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Abstract—Many real-world cyber-physical systems (CPS) use
proprietary cipher algorithms. In this work, we describe an
easy-to-use black-box security evaluation approach to measure
the strength of proprietary ciphers without having to know the
algorithms. We quantify the strength of a cipher by measuring
how difficult it is for a neural network to mimic the cipher
algorithm. We define new metrics (e.g., cipher match rate,
training data complexity and training time complexity) that are
computed from neural networks to quantitatively represent the
cipher strength. This measurement approach allows us to directly
compare the security of ciphers. Our experimental demonstration
utilizes fully connected neural networks with multiple parallel
binary classifiers at the output layer. The results show that
when compared with round-reduced DES, the security strength
of Hitag2 (a popular stream cipher used in the keyless entry of
modern cars) is weaker than 3-round DES.

Index Terms—black-box evaluation, cryptanalysis, neural net-
works, CPS ciphers

I. INTRODUCTION

For many real-world cyber-physical systems (e.g. keyless

entry of modern vehicles in Figure 1), it is common to use

lightweight symmetric ciphers. However, unlike the asymmet-

ric ciphers whose security can be reduced to the hardness of

mathematical problems, the security of symmetric ciphers is

required to be evaluated empirically. Cryptanalysis (e.g., [1]–

[4]) refers to the line of work that systematically measures the

strength of ciphers. Cryptanalysis of symmetric ciphers works

by launching various attacks and assessing whether or not a

cryptographic primitive is resistant to these attacks.

In traditional symmetric cryptanalysis, an attack is regarded

as successful if the key can be recovered with a complexity

less than the brute-force key search. There are several ex-

isting attack approaches (e.g., linear cryptoanalysis [2] and

differential cryptoanalysis [5]). A cryptanalyst has to launch

them one by one to evaluate a cipher. The security level of the

cipher is determined by the best-effort attack. For conventional

cryptanalysis, human intervention and manual effort play a

central role – an intrinsic limitation. Because a feasible attack

is enabled by certain unbalanced mathematical relationships

(e.g. linear approximation bias, high-probability differential

path). These unbalanced mathematical relationships need to

be manually identified. Due to the huge search space, one

cannot automatically exhaust all possible paths to identify

high probabilistic ones. Thus, conventional cryptanalysis has

limited scalability.

Besides, traditional cryptanalysis methods also require

knowledge of the cipher algorithm. Ciphers on commercial

cyber-physical systems (CPS) are usually proprietary, e.g.,

Hitag2, Megamos Crypto [6]. Traditional cryptanalysis ap-

proaches cannot be directly applied. Fully recovering the

cipher algorithm through reverse engineering may not always

be possible.

In this paper, we address the problem of black-box and

scalable cryptanalysis for symmetric ciphers, specifically how

to automatically measure the cipher strengths without the

knowledge of cipher algorithms. This problem has not been

addressed in the cryptanalysis literature. We define neural

cryptanalysis as a cryptanalysis approach that leverages the

learning ability of neural networks to measure the strengths of

ciphers.

We train neural networks to mimic cipher algorithms. The

stronger the cipher is, the more difficult it is for this cipher

to be mimicked. The training data is a collection of plaintext-

ciphertext pairs. The task is to predict ciphertexts on the input

of plaintexts. This task is equivalent to its opposite version,

predicting plaintexts from ciphertexts due to the symmetry

of encryption and decryption. The mimicking success breaks

the cipher by uncovering the mapping between plaintexts and

ciphertexts. We represent the mimic difficulty by prediction

accuracy and corresponding required training data and time.

Traditional cryptanalysis regards key extraction as the suc-

cess of the attack while neural cryptanalysis aims to predict

ciphertexts without knowing the key. Traditional cryptanalysis

performs delicate manual mathematical analysis to calculate

the influence of the key value to plaintext-ciphertext statistics.

Our approach is automatic and scalable. We further compare

them in Table I.

The closest related work on neural cryptanalysis is done by

Alani [9], [10]. The author claims to be able to successfully

predict plaintexts from ciphertexts of DES and 3-DES by

learning from around 211 and 212 plaintext-ciphertext pairs,

respectively. The work adopts a cascade neural network archi-

tecture. 1 However, our experimental findings suggest that the

claims in [9], [10] on full-round DES and 3DES cannot be

reproduced (further discussed in Section IV-A).

