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Abstract—Edge Machine Learning (Edge ML), which shifts
computational intelligence from cloud-based systems to edge
devices, is attracting significant interest due to its evident benefits
including reduced latency, enhanced data privacy, and decreased
connectivity reliance. While these advantages are compelling,
they introduce unique challenges absent in traditional cloud-
based approaches. In this paper, we delve into the intricacies of
Edge-based learning, examining the interdependencies among: (i)
constrained data storage on Edge devices, (ii) limited computa-
tional power for training, and (iii) the number of learning classes.
Through experiments conducted using our MAGNETO system,
that focused on learning human activities via data collected from
mobile sensors, we highlight these challenges and offer valuable
perspectives on Edge ML.

Index Terms—Edge ML, Human Activity Recognition, Dy-
namic Class Integration, Incremental Learning

I. INTRODUCTION

The proliferation of Internet of Things (IoT) has led to
an exploding demand for network resources. Furthermore,
ensuring the security and privacy of users’ data is becoming
paramount across a multitude of applications. The paradigm
of Edge Machine Learning (Edge ML), seeks to address these
challenges by pushing ML pipelines to Edge devices [1]. One
of the intuitive use cases where IoT sensors intersect with ML
is Human Activity Recognition (HAR). This involves lever-
aging sensors from everyday commercial devices to deduce
a user’s activities. In fact, this case epitomizes many of the
characteristics and constraints of the field, underscoring the
imperative for ML on the Edge.

Traditional approaches for predicting human physical activ-
ity predominantly rely on training a classifier on a predefined
set of activity classes in a centralized cloud environment.
Subsequently, user measurements captured on devices are then
sent to the cloud for inference [2]. However, this centralized,
cloud-based learning approach suffers from three main draw-
backs: high latency due to user-cloud communication, lack of
flexibility and personalization to individual user’s needs, and
lower privacy control as user’s raw data is consistently relayed
over networks to the cloud.

In contrast with the conventional ML scenarios, where the
main processing is performed on remote cloud servers even
when applications run on local devices, Edge ML [3] brings
the core processing tasks to the edge devices. This approach
facilitates the deployment of optimized models and services
directly onto user devices or the edge network, ensuring

rapid real-time response, low latency, offline capability, and
enhanced security and privacy.

However, moving the inference, or more ambitiously, the
learning process to the Edge devices introduces a host of
significant challenges, stem primarily from the inherent lim-
itations of Edge devices, including (i) Model size, which
should be small enough to fit within the Edge but also to
operate efficiently, (ii) Data size, which should be very limited
due to the low storage capabilities within the Edge, and
(iii) Energy consumption, constraining the training process
to be very efficient without excessive power consumption.
Regarding on-device inference, recent advancements in Edge
ML have been notable. Many studies [4], [5] emphasize human
activity recognition on smart devices by training light ML
models in terms of memory and complexity. While there’s
interest in flexible ML models [6] that can learn new human
activities, like those using few-shots learning [7], [8], these
often overlook that unique constraints of the edge constraints.

This paper introduces the essential elements of our con-
trastive learning methodology for building and continually
updating ML models directly on the Edge. It demonstrates
the feasibility of incrementally learning new classes on the fly
directly on the Edge. Through our result analysis, we provide
practical insights into the performance and the technical con-
straints that may govern this sensitive task of learning on the
Edge, e.g., learning with limited observations or sequentially
learning more than one task. The rest of this paper is organized
as follows: Section II presents the MAGNETO system for
human activity recognition at a high level. Section III discusses
in more detail the different dimensions of the problem and
the modeling assumptions. Section IV reviews the results and
provides practical insights about learning on the Edge. Finally,
we conclude and provide some future work in Section V.

II. THE MAGNETO SYSTEM

Smart devices, including smartphones and smartwatches,
use built-in sensors to detect and predict user activities. This
area has garnered substantial interest recently, leading to
numerous studies and datasets like the Huawei-Sussex loco-
motion challenge [9] and the Transportation Mode Detection
dataset [10]. Big tech firms, such as Google1, Samsung,
and Apple2, have integrated these capabilities. Notably, most

1https://developers.google.com/location-context/activity-recognition
2https://developer.apple.com/documentation/coremotion/cmmotionactivity
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research and applications have predominantly adopted central-
ized or cloud-based approaches.

MAGNETO, sMArt sensinG for humaN activity rEcogni-
TiOn, is an implemented system that provides human activity
recognition via sensor measurements from ordinary, com-
mercial, smart devices (e.g., smartphones and smartwatches).
Despite the large body of literature, MAGNETO provides
inference of human activity on an Edge device, using a pre-
trained model, without transferring user’s data to the cloud.

Furthermore, MAGNETO is equipped with the ability to
incrementally learn new activities, i.e., classes, by capturing
extra user data in order to (i) re-calibrate an activity to be more
accurate for user’s personal style or (ii) re-train the model to
learn a custom new activity according to user’s habits, without
any data exchange with the cloud. We believe that the activity
recognition on the Edge combined with the capability of
learning new actions relying on personalized needs can enable
a new area in the health care, fitness or assistant applications.
In the next section, we present in detail the approach and the
followed nuances of the inference and learning on the Edge.

