because of its integration with the Python language, the long
stability of this library can be assumed. NetworkX has a
large number of algorithms and metrics that are useful for
network analysis, which makes it virtually unrivalled among
other Python programming tools. Moreover, this library is a

TABLE II
SOFTWARE FOR COMPLEX NETWORK ANALYSIS.

Name Type Environment Functionalities Access

AllegroGraph DBMS desktop graph database management system, visualisation, static analysis of networks [24] free

Arcgis app. desktop, web static analysis of multilayer networks, visualisation, IO [25] free

Cytoscape app. desktop static analysis of networks, visualisation [26] free

Gephi app. desktop static analysis of networks, visualisation [27] free

Giraph library Java static analysis of networks [28] free

Graphviz app. console visualisation [29] free

iGraph library Python, R, C, M static analysis of multilayer networks, visualisation, IO [30] free

Multinet package R Python manipulation of multilayer networks, static analysis, visualisation IO [31] free

Muxviz app. desktop manipulation of multilayer networks, static analysis, static and dynamic visualisation [32] free

Neo4j app. desktop graph database management system, visualisation, static analysis of networks [33] paid

NetMiner app. desktop static analysis of networks, visualisation, IO, Python-like scripting [34] paid

Network library R static analysis of multilayer networks, IO [35] free

NetworkX library Python static analysis of networks, visualisation, IO [36] free

Nodexl plugin Excel static analysis of networks, visualisation, IO [37] free, paid

Pymnet library Python static analysis of multilayer networks, visualisation, IO [38] free

Tulip app. desktop static analysis of networks, visualisation, IO, Python-like scripting [39] free

yEd app. desktop static analysis of networks, visualisation, IO [40] free, paid

base for several tools listed in this review.

C. Summary

Having the analysis of the existing solutions done, it is easy
to see that they can be divided into several types based on the
main functionality: (1) software for static analysis of networks,
(2) software for visualising networks, and (3) software for
simulation of process propagation in networks. We can also
distinguish the following groups based on the type of the tool:
(1) web applications, (2) locally executed applications, (3)
libraries for languages popular in data science, and (4) others
(database management systems, plugins for other applications,
etc.). However, it is worth noting that, after careful reconnais-
sance, virtually no simulation environment was found for the
simultaneous propagation of multiple processes.

III. OPERATING PRINCIPLE

The core functionality of the software requires adequate
attention, especially since, as demonstrated in sec. II, no solu-
tion was found that covers the problem of spreading multiple
processes in networks. Hence, before the start of designing the
software, we had to address and answer two questions: (1) how
to run any number of processes during a single experiment,
and (2) how to determine (in a general way) the interactions
between processes? To make further deliberations easier to
understand, we defined a domain dictionary with all important
terms (see tab. III)

A. Generalisation of single processes modelling

According to the concepts described in sec. I, we can notice
a similarity between many discrete processes. Moreover, due
to the numerical nature of the simulations carried out, it is
not possible to hold the assumption of homogeneous mixing.
Taking these into account, it is easy to conclude that models

like SIS, SIR, SIRS, etc. can be reduced to specific cases of
a model with T = [t1, t2, ..., tk] possible states, where each
of the network nodes can be in one of them at a given time
step. Moreover, the transition from one state to another takes
place under a certain weight, which can be called pseudo-
probability. Let us further note that, e.g. in the SIR model,
it is impossible to transit directly from S to R. Thus, a state
change is only possible between neighbouring states, i.e. from
tk one can only move to tk−1 and tk+1.

Definition 3.1: It follows that every model M belonging
to the mentioned group can be described for the purposes of
the designed system by: vector of states T = [t1, t2, ..., tk]
and vector of transition weights between neighbouring states
W = [w2

1, w
3
2, ..., w

k
k−1] (where wmn means a weight of

transition n −→ m); which can be combined in a matrix:

t1 t2 t3 . . . tk
t1 w2

1 wk1
t2 w1

2 w3
2

t3 w2
3

...
. . .

tk w1
k

For example, a SIRS model with coefficients: β (individual’s
infection rate), µ (individual’s recovery rate), and ξ (loss of
immunity) can be expressed as a vector of states: T = [s, i, r];
vector of transition weights between neighbouring states: W =
[β, µ, ξ], and process matrix:

s i r
s β
i µ
r ξ

TABLE III
DOMAIN DICTIONARY FOR TERMS INTRODUCED TO DESIGN THE Network Diffusion PACKAGE.

