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Abstract—Many datasets are of increasingly high dimension-
ality, where a large number of features could be irrelevant to
the learning task. The inclusion of such features would not
only introduce unwanted noise but also increase computational
complexity. Deep neural networks (DNNs) outperform machine
learning (ML) algorithms in a variety of applications due to their
effectiveness in modelling complex problems and handling high-
dimensional datasets. However, due to non-linearity and higher-
order feature interactions, DNN models are unavoidably opaque,
making them black-box methods. In contrast, an interpretable
model can identify statistically significant features and explain
the way they affect the model’s outcome. In this paper1, we
propose a novel method to improve the interpretability of black-
box models in the case of high-dimensional datasets. First, a
black-box model is trained on full feature space that learns
useful embeddings on which the classification is performed. To
decompose the inner principles of the black-box and to identify
top-k important features (global explainability), probing and
perturbing techniques are applied. An interpretable surrogate
model is then trained on top-k feature space to approximate the
black-box. Finally, decision rules and counterfactuals are derived
from the surrogate to provide local decisions. Our approach out-
performs tabular learners, e.g., TabNet and XGboost, and SHAP-
based interpretability techniques, when tested on a number of
datasets having dimensionality between 54 and 20,5312.

Index Terms—Curse of dimensionality, Black-box models,
Interpretability, Attention mechanism, Model surrogation.

I. INTRODUCTION

High availability and easy access to large datasets, AI
accelerators, and state-of-the-art machine learning (ML) and
deep learning (DNNs) algorithms paved the way for per-
forming predictive modelling at scale. However, in the case
of high-dimensional datasets (e.g., omics), the feature space
exponentially increases. Principal component analysis (PCA)
and isometric feature mapping (Isomap) are widely used to
tackle the curse of dimensionality [1]. Although they preserve
inter-point distances, they are fundamentally limited to lin-
ear embedding and tend to lose useful information, which
makes them less effective in dimensionality reduction [2].
The inclusion of a large number of irrelevant features not

1 This paper is accepted and included in proceedings of 2023 IEEE 10th International
Conference on Data Science and Advanced Analytics (DSAA’2023) 2 GitHub:
https://github.com/rezacsedu/DeepExplainHidim

only introduces unwanted noise but also increases computa-
tional complexity as the data becomes sparser. With increased
modelling complexity involving hundreds of features and their
interactions, making a general conclusion or interpreting the
black-box model’s outcome becomes increasingly difficult,
whereas many approaches do not take into account understand-
ing the inner structure of opaque models.

In contrast, DNNs benefit from higher pattern recognition
capabilities during learning useful representation from such
datasets. With multiple hidden layers and non-linear activation
functions within layers, autoencoder (AEs) can model com-
plex and higher-order feature interactions. Learning non-linear
mappings allow embedding input feature space into a lower-
dimensional latent space. Such representations can be used for
both supervised and unsupervised downstream tasks [3]. The
embedding can capture contextual information of the data [3].
However, predictions from such a black-box model can neither
be traced back to the input, nor it is clear why outputs are
transformed in a certain way. This exposes even the most
accurate model’s inability to answer questions like “how and
why inputs are ultimately mapped to certain decisions”. In
sensitive areas like banking and healthcare, explainability and
accountability are not only some desirable properties of AI
but also legal requirements – especially where AI would
have a significant impact on human lives [4]. Therefore, legal
landscapes are fast-moving in European and North American
countries, e.g., EU GDPR enforces that processing based on
automated decision-making tools should be subject to suitable
safeguards, including “right to obtain an explanation of the
decision reached after such assessment and to challenge
the decision”. Since how decisions are made should be as
transparent as possible in a faithful and interpretable manner.

Explainable AI (XAI), which gains a lot of attention
from both academia and industries, aims to overcome the
opaqueness of black-boxes and brings transparency in AI sys-
tems. Model-specific and model-agnostic approaches covering
local and global interpretability have emerged [5]. While local
explanations focus on explaining individual predictions, global
explanations explain entire model behaviour using plots or
decision sets. Although an interpretable model can explain
how it makes a prediction by exposing important factors that
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influence its outcomes, interpretability comes at the cost of
efficiency. Research suggested by learning an interpretable
model to approximate a black-box globally in order to pro-
vide local explanations [6]. A surrogate model’s input-output
behaviour can be represented in a more human-interpretable
using decision rules (DRs). DRs containing antecedents (IF)
and a consequent (THEN) provide intuitive explanations3 than
graph- or plot-based explications [6].