1Alani [9], [10] reported the average training time of 51 minutes and
72 minutes using MATLAB on a single computer for DES and 3-DES,
respectively.
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Approaches Required Data Required Knowledge Attack Goal
Attack Success

Condition
Attack Enabler

Cryptanalysis
Plaintext-ciphertext

Pairs
Cipher Algorithm Key Recovery

Attack Complexity
< Exhausitive Key
Search Complexity

Unbalanced
Statistical
Property

Learning-aided

Cryptanalysis (e.g. [7], [8])

Plaintext-ciphertext
Pairs

Cipher Algorithm Key Recovery

Attack Complexity
< Exhausitive Key
Search Complexity

Unbalanced
Statistical
Property

Neural Cryptanalysis
Plaintext-ciphertext

Pairs
No Further Knowledge Ciphertext Prediction

Cipher Match Rate
> Base Match Rate

Predictability by
Neural Network

TABLE I: Comparison between differential cryptanalysis and neural-cryptanalysis.

Our neural cryptanalysis approach should not be confused

with learning-aided cryptanalysis that applies neural networks

to improve the statistical profiling in the conventional crypt-

analysis (e.g., as in [7], [8]). These solutions are still based

on traditional cryptanalysis, e.g., requiring the knowledge of

cipher algorithms. Our neural cryptanalysis has completely

different attack goals and methodology.

Fig. 1: Car keys with Hitag2 transponders shown in [11]

Our contributions are summarized as follows.

• We present a new methodology to evaluate the strength

of cipher primitives with neural networks. Compared

with traditional cryptanalysis, it does not rely on the

knowledge of cipher algorithms. We define the difficulty

of mimicking a cipher by three metrics, cipher match

rate, training data, and time complexity, to measure the

strength of a cipher.

• We show the effectiveness of neural cryptanalysis on

round-reduced DES and proprietary cipher Hitag2. The

experiments show that the strength of Hitag2 is weaker

than the 3-round DES in neural cryptanalysis. We discuss

the network architecture by applying three different net-

works. Experiments show that the most powerful attack

neural network varies from cipher to cipher. While a fat-

and-shallow shaped fully connected network is the best

to attack the round-reduced DES, a deep-and thin shaped

fully connected network works best on Hitag2.

• We compare three common activation functions (e.g.

sigmoid, relu, tanh) in neural cryptanalysis. Experiments

show that Sigmoid converges more quickly than the other

two activation functions, which means it can reach certain

accuracy with the minimum training time. There is no

substantial difference in the converged cipher match rate.

We explore the impact of the training data volume on the

converged cipher match rate. It shows that more training

data significantly improves the converged cipher match

rate. With 216 Hitag2 training pairs, the neural network

achieves a cipher match rate of around 66%. When

training with 220 pairs, the cipher match rate reaches

98%.

Neural cryptanalysis enables the automatic black-box eval-

uation of cipher strengths. This evaluation methodology ap-

pears quite powerful and exciting, potentially applicable to all

ciphers, enabling researchers to compare cipher strengths in a

unified framework.

II. BACKGROUND AND CIPHER MIMICKING

Conventional cryptanalysis heavily relies on unbalanced

statistical properties. According to the different ways to find

the unbalanced properties, cryptanalysis is categorized into

different approaches. Differential cryptanalysis is one of the

most common approaches among them. We use it as the

representative to introduce conventional cryptanalysis.

Definition 1 (Difference). The difference ∆ of two equivalent

length bit streams P1 and P2 is defined as ∆ = P1 ⊕ P2 .

Definition 2 (Differential Path). When two plaintexts are

encrypted by a multi-round cipher, a k-round differential path

∆i → ∆i+k is a path where their difference is ∆i at the i-th
round and ∆i+k at the (i+ k)-th round, respectively.

Definition 3 (Probability of Differential Path ∆i → ∆i+k).

Given a fixed path, its probability is the fraction of plaintext

pairs that have the difference ∆i+k at the (i + k)-th round

among all the pairs having difference ∆i at the i-th round.

A conventional differential cryptanalysis approach (e.g., [1],

[5]) works as follows.

1) ATTACK PATH CONSTRUCTION PHASE: There are two

steps: the p rounds and the q rounds. The attacker’s

goal is to construct a p-round differential path with a

sufficiently high probability. Given an attacker-chosen

plaintext difference ∆0, each possible value of the

difference ∆p at the p-th round should occur with the

approximately equivalent probability of 2−n in a perfect

information-theoretically secure cipher, where n is the

length of the plaintext-ciphertext.

