A novel approach for providing client-verifiable and
efficient access to private smart contracts

Alexander Koberl'?, Holger Bock?, Christian Steger!
alexander.koeberl @infineon.com, holger.bock @infineon.com, steger @tugraz.at
U Institute of Technical Informatics, Graz University of Technology, Graz, Austria
2 Development Center Graz, Infineon Technologies AG, Graz, Austria

Abstract—Distributed Ledger Technology is a powerful tool
to support direct collaboration between organisations, without
requiring full trust into a centralised infrastructure. By defining
a program logic and access policies with smart contracts, all inter-
actions are verified in the distributed network and the history of
the data is recorded on the ledger. Blockchain implementations
targeting enterprise use cases also provide means for private
transactions, where the content of the transaction is only readable
by authorized participants. Direct access to the ledger requires
a node with reliable connection to the network and sufficient
computational resources, which usually cannot be fulfilled with
lightweight Internet of Things devices and mobile applications.

We present an advanced system for accessing an enterprise
Blockchain through dedicated gateway nodes, while preserving
the functionality of private transactions. A hybrid approach is
used to allow computation- and storage restricted clients to send
private transactions through a central gateway, and use Light
Ethereum Subprotocol to verify the data integrity based on proofs
from distributed nodes.

To increase the client-side security level, we introduce a
dedicated Hardware Security Module for key management and
efficient execution of the cryptographic primitives. A proof-of-
concept implementation, using the Quorum Blockchain client and
an extension for the Tessera transaction manager, validates the
feasibility of the approach and can be used for further research
in this field.

Index Terms—Blockchain, Smart Contract, Privacy, Quorum,
Light Ethereum Subprotocol, Blockchain Gateway

I. INTRODUCTION

When an application is jointly developed by a consortium
of companies, one partner or a trusted external provider is
in charge of hosting the infrastructure and providing access
to clients in a fair way. All other partners monitor the con-
formable operation with recurrent audits and consequences, in
case of inconsistencies. For many applications, those strong
trust requirements and precautions outweigh the expected
benefit of a collaborative platform. Such circumstances may
delay the technological innovation within an industry and
promotes the growth of data silos. In the area of Internet of
Things (IoT) and sensor networks, this prevents easy sharing
and commercialisation of sensor measurements in open data
markets. End-users face issues with vendor lock-in, where
devices from multiple manufacturers are not compatible and
open management platforms cannot be used.

This paper has been partially funded by the European Union’s
Horizon 2020 research project DataVaults (Grand Agreement no. 871755).

© 2022 IEEE. Personal use of this material is permitted. Permission
from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component
of this work in other works.

The rapid emergence of Distributed Ledger Technologies
(DLTs) and the resulting acceleration of research and de-
velopment, especially by individuals and small organisations,
produced new concepts for the deployment of distributed
Applications (dApps). The distributed execution of program
logic, combined with the protected storage of a transaction
history and predefined access policies, solves many problems
of consortium projects. For this application domain, some
Blockchain implementations offer confidential data sharing
using off-chain channels, while broadcasting a distinct iden-
tifier (e.g. cryptographic hash of the data) to the network as
efficient record of the transaction. The network is composed of
independent nodes, which store a copy of the protected ledger
and process new transactions. Hosting such a server typically
requires hundreds of gigabytes for storage, several gigabytes
of memory and a permanent network connection [1]. Resource
restricted IoT devices and mobile clients often do not meet the
system requirements and, in that case, cannot host a so-called
full node locally. They are dependent on Blockchain Gateways
to provide them with access to the network. An additional
access control is required if the gateway also handles private
transactions on behalf of multiple clients.

This paper presents a novel system architecture for
lightweight clients accessing a consortium Blockchain. It is
a hybrid approach with dedicated gateway nodes for private
transactions on the Quorum Blockchain, and optional support
of the Light Ethereum Subprotocol (LES) to enable distributed
transmission and client-side verification of the block headers.

The main contributions of this paper are:

e Design and implementation of a Blockchain Gateway to
provide permissioned access to private smart contracts.

o Modifications of Quorum and Tessera to allow indepen-
dent verification of the data integrity by the client.

o Implementation of a client application to validate the
proposed transaction protocol.

An IoT use case is presented as example application to
explained the proposed concepts and highlight the challenges.
The system design is based on the requirements of a distributed
sensor network: Smart sensors are installed to measure en-
vironmental parameters (e.g. weather, pollution, traffic) and
periodically publish them to a gateway node. The Blockchain
is used for protected storage of the measurements and to
transfer them to interested partners.



II. STATE OF THE ART
A. Distributed ledgers and smart contracts

Expanding the basic concept of digital currency promoted
by Bitcoin [2], the Ethereum project enabled the distributed
and traceable execution of program code, so called smart
contracts [3]. This new concept marks the beginning of the
next generation in Blockchain technology, where complex
distributed Applications (dApps) are deployed on the network,
without the need of centralized infrastructure and authorities.