Further, humans tend to think in a counterfactual way by
asking questions like “How would the prediction have been
if input x had been different?”4. By using a set of rules and
counterfactuals, it is possible to explain decisions directly to
humans with the ability to comprehend the underlying reason
so that users can focus on 5 learned knowledge without em-
phasising underlying data representations. Keeping in mind the
practical and legal consequences of using black-box models,
we propose a novel method to improve the interpretability
of black-box models for classification tasks. We hypothesize
that: i) by decomposing the inner logic (e.g., most important
features), the opaqueness of a black-box can be mitigated
by outlining the most (e.g., top-k feature space) and least
important features, ii) by finding a sub-domain of full feature
space, would allow us training a surrogate model, which will
sufficiently be able to approximate the black-box model, and
ii) a representative decision rule set can be generated with the
surrogate, which can be used to sufficiently explain individual
decisions in a human-interpretable way.

II. RELATED WORK

Existing interpretable ML methods can be categorized as
either model-specific or model-agnostic with a focus on lo-
cal and global interpretability or either. Local interpretable
model-agnostic explanations (LIME) [7], model understanding
through subspace explanations (MUSE) [8], SHapley Additive
exPlanations (SHAP) [9], partial dependence plots (PDP),
individual conditional expectation (ICE), permutation feature
importance (PFI), counterfactual explanations (CE) [5] are
among others. These methods operate by approximating the
outputs of an opaque model via tractable logic, such as
game theoretic Shapley values (SVs) or local approximation
of complex or black-box models via a linear model [10].
Since these approaches do not take into account the inner
structure of an opaque black-box model, probing, perturbing,
attention mechanism, sensitivity analysis (SA), saliency maps,
and gradient-based attribution methods have been proposed to
understand the underlying logic of complex models.

Saliency map and gradient-based methods can identify
relevant regions and assign importance to each feature, e.g.,
image pixels, where first-order gradient information of a
3 An example rule for a loan application denial could be “IF monthly income
= 3000 AND credit rating history=BAD AND employment status=YES
AND married=YES, THEN decision = DENY” 4 “What would have been
the decision if my monthly income would be higher?” 5 “Although you’re
employed, given your monthly income of 2,000 EUR and having bad credit
rating history, our model has denied your application, as we think you’re
unlikely to repay. Even though you have had bad credit rating history, an
increase in your monthly income of 1,000 EUR will definitely end up with
acceptance, as you’re already employed.”

black-box model is used to produce heatmaps indicating
their relative importance. Gradient-weighted class activation
mapping (Grad-CAM++) [11] and layer-wise relevance prop-
agation (LRP) [12] are examples of this category that highlight
relevant parts of inputs, e.g., images to a DNN which caused
the decision can be highlighted. Attention mechanisms are
used in a variety of supervised and language modelling tasks,
as they can detect larger subsets of features. Self-attention
network (SAN) [13] is proposed to identify important features
from tabular data. TabNet [14] uses sequential attention to
choose a subset of semantically meaningful features to process
at each decision step. It also visualizes the importance of
features and how they are combined to quantify the con-
tribution of each feature to the model enabling local and
global interpretability. SAN is found effective on datasets
having a large number of features, while its performance
degrades in the case of smaller datasets, indicating that having
not enough data can distil the relevant parts of the feature
space [13]. Model interpretation strategies are proposed that
involve training an inherently interpretable surrogate model to
learn a locally faithful approximation of a black-box model [6].
Since an explanation relates the feature values of a sample to
its prediction, rule-based explanations are easier to understand
for humans. Anchor [15] is a rule-based method that extends
LIME, which provides explanations in the form of decision
rules. Anchor computes rules by incrementally adding equality
conditions in the antecedents, while an estimate of the rule
precision is above a threshold [16].

A drawback of rule-based explanations is overlapping and
contradictory rules. Sequential covering (SC) and Bayesian
rule lists (BRL) are proposed to deal with these. SC iteratively
learns a single rule covering the entire training data rule-by-
rule and removes the data points that are already covered
by new rules, while SBRL combines pre-mined frequent
patterns into a decision list using Bayesian statistics [6].
Local rule-based explanations (LORE) [16] is proposed to
overcome these issues. LORE learns an interpretable model of
a neighbourhood based on genetic algorithms. LORE derives
explanations via the interpretable model and provides local
explanations in the form of a decision rule and counterfactuals
- that signifies making what feature values may lead to a
different outcome. LIME indicates where to look for a decision
based on feature values, while counterfactual rules of LORE
signify minimal-change contexts for reversing the predictions.