In reality, when there is a path with a much higher

probability than 2−n, an attacker may leverage it to infer

the subkey involved in the last q rounds. q is usually a

small value.

2) SUBKEY EXTRACTION PHASE: The attacker is assumed

to know many plaintext pairs satisfying the above ∆0
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and their corresponding ciphertext pairs. The high prob-

ability of differential path ∆0 → ∆p guarantees that

there are much more pairs having the given difference

∆p at the p-th round than an arbitrary value. All of these

ciphertext pairs are partially decrypted to the p-th round

by a guessed subkey in the last q round.

• If the guessed subkey is correct, then the calculated

differences at p-th round would match ∆p with the

expected high probability.

• If the guessed subkey is wrong, then the partial

decryption is meaningless. The attacker picks a new

guess and repeats.

3) EXHAUSTIVE SEARCH PHASE: With the known subkey

bits identified in the above phase, the attacker aims to

extract all the unknown key bits by trying all the pos-

sible key combinations, a partial brute-force approach.

The attack complexity required to crack the secret key

represents the strength indicator.

Differential cryptanalysis relies on the identified multi-

round high-probability differential paths. The entire path space

is too large to search exhaustively. Thus, human’s intuition and

experiences are important.

Mimicking ciphers by neural networks. In neural crypt-

analysis, we assess the strength of a cipher by measuring how

easy it is for a neural network to mimic the cipher. Intuitively,

an attacker should not compute ciphertexts from plaintexts, or

vice versa. Thus, a neural network (without the key) should not

be able to compute ciphertexts, either. The cipher’s strength is

reflected by how well an entity (a neural network) mimics the

cipher’s operations. We test whether or not a neural network

trained on plaintext-ciphertext pairs can output the correct

ciphertexts on new plaintexts. Intuitively, in our model the

easier a cipher algorithm can be mimicked by a well trained

neural network, the less secure this cipher is.

Choice of neural network architectures. Different net-

work architectures have different advantages. Long short-term

memory (LSTM) is good at predicting sequence dependency

relationships while convolutional neural network (CNN) is

good at extracting features within a small local area. Neither

of them fits the cipher algorithm case, as symmetric ciphers

usually apply substitutions and permutations among bits. Fully

connectivity is able to represent these relationships between

bits. Thus, we choose fully connected neural networks.

Ideally, the relationship between the ciphertext and plaintext

should achieve: 1) each bit in the plaintext can have influences

on all of the bits in the ciphertext and vice versa; 2) ciphertext

is designed to be close to a randomly generated binary stream.

Therefore, we decide to choose the multi-layer fully connected

neural network as the architecture and the softmax classifier

for each bit of the ciphertext stream. The full connection

ensures that each bit in the plaintext stream can have an impact

on every bit in the ciphertext.

Besides the regular fully connected neural network, we also

evaluate cascade fully connected neural networks mentioned in

[9]. The ordinary one only fully connects adjacent layers. The

cascade network includes the extra full connection between

interval layers. We compare this cascade architecture with the

ordinary fully connected architecture.

The ability of neural networks also varies from their scale

and shape. Intuitively, a larger neural network with more

parameters has a more powerful mimic capability. Is a fat but

shallow neural network better or a deep but thin neural network

better for the cipher mimic task? To answer this question,

we also perform experiments with two neural network models

under opposite shape settings.

Choice of metrics. Given a n-bit ciphertext, we count the

correct prediction for every single bit independently instead of

the entire ciphertext. Therefore, we count the bitwise cipher

match rate as the neural network’s prediction accuracy.

The converged training time and required minimum training

dataset are also important indicators of the mimic difficulty.

According to our measurement, this training complexity varies

from different neural network architectures. However, there is

no single neural network architecture that always outperforms

others across all objectives. Therefore, we decide to quantify

the cipher strength as its optimal attack complexity ever

achieved.

Best-effort strength evaluation For each cipher, we apply

multiple neural networks in a network suite to mimic it. The

best-effort mimicking metrics (i.e. highest accuracy and lowest

complexity) are identified as its strength. Similar to traditional

case, the strength is a relative notion to the attacking capability

– the neural network suite. We can never conclude a cipher

is absolute strong since more powerful attack may appear

in the future. Similar limitations also exist for conventional

cryptanalysis. The neural network suite indicates the current

attacking capability.

