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Abstract—Deep learning has made significant advances in
creating efficient representations of time series data by automat-
ically identifying complex patterns. However, these approaches
lack interpretability, as the time series is transformed into a
latent vector that is not easily interpretable. On the other hand,
Symbolic Aggregate approximation (SAX) methods allow the
creation of symbolic representations that can be interpreted but
do not capture complex patterns effectively. In this work, we
propose a set of requirements for a neural representation of
univariate time series to be interpretable. We propose a new
unsupervised neural architecture that meets these requirements.
The proposed model produces consistent, discrete, interpretable,
and visualizable representations. The model is learned indepen-
dently of any downstream tasks in an unsupervised setting to
ensure robustness. As a demonstration of the effectiveness of
the proposed model, we propose experiments on classification
tasks using UCR archive datasets. The obtained results are
extensively compared to other interpretable models and state-of-
the-art neural representation learning models. The experiments
show that the proposed model yields, on average better results
than other interpretable approaches on multiple datasets. We
also present qualitative experiments to asses the interpretability
of the approach.

Index Terms—Representation learning, unsupervised learning,
time series, interpretability, classification

I. INTRODUCTION

Unsupervised representation learning approaches aim to
build representation for time series by capturing their un-
derlying distribution without expert knowledge or human
supervision. They have demonstrated good performances for
clustering [[1]], classification [2[]—[4], missing values imputation
or forecasting [5]]. Despite these good performances for down-
stream tasks, the neural representations models in the literature
lack interpretability. In [6] a review of representation learning,
the authors emphasize that good representations should have
the ability to extract Explanatory Factors and should guarantee
Temporal Consistency. Current approaches do not meet these
criteria. Indeed, for most existing approaches [2]], [4]], [7], the
representation results from mapping signals to a latent vector
with no temporal consistency and in which weights have no
meaning. These representations fail to provide interpretability
when used for downstream tasks like classification, which is
problematic for critical decision-making.

However, interpretability is a concept that is not universally
agreed upon [8]], with confusion arising from the different
meanings of interpretability and explicability. For time series
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models, [9] offers a clear taxonomy of the interpretability
shown in Figure [I] Post-hoc interpretability refers to methods
that analyze the model after the training and are generally
model-agnostic. It is often related to the eXplainable Artificial
Intelligence (XAI) research field. However, post-hoc methods
only explain the decision for a specific instance (or specific
features), and additional methods are required to understand
the overall model.

On the other hand, in-situ interpretable models are self in-
terpretable. The interpretability arises directly from the model
without any other process being applied after the training
phase [9], [10]. The level of this interpretability can be local
or global. In [§]], global interpretability is defined as a model
that is easy for a human to understand and requires low
computational complexity. In contrast, local interpretability is
a way to interpret a model’s decision for a particular instance.
Global interpretability often implies local interpretability, but
the reverse is not true.
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Fig. 1. Interpretable time series model taxonomy introduced in [9)]

In this work, we focus on global in-situ interpretability
rather than post-hoc explainability, as global in-situ models
are inherently interpretable and can be understood both for
individual instances and the model as a whole. This paper
aims to develop a global in-situ interpretable neural method
for time series representation. The first contribution of this
work is to define the requirement to bridge the gap between
symbolic representation and neural representation to ensure
a global interpretable neural symbolic representation for time
series data. Indeed, most successful interpretable models come
from symbolic machine learning, such as symbolic aggregate
approximation (SAX), which creates interpretable symbolic



representations of time series data. However, the information
captured by these symbols is limited and does not provide
global interpretability of the representation. On the other hand,
neural representation learning methods achieve great perfor-
mances but are definitively not in-situ interpretable. Section
analyses the criteria that must be respected to guarantee
global in-situ interpretability.

We propose a novel unsupervised neural network that fills
these requirements in Section The neural network is
based on an auto-encoder architecture and vector quantization
mechanism [[I1]]-[13]]. The unsupervised setting is a crucial
choice for the generalization of the learned representation.
Moreover, it allows to re-use the extracted representation for
several classification tasks.

To demonstrate the qualities of the proposed architecture,
Section [V] presents an application of our learned symbolic
neural representation to classification tasks. A simple linear
classifier over the interpretable symbolic representations is
used to solve classification tasks efficiently. The linearity of the
classifier preserves interpretability in the representation, pro-
viding both global and local interpretability for understanding
the decision made by the classifier.

Our main contributions can be summarized as follows:

o We define and formalize the fundamental requirements
to construct interpretable symbolic neural representations
for time series.

« We propose an unsupervised neural network architecture
that satisfies the above requirements.

o« We use these representations for downstream classi-
fication tasks (while preserving interpretability of the
representation) and evaluate them through quantitative
experiments on the UCR archive.

« We provide qualitative experiments to capture local and
global interpretability.