III. METHODS

Each high-dimensional dataset has a large feature space.
Therefore, first, we train a black-box model to learn represen-
tations. Then, we classify the data points on their embedding
space instead of the original feature space. To decompose
the inner structure of the black box, probing and perturbing
techniques are applied to identify top-k features that contribute
most to the overall model’s decision-making. An interpretable
surrogate model is then built on top-k features to approximate
the black-box. Finally, decision-rules and counterfactuals are
generated from the surrogate to explain individual decisions.



Fig. 1: Workflow of our proposed approach (recreated based on Karim et al. [17])

A. Building black-box models

Figure 1 shows the workflow of our proposed approach for
interpreting black-box models. Input X is first fed into a DNN
to generate latent representations. It embeds the feature space
into a lower dimensional latent space, s.t. X is transformed
with a nonlinear mapping fΘ : X → Z, where Z ∈ RK

are learned embeddings, where K ≪ F . A fully-connected
softmax layer is added on top of DNN by forming a black-
box classifier fb. To parameterize fb, we train a convolutional
autoencoder (CAE). The function approximation properties
and feature learning capabilities help CAE extract deep and
quality features [3]. Further, since weights are shared among
layers, CAEs have the locality-preserving capability and can
reduce the number of parameters compared to other AEs.

A convolutional layer calculates feature maps (FMs) that
are passed through max-pooling to downsample by taking the
maximums in each non-overlapping sub-region, which maps
input X into a lower-dimensional embedding space Z [3]:

Z = gϕ (X) = σ (W ⊘X + b) , (1)

where encoder g(.) is a sigmoid function parameterized
by ϕ ∈ Θ that include a weight matrix W ∈ Rp×q and a
bias vector b ∈ Rq in which p and q are numbers of input
and hidden units, ⊘ is the convolutional operation, Z are the
latent variables, and σ is the exponential linear unit activation
function. The decoder h(.) reconstructs the input X from latent
representation Z by applying unpooling and deconvolution s.t.
Z is mapped back to a reconstructed version X ′ ≈ X as [3]:

X ′ = hΘ (Z) = hΘ (gϕ(X)) , (2)

where h(.) is parameterized by (θ, ϕ) ∈ Θ that are jointly
learned to generate X ′. This is learning an identity function,
i.e., X ′ ≈ hθ (gϕ(X)). Mean squared error (MSE) measures
the reconstruction loss Lr:

Lr(θ, ϕ) =
1

N

N∑
i=1

(X −X ′)
2
+ λ ∥W∥22 (3)

where λ is the activity regularizer and W is a vector con-
taining network weights. Therefore, hθ (gϕ(X)) is equivalent

to Ψ(W ′ ∗ Z + b′) [3], which makes X ′ = Ψ(W ′ ⊙ Z + b′),
where ⊙ is the transposed convolution operation, W ′ is
decoder’s weights, b′ is bias vectors, and Ψ is the sigmoid
activation function. The unspooling is performed with switch
variables [18] to remember the positions of the maximum
values during the max-pooling operation. Within each neigh-
bourhood of Z, both value and location of maximum elements
are recorded: pooled maps store values, while switches record
the locations. Z is feed into a fully-connected softmax layer for
the classification, which maps a latent point zi into an output
fb(zi) 7→ ŷi in the embedding space Z by optimizing categor-
ical cross-entropy (CE) loss (binary CE in the case of binary
classification) during back-propagation. Reconstruction- and
CE loss of CAE are then combined and optimized jointly [3]:

Lcae =

n∑
i=1

αrLr + αceLce , (4)

where αr and αce are the regularization weights for recon-
struction and CE loss functions, respectively.

B. Interpreting black-box models

We apply probing, perturbing and model surrogation tech-
niques to interpret the black-box model.