III. DEFINITIONS, METRICS, AND COMPUTATION

Symmetric encryption is generally described as the relation-

ship C = E(P, k), where C denotes the ciphertext space, P
denotes the plaintext space, k is the secret key, and E(·) is

the encryption algorithm. Traditional cryptanalysis evaluates

ciphers by attack complexity for cracking the key k with the

knowledge of P , C and E(·).
In neural cryptanalysis, we assume that E(·) is unknown.

Therefore, we transfer the goal as mimicking the operation

E(·, k), instead of cracking key k. The difficulty of mim-

icking algorithm E(·, k) is our security indicator. We choose

to represent E(·, k) as a trainable neural network. Like an

encryption algorithm, this neural network takes plaintexts as

input and outputs ciphertexts, without the knowledge of key

k. Intuitively, stronger ciphers are more difficult for neural

networks to mimic. We formalize neural cryptanalysis as a

4-element tuple (M1,M2, N, S) in Definition 4.

Definition 4 (Neural-cryptanalysis System). A neural crypt-

analysis system can be described as a tuple (M1,M2, N, S),
where M1 and M2 are two mutual exclusive finite sets of

plaintext-ciphertext pairs (p, c) that satisfy c = E(p, k),
p ∈ Zm

2 , and c ∈ Zn
2 . Z2 denotes the binary value space
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{0, 1} and Zt
2 represents a binary stream of length t. N is a

set of neural networks trained by M1 and tested by M2. S
is the strength indicator generated by training and testing the

neural networks in N .

Our cryptanalysis consists of three operations, CIPHER

DATA COLLECTION, MIMIC MODEL TRAINING, and SECU-

RITY INDICATOR GENERATION. We briefly describe the first

two operations, as they are straightforward. We present the

CIPHER STRENGTH QUANTIFICATION operation in more de-

tails.

CIPHER DATA COLLECTION collects required plaintext-

ciphertext pairs to train and test the neural networks using the

black-box cipher. We collect two sets of plaintext/ciphertext

pairs, M1 for training and M2 for testing.

MIMIC MODEL TRAINING trains multiple neural networks

to mimic the target cipher and to identify the one with the

best performance. We train a neural network suite N . Each

candidate neural network is trained with pairs M1. The neural

network suite is the key to the maximum attack capability.

We include three multi-binary classifier neural networks in

the neural network suite in this work. The details are shown

in Fig. 2. Each cipher bit is predicted by a softmax binary

classifier. The entire n-bit ciphertext is predicted by n softmax

classifier, separately. These three networks differ from the

connection and shape. Fig. 2a and Fig. 2b are two fully

connected neural networks. Fig. 2a is a deep and thin network

with 4 thin hidden layers. Each layer has 128 neurons. Fig. 2b

is a fat and shallow network with 1 fat hidden layer which has

1000 neurons. Fig. 2c is a network with cascade connection.

Besides the full connection between every two adjacent layers,

every two interval layers are also fully connected. We select

one successful size setting from [10]. It has four hidden layers

with the size 128, 256, 256, 128 neurons, respectively.

SECURITY INDICATOR GENERATION computes a security

strength metric S composed of mimicking accuracy and

complexity. We gradually increase the training data until the

mimicking accuracy cannot be further improved. The maxi-

mum mimicking accuracy with its minimally required training

complexity is used as the final cipher security indicator.

If one cipher holds a higher prediction accuracy while the

other cipher holds a lower training complexity, our analysis

prioritizes the accuracy metric.

The final security indicator S is composed of three ele-

ments (Cmr,Compdata, Comptime), where Cmr is the ci-

pher match rate (Definition 5), Compdata is the minimum

required training data, and Comptime is the converged training

time. The last two elements represent the attack complexity.

Cipher match rate representing the mimicking accuracy is

defined next.

Definition 5 (Cipher Match Rate). Cipher match rate Cmr ∈
[0, 1] is the bitwise accuracy for the ciphertext prediction

of a neural network in neural cryptanalysis. When m n-bit

ciphertexts are generated by the neural network,

Cmr =

∑m

i=0

∑
j∈[0,n−1],cij=c′ij

1

m× n

where cij and c′ij denote the correct and predicted j-th bit of

i-th ciphertext, respectively.