II. RELATED CONTENT

Constructing time series representations is a fundamental
challenge that can be performed unsupervised or based on
a specific task. This related content presents both neural
representation methods, which are not easy to interpret, and
classical representation methods, which are interpretable. In
most cases, classical representation methods are combined
with a classification task.

a) Unsupervised neural representation learning for time
series classification: In recent works, models of neural repre-
sentations of time series have emerged. These models typically
learn the representation in an unsupervised way and then use
the learned representation for a specific task in a second step.
In [3]], the authors use a deep unsupervised representation to
solve a subsequent classification task for time series. They
used an architecture composed of Recurrent Neural Networks
to build a representation that would later be used for clas-
sification. In [2], authors build a time series representation
using a convolutional encoder and a contrastive loss [14]. The
representation space brings together series (and sub-series) that
are similar. Afterward, a support vector machine (SVM) is

applied on top of the representation to solve the classification
problem. Then, several papers attempted to construct vector
representations of time series using contrastive loss [4], [7].
Some recent works [5] have tried to build an unsupervised
representation of time series using transformers mechanisms
[15] inside an auto-encoder. These neural representations can
capture a lot of information, and the downstream tasks learned
from them are very efficient. However, the representations and
thus the downstream tasks cannot be interpreted with these
models.

b) Attempt to construct an interpretable neural represen-
tation for time series: Recently, progress has been made in
making neural representations of time series interpretable. In
[16], the authors have attempted to decompose time series
into disentangled semantic factors (for both individual factors
and group segment factors) using Variational Auto-Encoder
(VAE), LSTM, and a disentanglement strategy. The limita-
tion of disentangled representations is that it is difficult to
assess the disentanglement of latent factors when the initial
semantic properties of the time series are unknown. This
unsupervised representation is interesting for generation, but
difficult to adapt for classification. Other work, such as [[17],
has attempted to obtain interpretable differential operators
from multivariate time series. However, they are specific to
forecasting.

Although neural methods for representing time series are
relatively new, non neural interpretable methods for represent-
ing time series are widely studied.

c) The Symbolic Aggregate approximation (SAX): SAX
methods [[18]], [19] create a symbolic representation of a time
series by combining local statistics, which are calculated by
taking the average of different segments of the time series.
Each average is assigned a symbol based on its value. A
sequential symbolic representation of the original time series is
formed by mapping these local averages to symbols. Multiple
SAX representations can be obtained by taking more or less
local averages. SAX symbolic elements operate in the time
domain and are interpretable, unlike the Symbolic Fourier
approximation (SFA) method [20]], which operates in the fre-
quency domain. In [ 18], the authors introduce the SAX method
as a versatile unsupervised approach for various downstream
tasks, but in practice, SAX methods are typically used in com-
bination with a classifier on top of the representation. There are
several methods to classify on top of SAX representations. For
example, the SAX-VSM method [21] is based on the frequency
of subsequences within each class. The SAX-SEQL method
[22] searches the entire space of subsequences for the most
discriminating subsequences using logistic regression based on
coordinate descent. SAX methods have proven useful for mak-
ing interpretable classification decisions from the constructed
symbolic representation. However, this interpretability is only
local. Indeed, when we obtain a discriminating symbolic sub-
sequence, we can highlight the corresponding sub-part of the
time series. Nevertheless, we cannot reconstruct what the
model has learned because several sub-series can give the
same symbolic sub-sequence. Additionally, as stated in [8]],



when the number of representations used for classification is
excessive, such as in the case of multi-SAX-SEQL [23]], it
becomes difficult to interpret the classification results.

d) Shapelet methods: These methods aim to find the sub-
sequences of the time series that most discriminate between
classes [24]. This representation method is supervised because
it relies on a downstream task. In addition, the resulting repre-
sentations are partial, since only the shapelets that discriminate
between classes are extracted at the end of the process. Once
the optimal shapelets are found, if the classifier applied on top
of them is interpretable (linear regression or decision tree),
the whole process is interpretable at both local and global
levels. However, the original method is costly because it is
necessary to search the whole space for possible subsequences.
In Fast Shapelets (FS) [25], the authors proposed to speed
up the discovery of discriminative subsequences by using a
SAX representation to discover the subparts of the series
where shapelets should be searched. Although the method
speeds up the discovery of discriminative shapelets, it remains
computationally expensive and the accuracy could be better. To
avoid these problems, in [26], authors propose the Learning
Shapelets (LTS) method. The goal is to learn the discrimi-
nating shapelets rather than to search for them in the whole
space of possibilities. This method has led to improvements
in accuracy. However, it generates a large number of shapelets
that are almost the same. This negatively affects interpretabil-
ity. Afterward, methods have been proposed to learn a limited
number of shapelets and thus reinforce the interpretability of
the model. In [27], authors propose learning a small number
of discriminating shapelets by training a Generative Advertial
Network (GAN) and a classifier.

To the best of our knowledge, there is no unsupervised
learning method capable of learning an interpretable neural
representation for time series. In the next section, we set out
the requirements for constructing interpretable symbolic neural
representations. These criteria will link traditional methods
of representing time series using symbols and unsupervised
neural representation methods.

III. REQUIREMENTS FOR AN INTERPRETABLE SYMBOLIC
NEURAL REPRESENTATION

In order to ensure that a neural representation of a time
series is interpretable, we set out several requirements that we
consider essential.