1) Probing with attention mechanism: The SANCAE ar-
chitecture, which in fig. 2 enables self-attention at the feature
level. An attention layer is represented as [13]:

l2 = σ
(
W2 ·

(
α
(
W|F | · Ω(X) + bl1

))
+ bl2

)
, (5)

where α is an activation function, bli is layer-wise bias,
and Ω is the following first network layer that maintains the
connection with input features X [13]:

Ω(X) =
1

k

⊕
k

[
X ⊗ softmax

(
W k

lattX + bklatt
)]

(6)

where X is first used as input to a softmax-activated layer
by setting the number of neurons to |F |, k is the number of
attention heads representing relations between input features,
and W k

latt
is a set of weights in respective attention heads. On

the other hand, the softmax function, which is applied to i-th
element of a weight vector v is defined as follows [13]:



Fig. 2: Schematic representation of SANCAE model (recreated based on Karim et al. [17])

softmax (vi) =
exp (vi)∑|F |
i=1 exp (vi)

(7)

where W k
latt
∈ R|F |×|F |, v ∈ R|F |, and latt represents

the attention layer in which element-wise product with X
is computed in forward pass to predict labels ŷ, where two
consecutive dense layers l1 and l2 contribute to predictions, ⊗
and ⊕ are Hadamard product- and summation across k heads.
As Ω maintains a bijection between features and attention
head’s weights, weights in |F |×|F | matrix represent relations
between features. We hypothesize that a global weight vector
can be generated by applying attention to the encoder’s bottle-
neck layer. The vector is used to compute feature attributions.
Unlike SAN, we apply attention to embedding space (en-
coder’s deepest conv. layer) that can be defined as follows
that maintains connections between latent features Z [13]:

Ω(Z) =
1

k

⊕
k

[
Z ⊗ softmax

(
W k

lattZ + bklatt
)]

. (8)

Embedding Z is used as the input to the softmax layer in
which the number of neurons is equal to the dimension of
embedding space. Softmax function applied to i-th element of
weight vector vz as follows [13]:

softmax (vzi) =
exp (vzi)∑|Z|
i=1 exp (vzi)

; vzi ∈ R|Z| (9)

Once the training is finished, the attention layer’s weights
are activated using softmax as follows [19]:

Rl =
1

k

⊕
k

[
softmax

(
diag

(
W k

latt

))]
, (10)

where W k
latt
∈ R|Z|×|Z|. As the surrogate is used to provide

local explanations, top-k features are extracted as diagonal of
W k

latt
and ranked w.r.t. their weights.

2) Perturbing with sensitivity analysis: We validate glob-
ally important features through SA. We change a feature
value by keeping other features unchanged. If any change
in its value significantly impacts the prediction, the feature
is considered to have a high impact on the prediction. We
create a new set X̂∗ by applying w-perturbation over feature
ai and measure its sensitivity at the global level. To measure
the change in predictions, we observe MSE between actual
and predicted labels and compare the probability distributions
over the classes6. Sensitivity S of a feature ai is the difference
between MSE at original feature space X and sampled X̂∗.
However, since SA requires a large number of calculations7,
we make minimal changes to top-k features only in order to
reduce the computational complexity.

3) Model surrogation: Model surrogation is a knowledge
distillation process by finding a sub-domain of feature space,
thereby approximating the teacher via student, under the
constraint that the student is interpretable. Since most impor-
tant features are already identified by the black-box fb, we
hypothesize that training a surrogate f on top-k feature space
would be sufficient. As described in algorithm 1, we train f
on sampled data X∗8 and ground truths Y .

Since any interpretable model can be used for the function
g [6], we train decision tree (DT), random forest (RF), and
XGBoost classifiers9 classifiers. DT iteratively splits X∗ into
multiple subsets w.r.t to threshold values of features at each
node until a leaf node containing decision is reached. The
mean importance of a feature ai is computed by going through
all splits for which ai was used and adding up how much
it has improved the prediction in a child node Q w.r.t Gini
IGQ =

∑N
k=1 pk · (1− pk), where pk is the number of

instances having label y∗k in Q. RF and XGBoost ensemble
randomized predictions to get the final decisions.

6 Two most probable classes in multi-class settings. 7 e.g., N × M ; N
and M are the number of instances and features. 8 A sub-feature-space
containing important features only. 9 Eventhough RF and XGBoost are
complex tree ensembles and known to be black-boxes, DTs can be extracted
from. The best DT estimator can be used for computing FI.



Algorithm 1: Black-box model surrogation
Input : A simplified version X∗ of dataset D (e.g.,

top-k feature space identified by fb),
black-box model fb, interpretable model type
t, and model parameters Θ∗.