Term Symbol Description

Epoch εi ∈ ε : {1, ..., ε} A discrete-time unit of the Experiment when all Nodes of the Network have updated their State against
each of the Processes.

Experiment X = (M,M, ε) A complete run of the Propagation model on the Network for a defined number of Epochs.

Network M = (N,L, V,E) A multilayer network (as introduced in sec. I-A).

Process T = [t1, t2, ..., tk] Singular phenomena affecting the Network, described by an ordered set of States. Each Process must consist
of at least two States and, in the package, is identified with the particular Network Layer.

Propagation
model

M = (T1 × . . .× Tn,W) A definition of how Processes should interact with each other, i.e. a set of all possible global States of the
Nodes and a set of Weights under which Transitions are allowed during Experiment.

State tajx :
ta ∈ T1; tj ∈ T2; tx ∈ T3

Categorical value denoting a relationship of the Node against a particular Process (a local State - here e.g.
ta) or a set of interacting Processes (a global State - here tajx).

Transition taj −→ tak :
ta ∈ T1; tj , tk ∈ T2

Possible change of State of the Node at potential denoted by the Weight. Transitions are allowed between
neighbouring States, e.g. they must differ only by one State.

Weight w
tk
tj
∈W Pseudo-probability of particular Transition occurrence (here: tj −→ tk), valued by a number in range [0, 1].

B. Example of two processes model

The way we defined the coexistence of several processes
looks similar, but it is scaled into additional dimensions. As we
know from sec. I-C, processes interactions can be supporting,
competing, mixed, or independent. Let us consider a two-
process model M = (T1 × T2,W) representing propagation
of SIR-like disease (T2) and UA-like vaccine against it (T1) -
a classic example of competing processes. Thus, we have:

• T1 = [u, v]; u - unvaccinated individual, v - vaccinated
individual

• T2 = [s, i, r]; s - suspected individual (i.e. not yet
affected by illness), i - infected individual, r - recovered
individual

Both processes affect each node of the network. There-
fore, we can describe all possible states in the model
with the following set (a Cartesian product - T1 × T2):
{us, ui, ur, vs, vi, vr}. Moreover, under the assumption that
at each simulation step, it is possible only to change the state
of a node in the dimension of the singular process, we can list
all available transitions (see fig. 1 for visual presentation):

• for T1 (vaccination process); for s constant: us −→ vs,
for i constant: ui −→ vi, for r constant: ur −→ vr,

• for T2 (disease process); for u constant: us −→ ui −→ ur,
for v constant: vs −→ vi −→ vr

Please note, that if we were to assign appropriate weights
to particular transitions that reflect the probability of a state
change in one process given the others, we could obtain the
effect of reinforcing or suppressing between processes. For
example, wuius > wvivs means that it is easier for unvaccinated
individuals to get infected than for those who are vaccinated.

Moreover, with a more detailed analysis of fig. 1, we can see
the advantages of the assumption that transitions are allowed
only in the direction determined by the singular process. For
our example, it means that changes of node’s state can occur
only in the T1 axis (e.g. us −→ vs) or the T2 axis (e.g.
us −→ ui), but never "diagonally". This eliminates obviously
incorrect transitions such as ui −→ vr, which denotes a change

Fig. 1. Example of two process model M = (T1 × T2,W); T1 = [u, v];
T2 = [s, i, r]; W = [wui

us, w
ur
ui , w

vi
vs, w

vr
vi , w

vs
us, w

vi
uiw

vr
ur].

of an unvaccinated and suspected individual to vaccinated and
recovered one in one time step without even getting infected.

This assumption is also beneficial for theoretically possible
transitions, where, at the same time step, not one but two or
more processes change their states. First of all, it greatly sim-
plifies defining the impact of one process on another. Further-
more, looking ahead, it greatly simplified the implementation
of Network Diffusion. Let us consider all theoretically possible
transitions us −→ vi, (unvaccinated, suspected) −→ (vaccinated,
infected). Let us also assume that the fact of being vaccinated
significantly reduces the probability of getting infected. Then
we have three ways to get from us to vi:

1) (unvaccinated, suspected)
wvs

us−−→ (vaccinated, suspected)
wvi

vs−−→ (vaccinated, infected)

2) (unvaccinated, suspected)
wui

us−−→ (unvaccinated, infected)
wvi

ui−−→ (vaccinated, infected)

3) (unvaccinated, suspected)
wvi

us−−→ (vaccinated, infected)
In such a context, it is easy to see that setting wvivs << wuius

models the real-world scenario that vaccination significantly
reduces the probability of infection. The other weights are
also intuitive to interpret, with one exception. The value of
wvius, makes impossible to deduce the relation between T1 and
T2.