For this purpose, we introduce some notation for this sec-
tion. We consider that we have a dataset of [V samples. For an
instance i (1 € {1, ..., N'}), the univariate time series is denoted
by the vector x; of length T: z; = (z;1,...,2;7) € RT.
Let r; be the symbolic neural representation composed of
T elements for z;. We denote by A the support (alphabet)
common to all these elements: r; = (71,...,7; 7/) € AT
Then ¢y is the function that maps the time series into the
representation, and v, is the function that goes from the
representation to the reconstruction space of the time series.
To simplify the reading, we omit the indices 7 for the vectors
r and x.

a) Requirement n°l - discrete symbolic representation:
The purpose of a symbolic neural representation method is
to capture complex phenomena within the representation (as
neural representations do) while being able to interpret and
visualize the representation elements (as symbolic representa-
tions tend to do). Thus, the support A of each element must
be discrete and limited (e.g. Card(A) = 32). In addition,
the support must be common to all elements of the symbolic
representation. This limits the number of possible patterns.
Once we obtain the symbolic representation r, we can use the
classifiers used in the dictionary methods [22], [23]], [28]] (see
Section [V).

b) Requirement n°2 - temporal consistency: For a time
series x of length T, learning a contracted representation r of
length T will mechanically lead to a contraction of the time
dimension (7" < T'). We then define temporal consistency by
two properties. First, each element of the representation is a
function of a portion of the original time series. Thus, for each
element of the representation, we must be able to compute
the pre-image of the element. Second, the representation must
preserve the original temporal order despite the contraction of
the temporal dimension. To illustrate this property, consider
the case where Ty is an element of the representation and
Ty is another element of the representation that occurs after
Ty As shown in Figure [2| the temporal consistency of the
representation ensures that the pre-image of 7y must precede
the pre-image of Ty, in time.
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Fig. 2. Temporal consistency visualization. Coffee dataset

c) Requirement n°3 - a decodable representation: Being
able to visualize the portion of the time series related to a
specific element of the representation is important, but it is also
important to be able to see what the model has learned overall.
As shown in Figure (3} 1, should be able to reconstruct
the entire time series, as well as specific parts of it, while
maintaining temporal consistency.

d) Requirement n°4 - shift equivariance properties: We
want the shift equivariance property for both ¢g and 1y,. The
¢y shift equivariance means that two patterns in the initial
time series that are identical but do not occur at the same time
should be encoded with the same value but not at the same



Fig. 3. Visualization of how the representation is decoded for the complete
representation, as well as for half of the representation and for only the last
element. Coffee dataset.

place in the representation. The 1y, shift equivariance means
that two elements of the representation that have the same
value but do not occur at the same time should represent the
same pattern when decoded (with a time shift). This property
is essential to interpret the representation elements and ensure
that the same value in the representation, regardless of its
position, represents the same pattern. We illustrated the shift
equivariance property for ¢y, in Figure
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Fig. 4. Shift equivariance of 1g/. The subsequence ¢ d appear at two different
locations in the representation: 1)y, should decode the same pattern with a
shift in time.

Let’s formally define the shift equivariance property. Let
S be an element of a sequence (a single element or a
subsequence), and G'r the group of discrete translations along
the temporal axis. If we take 7 to be any discrete transla-
tion in Gp and f to be a function equivariant by discrete
translation for Gp, then there exists 7 € Go/ such that:
f(7(9) =7'(f(5)).

e) Requirement n°5 - a representation adjustable to the
frequency level: Like an image that cannot be interpreted at
the pixel level, a time series is difficult to interpret at the
point level. This requirement aims to control the amount of
information captured when creating the representation. For the
representation to be easily understood, it is crucial to capture
the appropriate frequency levels that define the time series.
As illustrated in Figure [5] the depth of the representation
determines whether it focuses on lower or higher frequency
features, which in turn affects the length of the representation.
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Fig. 5. Visualization of different reconstructions for different level of

representation. We can see that the deeper the architecture, the shorter the
representation and the smoother the reconstruction. Computers dataset.

IV. MODEL

This section proposes an unsupervised model that respects
the different requirements for building an interpretable sym-
bolic neural representation.

A. Architecture

The proposed unsupervised model architecture consists of
an encoder decoder structure with a discretization mechanism
within the representation space. First, the time series x is given
as input to the encoder. Second, the output of the encoder is
discretized using the vector quantization mechanism. This step
allows us to obtain r after the learning process. Finally, the
discretized elements are passed to the decoder, which returns
a reconstruction of the time series &.

The architecture takes elements from the Vector Quantiza-
tion Variationnal Auto-Encoder (VQ-VAE) [12], which was
the first model to establish a latent space of discrete represen-
tation within an auto-encoder. However, we add constraints
to the architecture and remove the variational part in order
to meet the requirements defined in Section The different
parts of the architecture are described below and Figure [§]
illustrates the global unsupervised architecture. Let us look at
the architecture in detail, starting with the encoder.

a) Encoder: The encoder can be divided into a sequence
of consecutive blocks with the same structure. As shown in
Figure[6] a block consists in three operations: a 1D convolution
layer, a downsampling operation, and a non-linear activation
function.

Input Convolution Adapatative PITRIER Output
sequence [ | 1Dlayer [ | Polyphase = non IEET | g sequence
downsampling operator

Fig. 6. Inside an encoder block.

The convolution layer is non-strided and has a dilation factor
of zero. The input sequence is padded with a zero on each side,



and the kernel size is three. Therefore, the convolution layer’s
output sequence length remains unchanged. Subsequently, we
perform a downsampling operation on the sequence. This
operation aims to reduce the sequence length by two while
keeping the shift equivariance property. For this purpose, the
adaptive polyphase downsampling (APS-D) proposed in [29]
is used.