Output: A surrogate model f and its predictions Ŷ ∗
test

on held-out test set.

X∗
train, Y ∗

train, X∗
test, Y

∗
test ←

TrainTestSplit(X∗, Y )

Xtrain, Ytrain, Xtest, Ytest ← TrainTestSplit(X,Y )

clf ← Etimator(t,Θ∗) // Create estimator

for all batches in train set ∈ X∗
train do

f ← clf.fit(X∗
train, Y

∗
train) // Train

surrogate

return f
end

M ← [f, fb] // List of models, where fb
is trained on Xtrain

for model ∈M do
// Generate predictions

Ŷtest ← fb.predict(Xtest) // for black-box

Ŷ ∗
test ← f.predict(X∗

test) // for surrogate

return {fb, Ŷ }, {f , Ŷ∗}
end

C. Feature impacts and decision rules

We assume the black-box fb has sufficient knowledge and
the surrogate f has learned the mapping Y ∗ = f(X∗). We
hypothesize that f is able to mimic fb. We compute permuta-
tion feature importance (PFI) for f as a view to global feature
importance (GFI). However, since PFI does not necessarily
reflect the intrinsic predictive value of a feature, features
having lower importance for an under-/overfitted model could
be important for a better-fitted model [20]. We use SHAP to
generate more consistent explanations. SHAP importance for
ai ∈ x is computed by comparing what f predicts with and
without ai for all possible combinations of M-1 features (i.e.,
except for ai) w.r.t SV ϕi [20]. Since the order in which the
features are observed by a model impacts its outcome, SVs
explain the output of a function as the sum of effects ϕi of each
feature being observed into a conditional expectation. If ai has
zero effect on the prediction, an SV of 0 is expected. If two
features contribute equally, their SVs would be the same [9].

To compute GFI, absolute SVs per feature across all in-
stances are averaged. Then, to generate consistent GFI, we
create a stacking ensemble of SVs by averaging the marginal
outputs from DT, XGBoost, and RF models. We derive deci-
sion rules from a root-leaf path in a DT: starting at the root

and satisfying the split condition of each decision node, we
traverse until a leaf node is reached (fig. 1 in supplementary).
Unlike in a DT, a decision can be reached through multiple
rules with excessive lengths. Given the huge feature space,
textual representations would obstruct human-interpretability
especially when the rule list length is large. Therefore, to
mitigate the issue of overlapping rules, we create an ordered
list of inclusive rules based on SBRL.

Rules with low confidence are insignificant in discriminating
classes and may not be useful in explaining the decisions.
Therefore, we filter rules that do not meet coverage, support,
and confidence. Besides, we restrict the antecedents to be
a conjunction of clauses (i.e., condition on feature ai). The
output of each rule is a probability distribution10. Using SBRL,
pre-mined frequent patterns are combined into a decision
list R having representative rules. Finally, the faithfulness is
computed w.r.t coverage that maximizes the fidelity of the rule
list. Similar to Grath et al. [21], we generate counterfactuals
by calculating the smallest possible changes (∆x) to input x
s.t. the outcome flips from prediction y to y′.

IV. EXPERIMENTS

We evaluate our approach on a number of datasets for
classification tasks. However, our approach is dataset-agnostic
and can be applied to any tabular dataset. We implemented
our methods in Python using scikit-learn, Keras, and PyTorch.
To provide a fair comparison, we train TabNet and XGBoost
classifiers as they are effective for tabular datasets. We train
multilayer perceptron (MLP) on PCA projection space. We
provide qualitative and quantitative evaluations of each model,
covering local and global explanations. We report precision,
recall, F1-score, and Matthews correlation coefficient (MCC)
scores. We assess the quality of rules w.r.t support and
fidelity. To assess how well f has replicated fb, R-squared
measure (R2) is calculated as the percentage of the variance
of the predictions from fb captured by the surrogate itself and
expressed as an indicator for goodness-of-fit [3]:

R2 = 1− SSE∗

SSE
= 1−

∑N
i=1 (ŷ

∗
i − ŷi)

2∑N
i=1 (ŷi − ŷ)

2
, (11)

where ŷ∗i is the prediction for f , ŷi is the prediction for fb
for X∗, and SSE and SSE∗ are the sum of square errors for
f and fb, respectively [6]. If f can be used instead of fb:

• if R2 is close to 1 (low error), the surrogate model
approximates the behavior of the black-box model very
well. Hence, the surrogate model f can be used instead
of the black-box model fb.