C. Generalisation of modelling multiple processes

Using the example presented in the sec. III-B, it is possible
to define a general scheme of the multiprocess model that is
used in the Network Diffusion:

Definition 3.2: The mutual impact between n processes
meeting def. 3.1, can be represented by a n-dimensional
orthogonal grid (spanned by points formed by the Cartesian
product of the sets of states of each process), in which the
connections between points exist only in directions along
the axes denoting processes (i.e. transitions are allowed only
between points differing by a single coordinate).

This approach sufficiently answers the two questions posed
at the beginning of this section; i.e. it allows us to define
any number of processes within a single experiment and to
determine their influence on each other clearly.

(a)

(b)

Fig. 2. General examples of multiprocess models (top) M = (T1×T2,W),
T1 = [a1, b1], T2 = [a2, b2, c2]; (bottom) M = (T1 × T2 × T3,W),
T1 = [a1, b1]; T2 = [a2, b2]; T3 = [a3, b3, c3]; For readability of diagrams
vectors of weights W are not depicted.

D. General simulation framework

The concepts presented allow us to assume that there is
only one process running in a given layer of the network.
This means that the network should have as many layers as
many processes are simulated. As a result, with the multilayer
structure, each node will be described in the context of each
of the defined processes. However, if the layers do not have

an identical set of vertices, it will mean that a given node is
indifferent to the process in whose layer it does not exist (e.g.,
a person who does not use social media and cannot be affected
by information spreading via Twitter).

Continuing this line of reasoning, one can arrive at a general
simulation scheme. For the convenience of the reader, it is
presented as alg. 1. This allows simulations to be run on
custom, discrete models with a virtually infinite number of
processes and internal states.

Algorithm 1 Schema of the simulation in Network Diffusion.
Require: M

M = (T1 × . . .× Tk,W) (1)

Require: M

M = (N,L, V,E) : (2)∧
i∈{1,...,k}

Li −→ Ti;∧
n∈N

n −→ τ̇n = {τ1n, ..., τkn} ≡ {t1 ∈ T1 ∨ ∅, ..., tk ∈ Tk ∨ ∅};

Require: ε
ε = {1, ..., ε} (3)

1: procedure X(M,M, ε)
2: for ε in ε do
3: for l in L do
4: for v in {N × l} do
5: for v in {(N × l)− v} do
6: if τ lv 6= τ lv then
7: if BernoulliT rial(p = w

τn−τ l
v+τ

l
v

˙τn
) = 1 then

8: τ lv := τ lv
9: go to line 4

10: end if
11: end if
12: end for
13: end for
14: end for
15: end for
16: end procedure

IV. Network Diffusion PACKAGE

Keeping in mind the way we defined the multiprocess
interaction framework, it is possible to move on to the package
description. We also find it useful to present some high-level
aspects of its architecture.

The most important functional requirements were paired
with the questions posed in the introduction of sec. III, i.e.
the possibility (1) to simulate any number of processes during
the experiment and (2) to define interactions between them.
We also wanted to support experiments on external data (the
commonly used format to store multilayer networks - .mpx has
been chosen) and generate data and figures reflecting changes
of states in the network during experiments.

When it comes to nonfunctional requirements, the main was
the programming language. Due to the popularity of particular

ones in data science, we faced an alternative: Python or R. The
popularity and support of both languages are very similar, so
in the end, the first one was chosen subjectively. It is worth
noting that we were not focused on efficiency. Therefore, the
implementation was reflecting alg. 1 without optimisation.

A. Implementation

The whole package is based on the NetworkX library since,
as shown in sec. II-B, it has a lot of built-in functionalities,
is widely used, and has great community support. This sig-
nificantly reduces the so-called entry threshold of the package
for new users. Following the theoretical concepts, we divide
the code into three main components: MultilayerNetwork,
PropagationModel, MultiSpreading.

The MultilayerNetwork was able to store multilayer net-
works (as a dictionary of networkx.Graph objects keyed by
the layer names). We also added integrated I/O methods with
the NetworkX library for .mpx files.