To explain the APS-D operation, let us introduce s(t) the
convolutions output sequence of length 7. We can then define
the two sub-sequences so and s; such that so(t) = s(2¢) and
s1(t) = s(2t + 1). The APS-D operation D3 consists in sub-
sampling the sub-sequence s; such that:

Dj'(s) = s, where [ = arg max||s;||, (for j € {0,1})

Now, when the downsampling process is applied to the
sequence, the length of the sequence is reduced by half.
Finally, a non-linear pointwise operation is applied. In practice,
this operation is the LeakyReLU.

All blocks inside the encoder have the same structure.
Consider an encoder with B blocks and convolutions with
Z channels. Then the initial time series is projected into the
representation space on a sequence of 7" (1" ~ T/25) time
steps, where each point of the sequence is a vector of size Z.

b) Decoder: Now we can define the decoder blocks
symmetrically to the encoder. The decoder is a function that
projects a sequence of T” vectors of size Z into a reconstructed
time series &; of size T'. If the encoder has B blocks, then
the decoder will have B blocks. However, the structure of a
decoder block is slightly different. First, an upsampling op-
eration (adaptive polyphase upsampling) increases the length
of the sequence by two. In practice, the values of the input
sequence are re-used and 0’s are inserted between each value
to double the size of the sequence. The 0’s are inserted in an
even or odd manner according to the subsequence extracted
in the corresponding encoder block during the downsampling
phase (if [ was 0 or 1). Next, a 1D non-strided convolutional
layer with a kernel size of 3 is applied. Finally, a nonlinear
pointwise operation is applied (except in the last block).

c) Discretization mechanism: Now that the encoder and
decoder are defined, we need to specify the discretization
method used within the representation space. After passing
the time series to the encoder and thus obtaining a sequence
of vectors (sequence of embeddings: (e1, ez, ..., err)), we use
the vector quantization (VQ) mechanism [[11], [12]. Given a
set of K centroids {c; € RZ, j € 1,..,K}, VQ consists
of assigning an encoder output point e, € RZ to the nearest
centroid:

el « cp where k= arg min|ley — c;[3. (1)

J
In this way, the sequence of embedding vectors is trans-
formed into a sequence of quantized vectors (each quantized
vector has only K possible values). This mechanism is il-
lustrated in the Figure [/} Then, the sequence of quantized
vectors (€7, e3, ..., e},) is given as input to the decoder.

We describe how centroids are moving through epochs in the
training subsection.

Representation
before Vector
Quantization

Representation|
after Vector
Quantization

Vector
Quantization

E = D
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Symbolic
representation

Fig. 7. Visualization of the vector quantization mechanism in the context of
an auto-encoder. E and D stand respectively for Encoder and Decoder.

B. An architecture that meets the requirements

The VQ mechanism satisfies the requirement for a discrete
symbolic representation. The VQ mechanism, also known as
a self-organizing map [30], allows the centroids to move as
iterations progress. The vector quantization mechanism assigns
nearby vectors to the same centroid while maintaining tem-
poral consistency. Thus, our architecture encourages similar
patterns to be quantized to the same vector. The symbolic
representation is obtained directly from the centroid indices
used during vector quantization. Since the index represents
the vector it characterizes, the sequence of centroid indices
chosen during the vector quantization phase serves as an
excellent symbolic representation of the time series (thus
Card(A) = K).

The proposed architecture uses convolution operations that
guarantee the temporal consistency of the representation. We
can easily compute the input that produced a given output from
a convolution sequence by determining the receptive field [31]].
In addition, convolutions are local operations that slide over
the input, which allows them to preserve the temporal order of
the input. Using a pointwise VQ mechanism does not affect
the temporal consistency property of our architecture.

The symmetric and unbiased encoder/decoder design guar-
antees that the representation is decodable. Our loss function
(eq. [2) ensures that the reconstruction converges towards the
original time series. It enables the visualization of the learned
representation while maintaining temporal consistency and
enabling separate decoding of each representation component.

Due to the adaptive polyphase upsampling/downsampling
[29], both encoder and decoder are shift equivariant. The shift
equivariance properties would be lost with classical stridded
convolutions [32]. This property is crucial for understanding
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the meaning of the elements in the symbolic representation. It
ensures that identical symbolic elements always represent the
same pattern (when there are no boundary effects), regardless
of their position.

By changing the number of B blocks in the encoder
(and by the symmetry in the decoder), we can adjust the
information learned in the representation, enabling us to adapt
the representation to different frequency levels. The higher the
number of blocks, the shorter the representation sequence and
the more global the information captured for an element of
the representation. Thus, we define the number of blocks B
as an hyperparameter of the architecture.