• if R2 is close to 0 (high error), the surrogate fails to
approximate the black-box, hence cannot replace fb.

A. Datasets

We experimented on four datasets: i) gene expression from
Pan Cancer Atlas project, having 20,531 features and covering
33 tumour types, ii) indoor localization (UJIndoorLoc) [22]

10 Probability an instance satisfies an antecedent to belong to a class.



TABLE I: Performance of individual models

Model Dataset Precision Recall F1 MCC

MLPPCA

Gene expr. 0.7745 0.7637 0.7553 0.7367
UJIndoorLoc 0.8652 0.8543 0.8437 0.7741
Health advice 0.8743 0.8679 0.8564 0.8067
Forest cover 0.7654 0.7547 0.7522 0.7126

XGBoost

Gene expr. 0.8725 0.8623 0.8532 0.7851
UJIndoorLoc 0.8964 0.8931 0.8836 0.7959
Health advice 0.9354 0.9301 0.9155 0.8211
Forest cover 0.8382 0.8265 0.8184 0.7963

TabNet

Gene expr. 0.9326 0.9276 0.9175 0.8221
UJIndoorLoc 0.9217 0.9105 0.9072 0.8051
Health advice 0.9455 0.9317 0.9178 0.8235
Forest cover 0.8953 0.8879 0.8854 0.8057

SANCAE

Gene expr. 0.9525 0.9442 0.9325 0.8353
UJIndoorLoc 0.9357 0.9269 0.9175 0.8233
Health advice 0.9623 0.9538 0.9329 0.8451
Forest cover 0.9112 0.9105 0.9023 0.8124

having 523 variables, iii) health advice having 123 variables11,
and ii) forest cover type dataset [23] having 54 variables.

B. Model performance analyses
We report the performance of each model w.r.t. increasing

latent dimensions in fig. 3. When the dimension increases,
accuracy also increases and the inter-model difference reduces,
until a certain point where accuracy decreases again. In
the case of lower dimensional datasets (e.g., health advice
and forest cover), accuracy improves up to 45 ≈ 55% of
projected dimension. However, embedding them into much
lower dimensions loses useful information to correctly classify
data points, yielding significant accuracy drop. In the case of
higher dimensional datasets (e.g., GE, UJIndoorLoc), more di-
mensions bring more noise than information, which makes the
classification harder (a model is no better than baseline, e.g.,
5% for GE and 9% for UJIndoorLoc). Projecting them into 5
≈ 7% embedding dimension unlikely to lose information.

MLPPCA asymptotically yields the lowest accuracy across
datasets (table I), while XGBoostIsomap slightly outper-
formed MLPPCA. As PCA features are projected onto an
orthogonal basis, they are linearly uncorrelated. PCA is similar
to a single-layered AE with a linear activation. Isomap learns
a projection that preserves the intrinsic structure, but it fails
to learn complex mappings. SANCAE and TabNet yielded
comparable accuracy as both models learn projections that
preserve relevant information for the classification. However,
SANCAE outperformed TabNet as CAE modelled non-linear
interactions among a large number of features and generate
classification-friendly representations. We investigate the pre-
cision plot and lift curve in fig. 6 and fig. 7: while the former
outlines the relation between predicted probability (that an
index belongs to positive) and the percentage of an observed
index in the positive class12, the latter shows the percentage
of positive classes when observations with a score above the
cutoff are selected vs. random selection. Besides, we observe
the decision boundary (DB)13 in fig. 5. Each model classifies

11 https://github.com/itachi9604/healthcare-chatbot 12 The observations get
binned together in groups of roughly equal predicted probabilities and the
percentage of positives is calculated for each bin. 13 Decision boundary is
a hyper-surface that partitions the feature space.

data points14 on one side of the DB as belonging to one class
and all those on the other side as belonging to another class.

C. Performance of surrogate models

The fidelity and confidence of the rule set on test sets
are demonstrated in table II. The mean fidelity is shown in
percentage and the standard deviations (SDs) for 5 runs are
reported as ±. Fidelity levels of 80%, 60% to 80%, and below
60% are considered high, medium, and low, respectively.