We represent the entire evaluation process of neural crypt-

analysis in Algorithm 1

Algorithm 1: Pseudocode for neural cryptanalysis evalu-

ation. Each plaintext is a m-bit binary stream.

Result: S = (Cmr,Compdata, Comptime)
Initialization: Set Hyperparameter m1,m2, Cmrbase
(2m1 is the number of plaintext-ciphertext pairs in M1;

2m2 is the number of pairs in M2; Cmrbase is the base

match rate.);

Cmr = 0, Cmrimprove = 0, Compdata = m1 − 1;

Generating M2: Randomly select 2m2 plaintexts and

obtain corresponding ciphertexts;

while (Cmr 6 Cmrbase or Cmrimprove > 0) and

Compdata < m−m2 do

Compdata = Compdata + 1;

Cmrimprove = 0;

Generating M1 Randomly select 2compdata

plaintexts p ∈ Zm
2 and p /∈ M2, obtain

corresponding ciphertexts.;

for each neural network model ni ∈ N do

Train ni to converge with iter iterations;

Comptime = iter;

Cmrni
= test bitwise accuracy with M2;

if Cmrni
> Cmr then

Cmrimprove+ = Cmrni
− Cmr;

Cmr = Cmrni
;

else

end

end

end

IV. EXPERIMENTAL EVALUATION

We apply neural cryptanalysis on the round-reduced DES

and a real-world widely deployed CPS cipher Hitag2. We also

systematically evaluate how various neural network parameters

impact the cryptanalysis outcomes and compare the security

strengths of Hitag2 and round-reduced DES.

Experimental setup. Because the full-round DES algorithm

is complex, it is common to first analyze a round-reduced

version [1]. Due to its symmetry, there is no difference

between predicting ciphertexts from plaintexts and prediting

plaintexts from ciphertexts. Hitag2 is a stream cipher which

generates one secret bit at a time based on a 48 bits state

value in a linear-feedback shift register (LFSR). Hitag2 has

been reverse engineered in [12].

Our experiments aim to answer the following questions.
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Fig. 2: Three different neural network architecture applied in experiments

1) How well do the three neural networks mimic cipher

algorithms?

2) How do the various factors (e.g. network shapes, con-

nections, activation functions, and training data volume)

impact the mimicking capabilities?

3) How strong is the cipher Hitag2 compared with a round-

reduced DES?

The three neural networks are implemented with Tensor-

flow. We use the sigmoid activation function as the default

choice except for the comparative experiments on activation

functions. We choose the softmax classifier and the cross-

entropy loss function for backward propagation optimization.

The maximum training epoch is set to 350. The batch size

is 1000. We use a personal laptop to run the training tasks.

We compare the attack capability between the three different

neural networks: i) a fat and shallow neural network, ii) a thin

and deep neural network, and iii) a cascade neural network

from [9].

A. Impact of Different Networks on DES

To decide whether the attack succeeds, we use a base match

rate as the baseline accuracy. In our experiment, when and

only when the cipher match rate is higher than the base match

rate, the attack is regarded as successful.

Base Match Rate of 1-round DES The base match rate

for most ciphers is 50%, which can be achieved by random

guess statistically. However, we set the base match rate as

75% for 1-round DES. The reason for which is explained

next. DES algorithm follows the Feistel structure. In such a

structure, cipher bits are separated into two equivalent length

parts. In each round, only one part (half block) is updated

by the cryptographic round function. The other half is only

permuted by bit shifting. Therefore, we assume the half block

bits updated by the cryptographic functions is hard to guess

while the other half is easy to guess. In that case, the base

match rate for the difficult half is still 50%, however, the base

match rate for the simple shifting half is 100%. Therefore, for

the entire 64 ciphertext bits, the base match rate is 75%.

We implement the round-reduced DES and collect two 217

plaintext/ciphertext pairs. Half of them are used to train the

three neural networks. The other half is used to test the well-

trained model. As shown in Fig. 3, the fat and shallow network
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Fig. 3: Predicted Accuracy on 1-round DES

achieves the highest accuracy. It almost perfectly predicts the

ciphertext bits with the cipher match rate of 99.7%. The other

two neural networks only achieve 75% cipher match rate,

which is no better than the base match rate for one-round DES.

It means that the two networks are not better than random

guessing for the right 32 bits cryptographic function output.

Therefore, we conclude that when the attack object is DES-

like algorithms, the fat and shallow shaped network is the best

choice among the three neural networks.