III. SYSTEM ARCHITECTURE

This section presents all the mandatory components of the
system architecture (Figure 1) as well as their interconnections.
The overall process can be split into two phases (i) cloud
initialization, which aims at pre-training our model in order
to avoid the usually high data and power demand of initial
models construction, and after transfers to the Edge device all
the functions and data that are mandatory for inference and
learning on the Edge. ii) Inference and Learning on the Edge,
which operates all the mandatory actions for inference and
learning new activities on the Edge without any exchange of
user’s data with the cloud.

Fig. 1. Illustration of the proposed architecture, showing the dependencies
between Cloud and Edge for model’s inference and learning

A. Cloud initialisation

The main components of the cloud initialization are:
Initial data set, Do: Those data, representing K initial

classes, are stored in the cloud for our model’s initial training,
using activity data from our measurement campaign.

The pre-processing function, P (·): This function processes
raw sensor data to prepare it for the ML algorithm. In our
implementation, the pre-processing function takes roughly 120
sequential measurements from 22 mobile sensors, such as ac-
celerometers and gyroscopes, over a one-second period. It then

calculates statistics like average, variance, average/variance of
the jerk for each feature sensor. In total, a set of 86 features
are extracted to represent the activity.

The Initial ML Model, F (·|Θo): using all the available
data Do and the preprocessing function P (·), a small neural
network F · |Θo of dimensions [1024× 512× 128× 64× 64],
with a contrastive loss cost function [11] and ADAM optimizer
is trained on the cloud. The choice of the contrastive loss is
motivated by its ease of adaptation and ability to learn on new
tasks with a very limited amount of data [12].

The support set Ds: For Edge learning, a foundational set
of observations is essential to facilitate the learning process,
whether it’s to create data pairs for contrastive or triplet loss, or
to leverage ”old” data to prevent catastrophic forgetting [13]).
This is termed the support set Ds. Comprising a fraction
of data samples from each class, Ds is significantly smaller
than the original dataset and is a subset of it, represented
as: |Ds| << |Do| and Ds ⊂ Do. The size of the support
set is pivotal to the learning process. Additionally, the exact
selection of the support set can influence the quality of the
learning process. However, determining the optimal makeup
of the support set, while crucial, is beyond this paper’s scope.

Prototypes Po: Using the support set and the trained model,
we calculate the prototypes of each class, on the latent space,
that are used for inference.

At the end of the initialization phase, the Web cloud passes
on the Edge device three mandatory items: (i) pre-processing
function, (ii) the Initial ML model, and (iii) the support set.

B. Inference and Learning on the Edge
1) Inference: Using the transferred components, the Edge

device is able to infer user’s activity on the fly by reading its
sensors and passing the captured measurements sequentially
from the pre-processing function P (·) to F (·|Θo) and compare
the output representation with the classes prototypes.

2) Learning new activities on the Edge: the processing
steps that take place on the Edge device are as follows:
• Samples Collection Dn: The user records samples of a

new activity not present in the initial dataset. This new
annotated data is integrated into the Edge device’s existing
support set Ds = Ds ∪ Dn.

• Model Re-training F (·|Θn): The extended support set is
used to retrain the existing model, expanding the learned
class count from K to K + 1.

• Prototype Update Pn: With the new support set and the
re-trained model, the class prototypes are updated.

It’s noteworthy that the process for re-calibration of an
existing class (tailored to a user’s behavior) mirrors the one de-
scribed earlier. The primary difference being, in re-calibration,
the current activity data in the support set is swapped with new
data, followed by retraining the model on the same activities.

IV. EXPERIMENTS AND INSIGHTS

In this section, we detail the experiments performed on a
real-world dataset. These experiments not only demonstrate
the viability of our proposed method but also shed light on
the primary constraints influencing Edge-based learning.
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(d) Learning performance of each of new classes (e) Average learning performance of the old classes
while learning the new one

(f) Overall performance of all the classes

Fig. 2. Performance results for single class learning on the Edge

A. Experimental Set-up

In experiments used our human activity dataset D, consisted
of more than 100GB of sensory data, annotated for 5 human
activities (Drive, E-scooter, Run, Still, Walk), that comes from
our data collection campaign. The dataset is split into training
and test sets D = {Dtr,Dts}. To make both subsets totally
disjoint, we ensure that there is a time distance of at least 10
seconds between the training and the test observations.

We selected accuracy and convergence speed as our perfor-
mance metrics for the learning process. Convergence speed is
determined by counting the number of training samples (batch-
wise) required for the algorithm to approach its final accuracy
within a margin of 2%. As mentioned before, we employed
a five-layer fully connected network with a contrastive loss
and Adam optimizer. Each training batch includes 512 sample
pairs from the designated training set, i.e., batch size is set to
512. The experimental process is the following:
1) From Dtr, one activity is excluded, forming the initial

dataset Do with K = 4 activities. This dataset is used
to train F (·|Θo).