As for the PropagationModel class, the biggest problem to
solve was to define the model unambiguously according to
def. 3.2. We solved it by defining the following procedure of
propagation model initialisation: (1) user passes processes to
the model in the form of name and internal states for each pro-
cess, (2) user inserts the default weight for transition, (3) user
calls a compilation function (then the model is converted to
an interpretable form for the simulation environment), (4) user
manually changes the weights of particular transitions (usually
those which are significant for the experiment). Regarding
the problem of defining a data structure to keep the model
in, during compilation, a unique graph with only possible
transitions has been created for each process. This made easy
referring to particular transitions in the model by operating
strings of type <state>.<process>, similar to the SimInf
library II-A.

The MultiSpreading was compacting the modules described
already into a coherent whole. It had two fields _network and
_model, which were associated with each other by process
names (i.e. for each process in the model, there had to be
a corresponding layer in the network with the same name).
The other relevant methods were set_initial_states and per-
form_propagation. The first one was used to set the initial
conditions of the simulation - what percentage/number of
nodes is currently in which state? The second method, on the
other hand, was responsible for the simulation itself, according
to the alg. 1. To separate the preprocessing of the experiment
and the results from the simulation, a class ExperimentLogger
has been prepared, whose object is returned after a successful
experiment run.

V. EXAMPLE OF USAGE

Finally, a practical example can be presented. We prepared
three comprehensive simulation scripts for this purpose: (1) ex-
ample of epidemic propagation combined with vaccinations
and awareness of the population, (2) marketing campaign
of two competitive products, (3) gossip spreading on two
different social networks. All are included in the GitHub

TABLE IV
ARTEFACTS RELATED TO THE Network Diffusion PACKAGE.

Artefact Link Description

Main
repository

https://github.com/
anty-filidor/network_
diffusion

Main repository with
package’s code [1]

PyPi package https://pypi.org/project/
network-diffusion/

Built package ready to
download

Anaconda
package

https://anaconda.org/
anty-filidor/network_
diffusion

Built package ready to
download

Documentation https://network-diffusion.
readthedocs.io

Web page with compre-
hensive documentation

Examples
(source code)

https://github.com/
anty-filidor/network_
diffusion_examples

Auxiliary repository
with examples

Runnable cap-
sule with ex-
amples

https://codeocean.com/
capsule/8807709/tree/v4

Examples ready to
run online via web
browser [41]

repository [1] and the Code Ocean capsule [41]. In this
section, we present the first one (i.e. epidemic.py) in shortened
form1. To avoid coping scripts, we will refer the reader to the
corresponding lines of code in the repository/capsule.

A. Scenario to simulate

In this experiment, we will simulate the spreading of three
processes: an illness affecting the network, awareness of its
existence, and vaccination against it. Keeping in mind the
notation introduced in tab. III we will first define a propagation
model:

• illness : T = [s, i, r],W = [wis, w
r
i], where s denotes

suspected node, i infected and r recovered,
• awareness : T = [n, a],W = [wan], where n means

not-aware node and a respectively aware one,
• vaccination : T = [u, v],W = [wvu], where u means not

vaccinated node and v vaccinated one.
The compiled model can be represented by a three-

dimensional grid with twelve points. Regarding the fact that
we defined only a subset of all possible transitions (e.g., wsi
was discarded), we have to define "only" twenty ones:

• for states varying in the illness: winusnu, wrnuinu , wiausau, wrauiau ,
winvsnv , wrnvinv , wiavsav , wraviav ,

• for states varying in the awareness: wsausnu, wiauinu, wraurnu,
wsavsnv , wiavinv , wravrnv,

• for states varying in the vaccination: wsavsau, wiaviau, wravrau,
wsnvsnu, winvinu, wrnvrnu,

Let us also add more constraints to the experiment: we
want both vaccination and awareness to reduce the probability
of getting sick, and awareness of the disease should make
the nodes more willing to get vaccinated. We can obtain
such an effect by setting some of the transitions listed above
to predefined values. Moreover, we note that some of them

1It is worth noting that the remaining two examples utilise other mech-
anisms of phenomena spreading. They are all in the form of the Jupyter
Notebook, and we welcome readers to investigate them.