B. Impact of Different Activation Functions on DES

Activation functions are the only non-linear components

of the neural networks. There are three common activation

functions sigmoid, tanh and relu. We conduct comparative

experiments on the three activation functions. We use the

fat and shallow network in the comparative experiments for

activation functions. The result is shown in Fig. 4. They reach

similar cipher match rates. However, sigmoid function learns

much faster than tanh and relu functions.

C. DES Measurement Results

Based on the former experiments, we identify the fat and

shallow network with sigmoid activation as the optimal choice

among these settings for DES. We test higher rounds DES

to observe the mimicking capability of this neural network.

The mimic results for 1-round, 2-round and 3-round DES are
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Fig. 4: Influence of Activation Functions
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Fig. 5: Attack capacity summary for round-reduced DES

shown in Fig. 5. (Only 1-round DES holds the base match

rate as 75%. 2-round and 3-round DES have the base match

rate of 50%.) The fat and shallow neural network successfully

attacked 1-round DES and 2-round DES, with the cipher match

rate higher than their base match rate. However, this network

cannot mimic 3-round DES successfully. The cipher match rate

stays at 50%. Therefore, this model cannot evaluate ciphers

stronger than 3-round DES. The reason is likely the simplicity

of the network used in these experiments. To evaluate more

complex cipher algorithms, more sophisticated architecture

or larger scale neural networks with more parameters are

required. We leave it as future work.

D. Hitag2 Measurement Results

Besides the round-reduced DES, we also conduct exper-

iments on Hitag2, which is a widely deployed stream ci-

pher used in modern car key systems. Stream ciphers differ

from block ciphers. Block ciphers (e.g. DES) encrypt n bits

plaintext into n bits ciphertext with a key. Stream ciphers

consistently output an unlimited secret stream bit by bit.

The single output bit is calculated based on an m-bit binary

stream held in an LFSR. Then, the state of the LFSR is

automatically updated and another secret bit is output based

on the updated binary stream in the LFSR. We regard the
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Fig. 6: The predicted accuracy of Hitag2 on two models

block cipher algorithm as a n bits to n bits mapping and the

stream cipher algorithm as m bits to 1 bit mapping. Neural

cryptanalysis treats the 2 cipher mimicking tasks the same.

Hitag2 only outputs 1 bit at a time. Our neural networks only

have 1 softmax binary classifier rather than 64 classifiers as

in the DES cases.

We implemented Hitag2 and collected 217 input/output

pairs. 216 pairs are used as training data and 216 pairs are

used in the evaluation. We apply the fat and shallow network,

deep and thin network to mimic Hitag2 cipher. The cascade

connection architecture is discarded because it does not show

any advantage over the ordinary full connectivity architecture

in the DES experiments.

Figure 6 displays the increasing cipher match rate along the

training epochs for Hitag2. With the cipher match rates being

higher than 50%, both the two networks mimic the Hitag2

successfully. The deep and thin network outperforms the fat

and shallow one. However, this result is contrary to DES cases

in Section IV-A. The fat and shallow network shows more

power to attack round-reduced DES than the deep and thin

network. This observation suggests that there is no single one

optimal choice for all ciphers.

E. Impact of Training Data Size

We measure whether or not a larger training data set can

substantially improve the converged cipher match rate.

In Section IV-D, with 216 pairs training data, the maximum

cipher match rate of the fat and shallow neural network is

around 66%. We increase the available training data to 220

pairs and test the converged model on the same test set. Fig. 7

shows that when training set increases to 220 from 216, the

cipher match rate rises to around 98% from 66%.

To compare the cipher strengths between two cipher primi-

tives, we maximize their cipher match rates by increasing the

training data. The maximum cipher match rate with its data

and time complexity are used for the comparison.

F. Security Comparison w.r.t. Round-reduced DES

We compare the security level of Hitag2 with respect to var-

ious round-reduced DES algorithms. As visualized in Fig. 8,
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Fig. 8: Comparison of Hitag2 and Round-reduced DES. The

left y-axis shows the cipher match rate. The right y-axis shows

the minimum training data and time complexity required

to achieve such a cipher match rate. The data and time

complexity is shown in log scale.

the optimal attack result for 1-round DES is (99.7%, 216, 219).
The optimal attack result for Hitag2 is (98%, 220, 222). The 3-

round DES is not attacked successfully with the 220 training

data and 230 iterations. Therefore the strength of Hitag2 is

located between the 1-round DES and 3-round DES, indicating

very weak security.