C. Training

The unsupervised architecture is trained using the loss (eq.
[2) introduced by [12]). To simplify the notations, we present the
loss for an instance . The notations remain the same as those
introduced above, except for the following. The operator sg
is the stop gradient operator whose derivative is zero during
the backward computation time. The encoder is defined as
¢o and the decoder as 1), . In the Section ¢¢ character-
izes the function that maps the time series to the symbolic
representation. Here ¢y stands for the function that maps the
time series to the embeddings (before the discretization phase).
On the other hand, here, v, characterizes the function that
maps the quantized vector representation to the reconstruction.
The temporal vector sequence after quantization is denoted
E49 ¢ RT'*Z_Thus, the total loss of the unsupervised model
is:

arg min [l — Wy (BD)|[3 + llsglee(x)] — B3

+ Bllgo (@) — sgl B3 (2)

The first term of the loss refers to the reconstruction ability
of the model. In practice, we consider the mean square error

pointwise between the real-time series and the decoder output.
This part of the loss optimizes the decoder and the encoder. It’s
important to note that the arg min operator in eq. [I] is not dif-
ferentiable at the VQ level. In [[12], the authors suggest passing
the gradients of the quantized vectors to their corresponding
encoder vector outputs. This allows the reconstruction loss to
optimize the encoder. The second term in the loss updates
the used centroids E9 by moving them toward the embedding
vectors ¢g(x) assigned to them. The centroids are initialized
with a Gaussian distribution. This approach has proven to be
stable in training and allows an independent choice of solver
for the rest of the loss. In the model implementation, the Adam
solver [33]] is used for the other terms of the loss. The last
part of the loss is the commitment loss and ensures that the
encoder outputs do not land too far from the used centroids.
It guarantees better training stability.

V. DOWNSTREAM TASK: CLASSIFICATION OVER
EXTRACTED REPRESENTATIONS

Similar to dictionary methods for time series classification
[18], [20]], the proposed representation learning process leads
to an interpretable sequential symbolic representation of the
time series. The series is represented by the sequence of the
indices of the quantized vectors (the symbolic representation).
We propose to evaluate the obtained symbolic representation
with downstream classification tasks. When classifying sym-
bolic representations, authors commonly extract histograms of
symbolic subsequences and feed them into a K-NN, or linear
classifier [22], [23]. For example, in [22]], authors propose an
efficient algorithm for a logistic regression classifier based on
coordinate gradient descent to find the most relevant subse-
quences. In the following, we propose a linear classifier based
on the presence or absence of discriminative subsequences
inspired by existing methods. This classification method pre-
serves the interpretability provided by the representation and
ensures an in-situ, global interpretable classification decision.



A. Classification using a unique symbolic representation

In our classification process, we focus only on using subse-
quences of lengths one and two to characterize the symbolic
representation. This approach effectively captures local dy-
namics while maintaining a low-dimensional feature space. Let
d be the cardinal of the set of possible symbolic subsequences
of length one and two, and r; be a symbolic representation
(extracted using our auto-encoder) for individual i. We can
extract for the representation r;, the vector h; which indicates
if a subsequence (of length one or two) is present in 7;.
Thus, h; is a vector of size d composed of 0 and 1 elements
(h; € {0,1}%). The features vectors {h;,i € {1...N}}
representing the training set can be used after that to solve
the classification problem using logistic regression (eq. [3):
L + gl

arg min
w,b

n i
A;log<exp( Yi (hz w—i—b))-l—l) 3)

with X the regularization parameter, p the trade-off between
the ¢ penalty and the ¢ penalty and b the bias. Sparsity in
interpretable classification models is desirable to more easily
understand the decision [34], [35]. In the case of multiclass
classification, the usual One vs All method [36]] is applied to
provide better interpretability.

However, classification using a unique representation (e.g.,
a representation where the encoder/decoder is composed of
B blocks) does not allow the use of features of different
frequencies. Therefore, it is desirable to train several rep-
resentations corresponding to different temporal dimension
reductions (deeper or shallower architectures) in order to
classify using different frequency features.

B. Classification using multiple symbolic representations

According to Subsection the depth of the architecture
is directly related to the number of blocks B in the encoder
(and by symmetry in the decoder). We train the proposed
unsupervised model for D different depths (B € {1,2, ..., D}).
Thus, we get D representations of different length, which
capture different features (h}, h?, ..., h?). Then we apply the
following steps:

1) A penalized logistic regression (eq. [3) is performed

separately on each extracted features vector h;.

2) For each h;, we recover the features whose logistic
regression coefficients have non-zero values. Thus, we
obtain an aggregated discriminative set of features for
the D representations.

3) We perform a final penalized logistic regression on the
obtained set.

It is important to highlight two observations. Firstly, this
classification method retains interpretability because each fea-
ture is interpretable by the construction of the representation,
making it straightforward to interpret the coefficients of the
logistic regression associated with a feature. Secondly, the
number of representations we use corresponds to the number

of times the initial time series can be halved while being
greater than a threshold (7" should be greater than this
threshold). In practice, the number of representations we
use for the UCR datasets rarely exceeds five. Keeping the
number of representations small is essential for preserving
interpretability. In particular, a large number of representations
has a strong negative impact on interpretability [S].

VI. EXPERIMENTS

In our experiments, the unsupervised architectures are
trained using only the training set. The symbolic test repre-
sentations are constructed by passing the test data through
the trained architecture. We also set the number of available
centroids to 32 (K = 32) and the dimension of the latent
space is 64 (Z = 64). For training the unsupervised models,
we set 5 to 0.25 in the loss (eq. [2) as realized in [12].