https://github.com/anty-filidor/network_diffusion
https://github.com/anty-filidor/network_diffusion
https://github.com/anty-filidor/network_diffusion
https://pypi.org/project/network-diffusion/
https://pypi.org/project/network-diffusion/
https://anaconda.org/anty-filidor/network_diffusion
https://anaconda.org/anty-filidor/network_diffusion
https://anaconda.org/anty-filidor/network_diffusion
https://network-diffusion.readthedocs.io
https://network-diffusion.readthedocs.io
https://github.com/anty-filidor/network_diffusion_examples
https://github.com/anty-filidor/network_diffusion_examples
https://github.com/anty-filidor/network_diffusion_examples
https://codeocean.com/capsule/8807709/tree/v4
https://codeocean.com/capsule/8807709/tree/v4

Fig. 3. Scheme for compiling a propagation model. A single, three-dimensional model is stored as a structure of three separate NetworkX graphs, one for
each process, with edges covering allowed only transitions.

seem illogical. For example, wsnvsnu one, because it is hard
to imagine that an individual can be vaccinated without even
being aware of the disease. Hence, in our model, we can limit
the transitions to the following set of non-zero ones:

• for states varying in illness: winusnu = 0.4, wrnuinu = 0.1,
wiausau = 0.2, wrauiau = 0.3, wiavsav = 0.05, wraviav = 0.7,

• for states varying in awareness: wsausnu = 0.05, wiauinu =
0.2, wsavsnv = 1,

• for states varying in vaccination: wsavsau = 0.03, wiaviau =
0.1.

On the other hand, in rare cases, situations like snu −→ snv
can be possible. Therefore, we will set up some tiny weights
(0.005) for all possible but unlikely to happen transitions.

B. Defining a propagation model
With these assumptions, we can finally prepare the script. As

a first step, we have to import all required packages (see lines
2:16). After that, we can step forward to define a propagation
model (see lines 29:48). Please pay attention to the function
compile. When the keyword argument is set, all theoretically
possible transitions in the model will have a weight assigned
to 0.005. With this operation, we can increase the model’s
flexibility to include some edge cases.

C. Defining a network
The next step is to define the network. As mentioned in

sec. III-D, it should have as many layers as the processes

spreading within it. We can achieve this by duplicating a
flat NetworkX graph into three layers. In this experiment,
we will use a predefined graph reflecting interactions in “Les
Misérables” (see lines 50:52).

D. Defining and running an experiment
After that, we can define and start the experiment (see lines

54:99). We set the initial state of the "ill" process to have
65 nodes "s", 10 "i" and 2 "r" at the first epoch. Here, we
did it manually for particular nodes to obtain reproducibility,
but Network Diffusion contains another function that does
it for randomly selected nodes at once: nx.Experiment
.set_initial_states.

E. Results and discussion
Once the simulation is completed, an

ExperimentLogger object is returned. We can use it to
prepare a report (see line 99). As a result, we obtain (snippets
available in documentation - see tab. IV): propagation
report for each process as set of .csv files containing
information about the distributions of particular states
in each epoch (awar_propagation.csv, ill_propagation.csv,
vacc_propagation.csv), information about the network used for
experiment (network_report.txt), the model (model_report.txt)
and visualisation of the experiment (fig. 4a).

As we can see in fig. 4a, interactions between processes
reflect the assumed scenario, the more individuals vaccinated

(a)

(b)

Fig. 4. Visualisations of experiments - dynamics of processes in the network
(a) according to presented assumptions, (b) with modified illness to make it
more contagious.

and aware, the less increase of ill nodes in the network. On the
other hand, in fig. 4b, we can see a variation of the experiment.
In order to obtain the effect of more malicious illnesses that
cannot be so easily mitigated with vaccines and awareness of
the population, we have modified weights wrnuinu , wrauiau and
wraviav . That resulted in a slower falling curve for state i that
allowed the vaccination process to continue spreading among
the network.

VI. CONCLUSIONS

In this paper, we have introduced a computational approach
to simulate the spreading of multiple processes in networks.
Keeping in mind the analysis of the existing tools from sec. II,
we find it more valuable since it fulfils the observed gap in
the domain. Despite the basic character of Network Diffusion,
we hope that it will help other researchers in analysing and
understanding spreading processes in networks.

We would like to mention that there is great potential in
the further development of the package. As we described in
sec. III, for now, we are limited to a fairly simple schema
of the experiment. We plan to extend it in the next releases

by aspects of time dynamics, such as adding layer switching
cost for the spreading process [42]. We also noticed a need to
provide the user with the possibility to customise a function
that changes the states of nodes. Currently, we have a fairly
simple mechanism that depends on iteration through neigh-
bours combined with the Bernoulli test. However, we can use
another approach, e.g. that takes into account all neighbours of
the node at once. Another important aspect is an enhancement
of the package’s computational capabilities (see sec. A for
details). Finally, the concept that is currently investigated by
the authors is a development of a training mechanism that sets
up weights of the models in order to fit with real data, which
allows for predicting further spreading of the phenomena.