As of UJIndoorLoc, the XGBoost model achieved the high-
est fidelity and confidence scores of 90.25% and 89.15%, with
SDs of 1.38% and 1.57%. RF model performed moderately
well giving the second highest scores of 88.11% and 90.25%,
with SDs of 1.21% and 1.38%. As of health advice, XGBoost
achieved the highest fidelity and confidence of 91.38% and
90.25%, with SDs of 1.65% and 1.42%, respectively. RF
model also performed moderately well giving the second
highest fidelity and confidence of 90.11% and 89.45%, with
slightly lower SDs of 1.81% and 1.35%.

As of forest cover type, the XGBoost model achieved
the highest fidelity and confidence of 94.36% and 92.17%,
with the SDs of 1.35% and 1.34%. RF model performing
moderately well too, yielding the second highest fidelity
and confidence of 93.15% and 91.25%, with slightly lower
SDs of 1.42% and 1.31%. As of gene expression, XGBoost
model achieved highest fidelity and confidence of 93.45% and
91.37%, with the SDs of 1.25% and 1.35%. RF model also
performed moderately well giving second highest scores of
92.25% and 90.21%, with slightly lower SDs of 1.35% and
1.29%. The R2 for surrogates are reported in table III. The R2

for the XGBoost model is comparable to the best performing
SANCAE as well as the TabNet model.

D. Global interpretability

Accurate identification of the most and least significant
features helps understand their relevance w.r.t certain classes.
For example, biologically relevant genes provide insights into
carcinogenesis as they could be viewed as potential biomarkers
for specific cancer types. However, providing global and local
explanations for all datasets will be overwhelming, so we
focus on the gene expression dataset. Therefore, both GFI
and impacts are analysed to understand the model’s behaviour.
Common and important features (w.r.t GFI) identified with
SANCAE are identified, where GFI assign a score to input
features based on how useful they are at predicting a target
class or overall classes. However, unlike feature impact, fea-
ture importance does not provide which features in a dataset
have the greatest positive or negative effect on the outcomes.

Therefore, global feature impacts sorted from most to
least important of SHAP value, are shown in fig. 4, for
model SANCAE . SHAP gives slightly different views on fea-
ture impacts: SPRR1B, ADCY3, FAM50B, SEMA3E, SLN,
HAGLROS, CXCL10, VPS9D1-AS1, TRIM17, CLTRN,
APLP1, and CWH43 positively impact the prediction. It
signifies if the prediction is in favour of a cancer type (e.g.,

14 Shown 5 classes only as covering all 33 classes is overwhelming.

https://github.com/itachi9604/healthcare-chatbot


(a) Gene expression (b) Indoor localization

(c) Health advice (d) Forest cover type

Fig. 3: Mean accuracy w.r.t relative dimension of latent space across datasets. Shade indicates standard deviation. The
baseline is obtained by training the TabNet model on original feature space (i.e., 100% of the dimensions)

(a) Gene expression (b) Indoor localization

(c) Health advice (d) Forest cover type

Fig. 4: Global feature impacts sorted in terms of global feature impacts



TABLE II: Fidelity vs. confidence of rule sets for the surrogate models

DT RF XGBoost
Dataset Fidelity Confidence Fidelity Confidence Fidelity Confidence
UJIndoorLoc 86.16 ± 1.72 85.37 ± 1.53 89.27 ± 1.46 88.11 ± 1.21 90.25 ± 1.38 89.15 ± 1.57
Health advice 88.35 ± 1.45 87.55 ± 1.85 90.11 ± 1.81 89.45 ± 1.35 91.38 ± 1.65 90.25 ± 1.42
Forest cover type 90.23 ± 1.37 88.75 ± 1.32 93.15 ± 1.42 91.25 ± 1.31 94.36 ± 1.35 92.17 ± 1.34
Gene expression 91.27 ± 1.42 89.33 ± 1.25 92.25 ± 1.35 90.21 ± 1.29 93.45 ± 1.25 91.37 ± 1.35

(a) Gene expression (b) UJIndoorLoc

(c) Health advice (d) Forest cover type

Fig. 5: Decision boundaries for XGboost model across datasets for top-2 features

Fig. 6: Precision plot for the SANCAE model trained on GE dataset

COAD), these variables will play a crucial role in main-
taining this prediction. Conversely, TP53, CDS1, PCOLCE2,
MGP, MTCO1P53, TFF3, AC026403-1, BRCA1, LAPTM5,