A. Quantitative experiments

The quantitative experiments are performed on 25 selected
datasets from the UCR archive [37]. These datasets meet
specific criteria: variety of application types (sensor, motion,
image, device), a minimum of 50 training and 50 test instances,
and a maximum of seven classes. Table [[] presents the results
of our model compared to the interpretable in-situ methods
SAX SEQL, SAX VSM, FS and LTS presented in Section [[I}
We also compare our accuracy results to the well-known K-
NN classifier coupled with Dynamical Time Warping (DTW)
distance [38]]. This classifier is sometimes presented as in-
terpretable, but it does not allow the extraction of localizable
discriminative features. We use the accuracy metrics from [23|]
for comparison. Referring to Table [, our method gives better
results than the other in-situ methods interpretable on average
on these datasets.

Our method results in a minimum 2.2 percentage points
increase compared to other interpretable in-situ methods. Even
if our method does not come first in all cases, the quantitative
results are very promising for two main reasons. First, only a
small subpart of all possible symbolic subsequences are used
as our method aims to enforce sparsity in order to favour inter-
pretability. Secondly, our representations are learned without
any supervision and thus are not guided by the underlined task.

In addition, we evaluate the accuracy of logistic regression
on our symbolic neural representation against SVM on top of
neural representation. This framework is often used to evaluate
the best unsupervised neural representation when the neural
representation is a simple vector [2], [4]]. Previous research has
found that the best-unsupervised methods with this framework
are TS2Vec [4] and T-Loss [2]]. We compare these two methods
with our own on the 25 previous datasets and find that all
three perform similarly in accuracy (0.789 £ 0.15 for T-Loss
and 0.807 £+ 0.15 for TS2Vec compared to 0.793 £ 0.13
for our method). These results suggest that the constraints
we impose on our architecture to satisfy the interpretability
requirement do not significantly deteriorate the expressiveness
of the unsupervised representation.



TABLE I
ACCURACY ON 25 UCR DATASETS COMPARE TO IN-SITU INTERPRETABLE
METHODS. THE BEST RESULTS ARE IN BOLD AND THE SECOND BEST
RESULTS ARE UNDERLINED.

Datasets Ours SSEAQ)i \Sfél\)jl FS | LTS DCT\\/V
Coffee 0.964{1.000 {0.929(0.929{1.000 | 1.000
Computers 0.728 0.676 |0.620[0.500 [ 0.584 | 0.620
DistalPhalanxOAG  [0.755]0.818 |0.842(0.655[0.779|0.626
DistalPhalanxOC 0.732]0.718 |0.728 {0.750{0.719{0.725
DistalPhalanxTW 0.64010.748 |0.604 [0.626 [ 0.626 | 0.633
Earthquakes 0.73410.789 |0.748[0.705[0.741 | 0.727
ECG5000 0.932]0.924 10.910{0.923{0.932{0.925
FordA 0.883]0.851|0.827(0.787(0.957 | 0.691
GunPoint 0.9400.987 |0.987(0.947(1.000{0.913
Ham 0.705]0.705 |0.810 {0.648 | 0.667 | 0.600
Herring 0.656| 0.578 |0.625(0.531{0.625(0.531
ItalyPowerDemand  [0.906|0.734 |0.816{0.917{0.970|0.955
LargeKitchenApp 0.864|0.760 |0.877[0.560|0.701 | 0.795
PhalangesOC 0.748]0.717 |0.710(0.744 {0.765 | 0.761
ProximalPhalanxOC [0.8180.818 |0.828 [0.804 [0.834|0.790
ProximalPhalanxOAG |0.839 | 0.844 | 0.824 {0.780 | 0.849 | 0.785
ProximalPhalanxTW [0.7710.792 |0.610{0.702{0.776|0.756
RefrigerationDevices |0.533]0.541 |0.653|0.333|0.515|0.440
ScreenType 0.4990.461 [0.512]0.413|0.429|0.411
ShapeletSim 0.99410.994 0.717 {1.000 [ 0.950 | 0.700
SmallKitchenApp 0.795| 0.776 |0.579(0.333[0.664 | 0.672
Strawberry 0.962| 0.954 10.957(0.903[0.911]0.946
Wafer 0.975]0.993 10.999 0.997 [ 0.996 | 0.995
Wine 0.759]0.556 {0.963 (0.759|0.500|0.611
Worms 0.714| 0.536 |0.558 {0.649(0.610{0.532
[Mean [0.793]0.770[0.769]0.715]0.764]0.725]

B. Qualitative experiment

Among the 25 previous UCR datasets, not all are suitable
for interpretability because a limited number of features cannot
discriminate between the classes. In most papers dealing with
in-situ interpretability for time series, the commonly used
datasets are GunPoint, ShapeletSim, or Coffee datasets [21],
[22]. For the qualitative analysis, we decide to focus on the
GunPoint and ShapeletSim datasets [37].