Having written all that, we can say that Network Diffusion
may help to address the problem of multiple spreading pro-
cesses within the networks. This issue is certainly real, and the
COVID-19 crisis shows that we need to be able to simulate
such phenomena by taking into account coexisting phenomena.
As we demonstrated in the article, the package has a fine
theoretical background and examples proving its usability. We
strongly believe that our concept can be helpful and become
an inspiration to other projects.

REFERENCES

[1] M. Czuba and P. Bródka, “Network diffusion,” 2021. [Online].
Available: https://github.com/anty-filidor/network_diffusion

[2] P. Bródka, K. Musial, and J. Jankowski, “Interacting spreading processes
in multilayer networks: a systematic review,” IEEE Access, vol. 8, pp.
10 316–10 341, 2020.

[3] A.-L. Barabási and M. Pósfai, Network Science. Cambridge: Cambridge
University Press, 2016, ch. 10.1, pp. –.

[4] C. Stark, B.-J. Breitkreutz, T. Reguly, L. Boucher, A. Breitkreutz,
and M. Tyers, “Biogrid: A general repository for interaction datasets,”
Nucleic acids research, vol. 34, pp. D535–D539, 2006.

[5] M. De Domenico, A. Solé-Ribalta, S. Gómez, and A. Arenas, “Nav-
igability of interconnected networks under random failures,” National
Academy of Sciences, vol. 111, no. 23, p. 8351, 2014.

[6] D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-world’
networks,” nature, vol. 393, no. 6684, pp. 440–442, 1998.

[7] P. Kazienko, K. Musial, E. Kukla, T. Kajdanowicz, and P. Bródka,
“Multidimensional social network: Model and analysis,” in International
Conference on Computational Collective Intelligence. Springer, 2011,
pp. 378–387.

[8] P. Bródka, A. Chmiel, M. Magnani, and G. Ragozini, “Quantifying layer
similarity in multiplex networks: A systematic study,” Royal Society
open science, vol. 5, no. 8, p. 171747, 2018.

[9] M. Kivelä, A. Arenas, M. Barthelemy, J. P. Gleeson, Y. Moreno, and
M. A. Porter, “Multilayer networks,” Journal of complex networks,
vol. 2, no. 3, pp. 203–271, 2014.

[10] M. Magnani and L. Rossi, “The ml-model for multi-layer social
networks,” in 2011 International Conference on Advances in Social
Networks Analysis and Mining. IEEE, 2011, pp. 5–12.

[11] A. Guille, H. Hacid, C. Favre, and D. A. Zighed, “Information diffusion
in online social networks: A survey,” ACM Sigmod Record, vol. 42,
no. 2, pp. 17–28, 2013.

[12] W. O. Kermack and A. G. McKendrick, “A contribution to the mathemat-
ical theory of epidemics,” royal society of london. Series A, Containing
papers of a mathematical and physical character, vol. 115, no. 772, pp.
700–721, 1927.

[13] R. A. Holley and T. M. Liggett, “Ergodic theorems for weakly interact-
ing infinite systems and the voter model,” The annals of probability, pp.
643–663, 1975.

[14] F. M. Bass, “A new product growth for model consumer durables,”
Management science, vol. 15, no. 5, pp. 215–227, 1969.

[15] D. Kempe, J. Kleinberg, and É. Tardos, “Maximizing the spread of
influence through a social network,” in 9th ACM SIGKDD international
conference on Knowledge discovery and data mining, 2003, p. 137.

https://github.com/anty-filidor/network_diffusion

[16] H. Zang, “The effects of global awareness on the spreading of epidemics
in multiplex networks,” Physica A: Statistical Mechanics and its Appli-
cations, vol. 492, pp. 1495–1506, 2018.

[17] M. Scatà, A. Di Stefano, P. Liò, and A. La Corte, “The impact
of heterogeneity and awareness in modeling epidemic spreading on
multiplex networks,” Scientific reports, vol. 6, no. 1, 2016.

[18] P. Shakarian, A. Bhatnagar, A. Aleali, E. Shaabani, and R. Guo,
Diffusion in Social Networks. Springer: Springer, 2016, ch. 4.