SULT4A1, EN1, EFNB1, and GABRP have negative impacts
on the prediction. It means if the prediction is COAD and the
value of these variables are increased, the final prediction is



Fig. 7: Lift curve for the SANCAE model trained on GE dataset

TABLE III: Percentage of variance (R2) of surrogates

Dataset DT RF XGBoost
UJIndoorLoc 86.2 ± 1.7 89.3 ± 1.5 91.4 ± 1.5
Health advice 89.4 ± 1.5 92.1 ± 1.8 94.2 ± 1.7
Forest cover 90.3 ± 1.4 91.2 ± 1.4 94.3 ± 1.3
Gene expression 88.3 ± 1.4 90.2 ± 1.3 93.3 ± 1.5

likely to end up flipping to another cancer type.

E. Local interpretability

First, we randomly pick a sample from the test set. As-
suming XGBoost predicts the instance is of COAD cancer
type, the contribution plot (fig. 7 in supplementary) out-
lines how much contribution individual features had on this
prediction. Features (genes) DNMT3A, SLC22A18, RB1,
CDKN18, MYB are top-k features w.r.t impact values, while
features CASP8 and MAP2K4 had negative contributions.
Further, to quantitatively validate the impact of top-k features
and to assess feature-level relevances, we carry out what-
if analysis. As shown, the observation is of COAD with a
probability of 55% and BRCA type with a probability of
29%. Features on the right side (i.e., TFAP2A, VPS9D1-
AS1, MTND2P28, ADCY3, and FOXP4 are positive for
COAD class, where feature TFAP2A has the highest positive
impact of 0.29) positively impact the prediction, while fea-
tures on the left negatively. Genes TFAP2A, VPS9D1-AS1,
MTND2P28, ADCY3, FOXP4, GPRIN1, EFNB1, FABP4,
MGP, AC020916-1, CDC7, CHADL, RPL10P6, OASL, and
PRSS16 are most sensitive to making changes, while features
SEMA4C, CWH43, HAGLROS, SEMA3E, and IVL are less
sensitive to making changes.

If we remove feature TFAP2A from the profile, we would
expect the model to predict the observation of COAD cancer
type with a probability of 26% (i.e., 55% − 29%). This will
recourse the actual prediction to BRCA in which features IVL,
PRSS16, EFNB1, and CWH43 are most important, having
impacts of 0.23, 0.17, 0.123, and 0.07, respectively. These

features not only reveal their relevance for this decision but
also signify that removing them is like to impact the final
prediction. Further, we focus on local explanations for this
prediction by connecting decision rules and counterfactuals
with additive feature attributions (AFA) in fig. 8. While An-
chor provides a single rule outlining which features impacted
at arriving this decision, LIME generates AFA stating which
features had positive and negative impacts. However, using
decision rules and a set of counterfactuals, we show how the
classifier could arrive at the same decision in multiple ways
due to different negative or positive feature impacts.

V. CONCLUSION

In this paper, we proposed an efficient technique to improve
the interpretability of complex black-box models trained on
high-dimensional datasets. Our model surrogation strategy is
equivalent to the knowledge distillation process for creating a
simpler model. However, instead of training the student model
on teacher’s predictions, we transferred learned knowledge
(e.g., top-k or globally most and least important features)
to a student and optimize an objective function. Further,
the more trainable parameters are in a black-box model,
the bigger the size of a model would be. This makes the
deployment infeasible for such a large model in resource-
constrained devices15. Further, the inferencing time of large
models increases and ends up with poor response times due to
network latency even when deployed in a cloud infrastructure,
which is unacceptable in many real-time applications. We hope
our model surrogation strategy would help create simpler and
lighter models and improve interpretability in such a situation.

Depending on the complexity of the modelling tasks, a
surrogate model may not be able to fully capture a complex
black-box model. Consequently, it may lead users to recom-
mend wrong conclusions (e.g., in healthcare) – especially if
the knowledge distillation process is not properly evaluated
and validated. In the future, we want to focus on other model

15 e.g., IoT devices having limited memory and low computing power.



Fig. 8: Example of explaining single prediction using rules, counterfactuals, and additive feature attributions

compression techniques such as quantization (i.e., reducing
numerical precision of model parameters or weights) and
pruning (e.g., removing less important parameters or weights).
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