2) A subset of Do is randomly sampled for each class as a
support set, Ds.

3) A part of the excluded class is used as observations of the
new class Dn. To eliminate any bias, the amount of the new
observations equals to the amount of the K existing classes
that are included in the support set, i.e., |Dn| = |Ds|/K.

4) Using the support set and new observations, the model
F (·|Θn) is re-trained.

5) Step 2 is repeated with varying support set sizes: |Ds| =
[1000, 500, 100] per class.

6) Steps 1-5 are reiterated five times for each class.

B. Performance Analysis
In this section, we discuss the different results with a

focus on three specific areas: (i) the feasibility of incremental
learning on the Edge, (ii) the impact of the support size on the
quality of the learning, and (ii) the performance of learning
multiple classes sequentially.

1) Learning Performance with respect to the new activity:
At first, we infer the new class data in the concept of zero-
shot learning, without re-training the initial model F (·|Θo).
Without any extra training of the model, the accuracy of the
new class is almost random choice 20%. Figure 2a shows the
embedding space of the initial model without training on the
Run activity. The model is mainly confusing Run with the Walk
activity. However, Figure 2b shows the updated embedding
space after a brief re-training of just 10 epochs using 200 Run
samples. This brief adaptation greatly enhances the distinction
of the new class. Hence, while zero-shot learning doesn’t align
with theoretical expectations, even a limited re-training with
minimal data from the new class can effectuate significant
improvement on model’s performance.

To delve deeper into how learning a new class affects the
performance of both the new and existing classes, we show in
Figure 2d, 2e, 2f the model’s performance on different metrics
per each new class, considering |Ds| = 1000. Notably, certain
new classes, such as Still, are learned faster than others (see



Figure 2d). Although, a broader perspective reveals that the
overall learning performance of all the classes is converging
similarly (see Figure 2f). Moreover, it’s remarkable to note that
the learning does not demand extensive iterations to converge
(≈40 batches). This agile convergence persists across varying
the size of the support set (see Figure 2c).

The outcome shows clearly the possibility of operating
incremental learning on the Edge despite the limited resources.

2) Learning Performance Vs Support set size: The next
important question arises concerning storage capacity required
by the Edge device to hold the support set. The support set is a
critical component for incremental learning as historical data
is needed to reconstruct or refine models, it is important to
discern the bounds and potentials of this parameter. Figure 2c
shows the average performance across all classes, with varying
sizes of the support set: [5000, 2500, 500] total observations.

Two salient observations emerge from this: i) The size of
the support set seems to not have an important effect on the
convergence speed. All cases converge around the 40th train-
ing batch; ii) There is a slight degradation in accuracy (less
than 2%) between the case of |Ds| = 5000 and |Ds| = 500.
This marginal trade-off, however, offers tangible benefits: the
support set’s size decreased by a factor of ten, leading to
diminished processing demands and a lighter storage footprint.
Both these facets are particularly advantageous within the
Edge environment, given its inherent resource constraints.

3) Learning Performance Vs Multiple new classes: The
last question has to do with the feasibility of sequentially
learning multiple activities directly on the Edge. To provide
an answer to this question, an initial dataset that includes only
two activities is first used to build the starting model. After
that, the model is sequentially trained over the other three,
i.e., one by one. To ensure a robust analysis, we generate 100
random realizations of activity combinations. For instance, one
particular sequence might involve kick-starting with an initial
set of (Drive, Walk), thereafter learning the Still activity first,
followed by E-scooter and concluding with Run. We report the
model’s average performance. Figure 3 shows the aggregated
accuracy from all the realizations using a support set of 1000
observations per class.

The obtained results expose interesting outcomes: First, the
sequential learning of multiple classes (activities) on the Edge
is doable. This is particularly important for the Edge context
where users dynamically increment their tasks. Second, there
is a degradation of roughly 30% at the beginning. This
could be explained by the fact that the initial model was
trained on the simple task of learning 2 activities and has
less generalization capabilities. Third, as new activities are
learned, the degradation exists, but the overall rate is slow,
maintaining very good overall performances of the system.
Finally, the convergence of the newly added classes seem to
become slower as we move forward in the sequence.

V. CONCLUSION

This paper explored and demonstrated the feasibility of
incremental learning on the Edge for human activity recog-

Fig. 3. Overall performance for adding sequential tasks. Accuracy in every
stage: Initial (2 activities) = 98.9, +1 activity = 96, +2 activities = 94.5 and
+3 activities = 93.1

nition. We highlighted interesting findings around the impact
of different factors, including the support set size and training
epochs. Furthermore, our research showcased the effects of
sequentially introducing multiple new classes. As for future
work, one can consider the scenario with more classes, and
explore more intricate machine learning tasks on the Edge.
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