[19] W. V. d. Broeck, C. Gioannini, B. Gonçalves, M. Quaggiotto, V. Colizza,
and A. Vespignani, “The gleamviz computational tool, a publicly
available software to explore realistic epidemic spreading scenarios at
the global scale,” BMC Infectious Diseases, vol. 11, no. 1, p. 37, Feb
2011. [Online]. Available: https://doi.org/10.1186/1471-2334-11-37

[20] G. Rossetti, L. Milli, S. Rinzivillo, A. Sîrbu, D. Pedreschi, and F. Gian-
notti, “Ndlib: A python library to model and analyze diffusion processes
over complex networks,” Int. J. Data Sci. Anal., vol. 5, no. 1, pp. 61–79,
Feb 2018.

[21] S. Widgren, P. Bauer, R. Eriksson, and S. Engblom, “SimInf: An R
package for data-driven stochastic disease spread simulations,” Journal
of Statistical Software, vol. 91, no. 12, pp. 1–42, 2019.

[22] F. Alvarez, P. Crépey, M. Barthelemy, and A.-J. Valleron, “Sispread: A
software to simulate infectious diseases spreading on contact networks,”
Methods of information in medicine, vol. 46, p. 19, 2007.

[23] J. Douglas, S. Bianco, S. Edlund, T. Engelhardt, M. Filter, T. Günther,
M. HuKun, E. Nixon, N. Sevilla, A. Swaid, and J. Kaufman, “Stem: An
open source tool for disease modeling,” Health security, sie 2019.

[24] Franz Inc., “Allegrograph website,” [26 May 2022]. [Online]. Available:
https://allegrograph.com/products/allegrograph

[25] E. Inc., “Arcgis pro - 2d and 3d gis mapping software,” [26. May
2022]. [Online]. Available: https://www.esri.com/en-us/arcgis/products/
arcgis-pro/overview

[26] Cytoscape Consortium, “Cytoscape 3.8.2 user manual,” [26. May
2022]. [Online]. Available: https://manual.cytoscape.org/en/stable

[27] M. Bastian, S. Heymann, and M. Jacomy, “Gephi: An open source
software for exploring and manipulating networks,” International AAAI
Conference on Weblogs and Social Media, 2009.

[28] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski, “Pregel: A system for large-scale graph
processing,” in Proceedings of the 2010 ACM SIGMOD International
Conference on Management of Data, ser. SIGMOD ’10. New York,
NY, USA: Association for Computing Machinery, 2010, p. 135–146.
[Online]. Available: https://doi.org/10.1145/1807167.1807184

[29] J. Ellson, E. R. Gansner, E. Koutsofios, S. C. North, and G. Woodhull,
Graphviz and Dynagraph — Static and Dynamic Graph Drawing Tools.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, ch. -, pp. 127–
148.

[30] G. Csardi and T. Nepusz, “The igraph Software Package for
Complex Network Research,” InterJournal, vol. Complex Systems,
2006. [Online]. Available: https://igraph.org

[31] M. Matteo, V. Davide, and D. Mikael, Multinet: Analysis and
Mining of Multilayer Social Networks, 2020. [Online]. Available:
https://cran.r-project.org/web/packages/multinet/index.html

[32] M. De Domenico, M. A. Porter, and A. Arenas, “Muxviz: A tool for
multilayer analysis and visualization of networks,” Journal of Complex
Networks, vol. 3, no. 2, pp. 159–176, 10 2014.

[33] Neo4j, Inc., “Neo4j graph platform the leader in graph databases,” [26
May 2022]. [Online]. Available: https://neo4j.com

[34] G.-H. Ghim, N. Cho, and J. Seo, NetMiner. New York, NY: Springer
New York, 2014, pp. 1025–1037.

[35] C. T. Butts, Network: Classes for Relational Data, The Statnet Project
(http://www.statnet.org), 2020, r package version 1.16.1. [Online].
Available: https://CRAN.R-project.org/package=network

[36] A. A. Hagberg, D. A. Schult, and P. J. Swart, “Exploring network
structure, dynamics, and function using networkx,” in Proceedings of
the 7th Python in Science Conference, G. Varoquaux, T. Vaught, and
J. Millman, Eds., Pasadena, CA USA, 2008, pp. 11 – 15.