1) GunPoint dataset: The GunPoint dataset consists of two
actors performing a movement with their right hand, with two
classes: Gun-Draw (class 0) and Point (class 1).

a) Representations: The time series are z-normalized for
each instance. We train five models with different architecture
depths to capture different features in the time series. The
architectures is only trained using the train time series, then a
simple forward pass is used to get the representation for each
time series in the test dataset. After training, we obtain five
representations of different lengths. As shows in Table [[I} the
representation generalizes easily to the test.

b) Classification: For each trained representation rp we
construct the binary vector h2 (B € {1,2,3,4,5}). We then
fit a logistic regression for each representation separately. For
each logistic regression (eq. [3), p and X are found by cross-
validation [39]. We encourage a strong penalty ¢; to set to
zero the coefficients for non-discriminating features for each
representation. Table [[II| shows for each logistic regression the
initial number of features and the number of features whose
regression coefficient is different from zero.

TABLE II
INFORMATION ON THE DIFFERENT REPRESENTATIONS LEARNED FOR THE
GunPoint DATASET.

Depth Tempor?l repsr):slzrll)l(t):tcion Pqintwise Pointwise

downscaling ) train MAE |test MAE
ength

B=1| 21=2 75 0.044 0.045

B=2| 27=4 38 0.038 0.045

B = 25=38 19 0.032 0.047

B = 27 =16 10 0.027 0.085

B=5| 2°=32 5 0.023 0.085

TABLE III

INFORMATION ON LOGISTIC REGRESSION FOR EACH REPRESENTATION
(STEP 1 IN PROCESS [V-B).

Number of features actually

Depth | b size used to classify
B = 115 23
B=2| 203 26
B = 293 24
B = 328 26
B=5 187 11

Then, we fit the final logistic regression on each extracted
feature (whose regression coefficients differ from 0). The final
logistic regression performs on 110 features. After training, 89
coefficients are set to zero in this regression because of the
penalty effect. Initially, the concatenation of feature vectors is
a vector of size 1126, but only 21 features are ultimately used
for the classification problem.

The test accuracy is 0.94, and the train accuracy is 1. Now
that the final logistic regression is fitted, we can look at
the coefficients of this regression. Table shows the most
critical features (whose relative importance, their absolute
value divided by the value of the others, is greater than 5
percent).

TABLE IV
DETAILS OF THE MOST DISCRIMINATIVE FEATURES IN THE FINAL
LOGISTIC REGRESSION (STEP 3 IN PROCESS|[V-B)), INTERCEPT IS 5.13.

Symbolic | Logistic regression | Relative
Depth ! .
subsequence coefficients importance

B=1 bb -0.92 7.0 %
B=1 fc -0.93 7.2 %
B=1 hk - 1.20 9.2 %
B=1 kg - 0.98 7.4 %
B=1 kh - 0.76 5.8 %
B=3 Fx 1.23 9.4 %

Our representation is interpretable and allows us to decode
symbolic subsequences, so we can use the extracted features
and logistic regression coefficients to gain insight into the
problem. We can interpret the classification decision at the
global level as well as at the local level.

c) Global interpretability: 1t consists in visualizing
which feature at the model level allows the classification of
the time series correctly. With our architecture, decoding the
discriminative symbolic subsequences suffices to understand
what the unsupervised model learned, and visualize the recon-



structed subseries. Let us consider the symbolic sub-sequence
'Fx’ (for depth B = 3 in Table [IV). This sub-sequence is
the most discriminative sub-sequence for class one. When we
decode this subsequence in Figure 0] we obtain a subseries
that characterizes the way the finger is raised. This subseries
differs from the way the gun is raised.

—

Visualization of the
symbolic subsequence in
the time domain

Discriminative
Symbolic subsequence

Fig. 9. Global interpretability decision. Visualization of the most discrimina-
tive symbolic subsequence for class 1 (Point).

>

d) Local interpretability: It consists in visualizing for
an instance the regions of the time series that make the
decision. For example, take the symbolic subsequence "k’ (for
depth B = 1 in Table , which is the most discriminating
subsequence for class 0. Figure [T0] presents an instance whose
representation (B = 1) contains the subsequence ’hk’. Then,
we highlight in red the pre-image of this subsequence using
the receptive fields of the convolutions.

Symbolic

repr n

[ [h [ K] )

Encoder preimage|

Fig. 10. Local interpretability for a class 0 (Gun) instance.

2) ShapeletSim dataset: The ShapeletSim dataset com-
prises two classes, class O is purely white noise, and class 1
includes a triangle shape at a random location. The classifica-
tion problem is easily interpretable because only the presence
or absence of a triangle characterizes the difference between
the two classes.

As in the previous use case, we construct the different
symbolic representations in an unsupervised manner and then
extract the discriminative features. The highest coefficient in
the final logistic regression is associated with the symbolic
subsequence 'wjdddjw’. Figure [I1] presents visualization for
global interpretable classification decision. Using the decoder,
we decoded the subsequence 'wjdddjw’ and examined the
resulting decoded shape. We observed that the decoded shape
matches the vertex of the decoded triangle. It is worth noting
that this demonstration of global interpretability does not re-
quire any specific instance for visualization. On the other hand,
Figure [12] shows a visualization of the local interpretability for
the symbolic subsequence 'wjdddjw’ for a given sample. We
retrieve the triangular shape by computing the pre-image of
the discriminating subsequence for this given sample.

m . J ‘\ Visualization of the

| N
Discriminative symbolic ‘J ‘ symbolic subsequence
subsequence L
[

in the time domain

Fig. 11. Global interpratibility decision. Visualization of the most discrimi-
native symbolic subsequence for class 1 (includes triangle).