Summary of findings. From these experiments, we observe that

the following findings.

• Fully connected neural networks successfully mimic the

1,2-round DES and Hitag2.

• For different ciphers, the most powerful mimicking neural

networks may be different. This result indicates that one

needs to try different neural networks when evaluating a

new unknown cipher.

• The network with Sigmoid activation function learns

faster than Tanh and Relu. However, there is no substan-

tial difference in their converged cipher match rates.

• More training pairs significantly increase the converged

cipher match rate as expected.

V. DISCUSSION

We train neural networks to predict ciphertexts from plain-

texts. One can use the approach to predict plaintexts from

ciphertexts. It is equivalent to mimic the reverse function of a

cipher algorithm.

CHOICE OF BASE MATCH RATE The base match rate is

a manually defined baseline of cipher match rate. When

the network fails to learn any useful information from the

plaintext-ciphertext pairs, the cipher match rate is always

around 50% for a large test set. A higher cipher match rate

indicates that useful information to predict the cipher bits is

learned from the plaintext-ciphertext pairs. In the one-round

DES case, half cipher bits are updated by the cryptographic

function while the other half cipher bits are shifted from the

plaintext bits. Thus, we set the base match rate of 1-round

DES to be 75%, instead of 50%.

LIMITATIONS AND FUTURE WORK Although successfully

mimicking Hitag2, the neural networks we use are simple.

These simple neural networks can only evaluate ciphers

weaker than 3-round DES. To evaluate more complex or

non-deprecated ciphers in the Federal Information Processing

Standard (FIPS) Publication 140-2, more powerful neural

networks are required. We plan to improve the attack capability

in the future work. It involves the following open problems.

HOW TO DESIGN THE NEURAL NETWORK TO FIT CIPHER

MIMICKING TASKS? Cipher algorithms are composed of it-

erated arithmetical and logical operations, which are not in

the traditional scope of neural networks. Current neural net-

work architectures are not designed for cipher relations. Fully

connected architecture, although capable of mimicking the

complicated dependency between ciphertext bits and plaintext

bits, might not be the most efficient architecture. Customizing

neural networks with fewer parameters to mimic the cipher

function is interesting future work.

HOW TO TRAIN THE NEURAL NETWORK EFFECTIVELY

AND EFFICIENTLY? Symmetric ciphers are complex func-

tions. To mimic them, the neural network must include many

parameters. However, networks with too many parameters, are

difficult to train. Understanding the impact of loss functions

and optimization algorithms is important. Which is the best

choice combination for cipher mimic tasks? Can we customize

the loss function and optimization algorithm for this specific

task? These questions need to be answered by future work.

VI. RELATED WORK

The related work can be summarized into two categories,

cryptanalysis solutions and neural networks for cryptanalysis

research.

A. Cryptanalysis for Symmetric Ciphers

The specific approaches to evaluate cipher strengths vary

dramatically case by case. The representative methods include

differential cryptanalysis [5], linear cryptanalysis [2] and their

variants. The differential approach attacks DES with 237

encryptions and the linear approach attacks DES with 247

known-plaintexts complexity, respectively.
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In cyber-physical systems, the evaluation can only be done

with the help of reverse engineering [13]. Many real-world

CPS ciphers have been shown broken. The widespread DST40

cipher which is often used in immobilizer transponders was

reverse-engineered and found broken [14]. Another widely

used CPS cipher, Hitag2, was also cracked after reverse-

engineering [11], [15], [16]. CPS cipher Megamos Crypto

was found to be vulnerable after reverse-engineering and

cryptanalysis [17], [18]. The analysis found that there is a

flawed key generation which can reduce the exhaustive search

complexity from 296 to 257. Those flaws in CPS ciphers have

affected many real-world systems [16].

B. Neural Networks in Cryptanalysis

The applications of deep learning in cryptanalysis are

limited. One major direction is to the learning-aided side

channel attacks. [8], [19]–[21]. Researchers apply learning

approaches to replace the traditional statistical profiling phase

in side-channel attacks. This approach differs greatly from

our approach. The deep learning approach only acts as one

component of the entire side-channel attack. Therefore, the

analysis still requires the cipher algorithm.