[37] M. Smith, A. Ceni, N. Milic-Frayling, B. Shneiderman, E. M.
Rodrigues, J. Leskovec, and C. Dunne, NodeXL: A Free and
Open Network Overview, Discovery and Exploration Add-in for
Excel 2007/2010/2013/2016, 2010. [Online]. Available: http://nodexl.
codeplex.com/

[39] D. Auber, D. Archambault, R. Bourqui, M. Delest, J. Dubois,
A. Lambert, P. Mary, M. Mathiaut, G. Melanon, B. Pinaud, B. Renoust,

[38] Mikko Kivelä, “Multilayer networks library for python
(pymnet) documentation,” Aug 2017, [26. May 2022],
http://www.mkivela.com/pymnet.

and J. Vallet, “TULIP 5,” in Encyclopedia of Social Network Analysis
and Mining, R. Alhajj and J. Rokne, Eds. Springer, Aug. 2017, pp.
1–28. [Online]. Available: https://hal.archives-ouvertes.fr/hal-01654518

[40] yWorks GmbH, “yed graph editor,” [26. May 2022]. [Online]. Available:
https://www.yworks.com/products/yed

[41] M. Czuba and P. Bródka, “Demo-code for the paper “network
diffusion: A package to simulate spreading of multiple interacting
processes in complex networks”,” 11 2021. [Online]. Available:
https://codeocean.com/capsule/8807709/tree/v3

[42] B. Min, S.-H. Gwak, N. Lee, and K.-I. Goh, “Layer-switching cost and
optimality in information spreading on multiplex networks,” Scientific
reports, vol. 6, no. 1, pp. 1–12, 2016.

APPENDIX

A. Computational efficiency of the package

Since Network Diffusion has been considered a prototype
framework, we have decided to investigate its time efficiency
compared to NDlib [20]. We performed an experiment on
a single-layer SIR model (due to limitations of the NDLib,
we could not test a more complex case) spreading within
the Erdos-Renyi graph, the size of which varied. For each
network size, both implementations were executed 10 times (to
mitigate the side effects that burden the processor). Each call
to the function was measured in milliseconds. The results are
presented in fig. 5. The time efficiency of Network Diffusion
is a field for improvement, especially for large networks.

Fig. 5. Comparison of the efficiency of the Network Diffusion and the NDlib.

B. Running attached code examples

There are two ways to run the examples: (1) local execution,
(2) via the Code Ocean capsule [41]. Despite the differences in
code handling, both are expected to produce the same results.
To follow the first, the user needs to have Python installed.
It is recommended to create a virtual environment based on
the requirements.txt file. Then, to run the chosen example, the
corresponding script needs to be executed. The second method
requires far less effort. To run our code, we recommend first
that you duplicate the capsule into a self-owned account. Then,
to run the engine, the "reproducible run" button has to be
pressed. To run a Jupyter notebook, the user has to select a
Jupyter icon from the list below the mentioned button.

https://doi.org/10.1186/1471-2334-11-37
https://allegrograph.com/products/allegrograph
https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview
https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview
https://manual.cytoscape.org/en/stable
https://doi.org/10.1145/1807167.1807184
https://igraph.org
https://cran.r-project.org/web/packages/multinet/index.html
https://neo4j.com
http://www.statnet.org
https://CRAN.R-project.org/package=network
http://nodexl.codeplex.com/
http://nodexl.codeplex.com/
https://hal.archives-ouvertes.fr/hal-01654518
https://www.yworks.com/products/yed
https://codeocean.com/capsule/8807709/tree/v3

	I Introduction
	I-A Complex networks
	I-B Spreading phenomena
	I-B1 Epidemic modelling framework
	I-B2 Independent cascade model
	I-B3 Linear threshold model

	I-C Interacting spreading processes in networks

	II Similar software packages
	II-A Software for spreading processes simulations
	II-A1 GLEaMviz
	II-A2 NDLIB
	II-A3 SimInf
	II-A4 Sispread
	II-A5 STEM

	II-B Software for complex network analysis
	II-B1 Gephi
	II-B2 iGraph
	II-B3 NetMiner
	II-B4 NetworkX

	II-C Summary

	III Operating principle
	III-A Generalisation of single processes modelling
	III-B Example of two processes model
	III-C Generalisation of modelling multiple processes
	III-D General simulation framework

	IV Network Diffusion Package
	IV-A Implementation

	V Example of usage
	V-A Scenario to simulate
	V-B Defining a propagation model
	V-C Defining a network
	V-D Defining and running an experiment
	V-E Results and discussion

	VI Conclusions
	References
	Appendix
	A Computational efficiency of the package
	B Running attached code examples