] Symbolic
representation

<—— | Encoder preimage

w]jlaldla]iw]

Fig. 12. Local interpretability for a class 1 (includes triangle) instance.

In the analysis of the ShapeletSim problem, we recognize
its inherent simplicity, as indicated by the high test accuracy
of 0.994 shown in Table |I| when identifying the discriminant
feature. However, it is an interesting dataset to visualize
interpretability performance.

VII. CONCLUSION

We first present essential requirements for building an inter-
pretable neural representation for time series and then present
an architecture that satisfies these requirements. The proposed
unsupervised symbolic neural model fills a gap between sym-
bolic and neural representations for time series. It has the ad-
vantage of allowing global interpretability of downstream clas-
sification tasks, while guaranteeing high expressiveness and
good performance. The constructed representation has been
evaluated both qualitatively and quantitatively on classification
tasks. We show promising results for accuracy compared to
both in-situ interpretable and neural methods. Additionally,
the proposed interpretability provides an understanding of the
model’s classification decisions at both global and local levels
for a broad range of time series. Much of our work has been
devoted to the study of an unsupervised and interpretable neu-
ral architecture for time series. The choice of reconstruction
loss in unsupervised architecture seems interesting for future
work. Furthermore, coordinate descent, as described in [40]],
may improve the accuracy of these models by identifying
longer symbolic subsequences that help distinguish between
classes.
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APPENDIX A
HOW TO COMPUTE RECEPTIVES FIELDS REGIONS

With our model, it is very useful to be able to calculate the
receptive fields and in particular the receptive field regions
relative to an element (or a region) of the representation. To
do this, we just need to adapt the following formulas computed
in [31]] to our architecture:

L

L -1
vo=vr [[si =D (L+m—k)[]s
i=1 i=1

=1

L

L -1
wo=ur [[si =Y o5
i=1 =1 i=1

Where:

e vp stands for the left-most coordinates of the receptive
field in the intial time series

e ug stands for the right-most coordinates of the receptive
field in the intial time series

o vy, stands for the left-most coordinates in the representa-
tion

o uy, stands for the left-right coordinates in the representa-
tion

e k; stands for the kernel size at depth 1

o s; stands for the stride at depth 1

o p; stands for the padding at depth 1

o L stands for the depth of the network

Thanks to these operations, we can highlight the receptive
fields of the elements of the representation in Figure and
Figure

APPENDIX B
IMPACT ON ACCURACY RESULTS OF THE NUMBER OF
AVAILABLE CENTROIDS (K)

The quantitive experiments in Subsection [VI-A| were per-
formed for 32 centroids available during the vector quanti-
zation (K=32). It is interesting to see how the number of
centroids affects the classification performance. Table [V|shows
the accuracy results averaged over the 25 UCR datasets on
which the experiments were conducted.

TABLE V
MEAN ACCURACY ON THE PREVIOUS 25 UCR DATASETS FOR DIFFERENT
K (k € {8,16,32}). THE BEST RESULT ARE IN BOLD AND THE SECOND
BEST RESULT ARE UNDERLINED.

k=38
0.753

k=16
0.778

k=32
0.793

Mean
accuracy

We observed that increasing the number of available cen-
troids improves accuracy. However, it harms the centroids’
expressiveness and, thus, the interpretability of the represen-
tation.

APPENDIX C
PROOF OF THE SHIFT EQUIVARIANCE PROPERTY

In this appendix, we propose to describe how the adaptive
polyphase downsampling/upsampling mechanism preserves
the shift equivariance property despite downsampling (or up-
sampling). To do so, we pick up the proof given in [29]]. We
first present the proof of shift equivariance for the adaptive
polyphase downsampling mechanism and then the adaptive
polyphase upsampling case is straightforward.

a) Definition:: We define the shift equivariance property
as follows. Let S be an element of a sequence (a single
element or a subsequence), and G the group of discrete
translations along the temporal axis. If we take 7 to be any
discrete translation in Gy and f to be a function equivariant
by discrete translation for G, then there exists 7/ € G+ such
that: f((S)) = 7/(f(5)).

b) Case 1: Adapative polyphase downsampling (APS-D)
for downsampling by half: : To explain the APS-D operation,
let us introduce s(¢) the convolutions output sequence of
length Tj;,. We can then define the two sub-sequences sy and
s1 such that so(t) = s(2t) and s1(t) = s(2t 4+ 1). The APS-D
operation Dj' consists in sub-sampling the sub-sequence s;
such that:

D3 (s) = s where [ =arg max||s;||; (for j € {0,1})

We introduce the following notations:

e Ty is a discrete translation by k
e saps = D4 (s) is the non shift sequence output
. sfﬁ,s = D4 (1x(s)) is the shifted sequence output

Then we have:

(k) Tr (saps), when k is even
g —_ 2
Saps =

Tk+2i—1 (SAPS), when k is odd
2

c) Case 2: Adapative polyphase usampling (APS-U) for
upsampling by two:: For the APS-U, the s signal is upsampled
by two. We insert 0 elements in each even or odd position ac-
cording to the phase chosen in the block of the corresponding
encoder. By construction, this operation is shift equivariant.
For more details on this operation, see the original paper [29].
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