There are also a few applications in traditional cryptanalysis

which do not rely on side-channel information. [22] lever-

ages neural networks to classify ciphertexts generated from

different cipher algorithms. They successfully distinguish the

ciphertexts of Enhanced RC6 and SEAL. [7] uses neural

networks to determine the correct key in the key recovery

attack of traditional cryptanalysis. Their attack is successful

on the 2-round and 3-round HypCipher. However, similar to

the learning-aided side-channel attacks, it does not change the

white-box algorithm assumption which the traditional attack

relies on.

The work most relevant to ours is [9], [10]. The work treats

DES as a black-box. A cascade neural network structure is

applied to directly take the plaintexts as input and trained to

output corresponding ciphertexts. The author claimed to have

successfully attacked DES and 3-DES. However, the results

are not reproducible by us. In addition, the parameters of

their networks are too few to approximate the full DES and

3-DES. Our work presents a universal metric to enable the

direct comparison between ciphers, which is new. Applying

neural cryptanalysis to CPS ciphers is also new.

VII. CONCLUSIONS

In this paper, we proposed a new approach to evaluate the

strength of symmetric ciphers in a black-box fashion without

knowing the specific algorithm. We defined quantitative met-

rics to capture a cipher’s strength. These metrics are calculated

from the difficulty to attack the cipher via neural networks.

Using Hitag2 and round-reduced DES algorithms, we ex-

perimentally demonstrated that our metric and methodology

are practical and useful to quantify cipher strengths and allow

one to directly compare between ciphers. We showed how

various factors associated with the neural networks can impact

the analysis outcomes. This new neural cryptanalysis approach

has the potential to automate the security evaluation for cipher

systems.
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cryptographic RFID tag.” in USENIX security symposium, vol. 28, 2008.
[14] S. Bono, M. Green, A. Stubblefield, A. Juels, A. D. Rubin, and

M. Szydlo, “Security analysis of a cryptographically-enabled RFID
device.” in USENIX Security Symposium, vol. 31, 2005, pp. 1–16.

[15] A. Tekian, “Doctoral programs in health professions education,” Medical

teacher, vol. 36, no. 1, pp. 73–81, 2014.
[16] F. D. Garcia, D. Oswald, T. Kasper, and P. Pavlidès, “Lock it and still

lose it on the (in) security of automotive remote keyless entry systems,”
in 25th USENIX Security Symposium (USENIX Security 16), 2016.

[17] R. Verdult, F. D. Garcia, and B. Ege, “Dismantling Megamos crypto:
Wirelessly lockpicking a vehicle immobilizer,” in Supplement to the
Proceedings of 22nd USENIX Security Symposium (Supplement to

USENIX Security 15), 2015, pp. 703–718.
[18] R. Verdult and F. D. Garcia, “Cryptanalysis of the Megamos crypto

automotive immobilizer,” USENIX; login, vol. 40, no. 6, pp. 17–22,
2015.

[19] G. Hospodar, B. Gierlichs, E. De Mulder, I. Verbauwhede, and J. Vande-
walle, “Machine learning in side-channel analysis: a first study,” Journal
of Cryptographic Engineering, vol. 1, no. 4, p. 293, 2011.

[20] L. Lerman, G. Bontempi, O. Markowitch et al., “Power analysis attack:
an approach based on machine learning.” IJACT, vol. 3, no. 2, pp. 97–
115, 2014.

[21] E. Cagli, C. Dumas, and E. Prouff, “Convolutional neural networks
with data augmentation against jitter-based countermeasures,” in Interna-

tional Conference on Cryptographic Hardware and Embedded Systems.
Springer, 2017, pp. 45–68.

[22] B. Chandra and P. P. Varghese, “Applications of cascade correlation
neural networks for cipher system identification,” World Academy of

Science, Engineering and Technology, vol. 26, pp. 312–314, 2007.

The 2019 IEEE Conference on Dependable and Secure Computing 8


	I Introduction
	II Background and Cipher Mimicking
	III Definitions, Metrics, and Computation 
	IV Experimental Evaluation
	IV-A Impact of Different Networks on DES
	IV-B Impact of Different Activation Functions on DES
	IV-C DES Measurement Results
	IV-D Hitag2 Measurement Results
	IV-E Impact of Training Data Size
	IV-F Security Comparison w.r.t. Round-reduced DES

	V Discussion
	VI Related Work
	VI-A Cryptanalysis for Symmetric Ciphers
	VI-B Neural Networks in Cryptanalysis

	VII Conclusions
	References