Transactions holding the bytecode of the smart contract
targeting the Ethereum Virtual Machine (EVM) are distributed
in the network. Subsequent transactions can be used to call
functions defined in the Application Binary Interface (ABI)
of the contract instance. Both operations are executed by all
verifying nodes in the network, which store the code and
variables in a data structure called World-State.

Blockchains for enterprise use cases have additional re-
quirements. Instead of public accessibility and user-provided
pseudonyms, permissioned systems with configurable user
roles are employed. This allows for the application of con-
sensus schemes offering higher throughput compared to the
Proof of Work (PoW) algorithms usually used by public
Blockchains.

Another factor to be considered in this domain is transaction
confidentiality. The contents of transactions and details of
smart contracts should not necessarily be broadcasted to all
participants. It should be possible to transmit some data off-
chain, while still maintaining the availability and integrity
properties offered by the ledger.

B. Quorum Blockchain

The proposed architecture and the implementation use the
Quorum Blockchain [4] as central component. It is a fork of
the Go Ethereum client [5] to support enterprise applications
with the following extensions:

o Selectable consensus: The throughput, latency and effi-
ciency of the network is improved by replacing the PoW
consensus. By default, RAFT [6] is used for electing
a leader, who is in charge of proposing new blocks.
The second officially supported option is the Istanbul
Byzantine Fault Tolerant (IBFT) [7] consensus algorithm.

« Private transactions: By integrating the Tessera transac-
tion manager, transactions can optionally be sent privately
to a subset of nodes. The payload is encrypted and sent to
the selected recipients off-chain, who store it in their local
database. Afterwards, the sender creates a Blockchain-
transaction containing the hash of the encrypted data as
payload. This procedure implicitly signs the encrypted
data and commits a protected trace of it on the ledger,
without disclosing the raw data. This sequence is de-
scribed in more detail in Section V.

C. Light Ethereum Subprotocol

The requirement of Blockchain access from resource
constrained- or not fully synchronized devices is present in

many applications. The Light Ethereum Subprotocol (LES)
[8] is an extension to the Ethereum protocol to allow on-
demand access to the distributed network while implementing
countermeasures to detect manipulated block information.
When the client comes online, it queries the latest block
headers from multiple nodes on the network and verifies
them. However, it does not receive the individual transactions
and cannot determine the world state (e.g. values in smart
contracts, account balances) on its own. This information is
still requested from full nodes on demand, but the client is able
to verify the authenticity with a so-called proof of inclusion,
which matches the transaction data to the root-hash located in
the block headers.

III. RELATED WORK

Public Blockchains allow the free participation of users in
the network. Distributed nodes support the network by veri-
fying transactions and mining new blocks to append them to
the ledger. However, operating a so-called full node requires a
continuously running computer with high system requirements
compared to IoT platforms (e.g. Ethereum: SO0GB memory,
16GB RAM, 25 MBit/s network bandwidth [1]) and advanced
knowledge of system and network administration. For occa-
sional interactions with dApps and for simple transfers of
cryptocurrency this may pose a large obstacle and prevents
access from mobile devices entirely. Potential use cases for
IoT devices can also not be realised with those requirements.

In practice, a hybrid approach is used to provide simple ac-
cess for end-users, while keeping the network distributed: The
backbone of the network is defined by the already mentioned
full nodes. They are managed by organisations and enthusiast
users for direct ledger access, transaction verification and op-
tional block mining (by attempting to solve the PoW puzzle).
End-users, mostly unconsciously, use Blockchain Gateways to
access the current state and send transaction requests to the
network.

One of the most popular gateway providers for the Ethereum
Blockchain is Infura [9]. After registering to the service, users
can send JavaScript Object Notation Remote Procedure Calls
(JSON-RPCs) to query the world state, send transactions and
deploy smart contracts. User authentication is used to enforce
a transaction quota and implement a tiered pricing model. It
can be used to access the official Ethereum chains, but does
not support private and custom Blockchain networks.

The goal to develop a light client for Blockchain access was
also investigated by [10] for a Smart City IoT application. It
was solved by removing unused functions from the Ethereum
client and preventing the local storage of chain data. The result
is a minimal client installation which is able to read data from
the public Ethereum network and send new transaction. In
contrast to our design, this solution does not enable private
transactions and fully trusts the gateway nodes for the oper-
ations. A malicious gateway is able to suppress transactions
from the light client and respond with forged state information.
Our design improves this idea by validating the received block
headers and preserve the option of private transactions.



Quorum

Private
Gateway

]
]
{F

Devices

Fig. 1. Example network of Quorum nodes, Gateways and IoT devices.

The security properties of LES have been investigated in
detail in [11]. Because the client receives only block announce-
ments and headers, it cannot verify the state transitions caused
by the included transactions. This limitation can be used by
an adversary to deceive the client with seemingly correct
blocks of a forked chain. Because the adversary is in control
of the consensus for this unofficial chain, it can alter the
state arbitrarily (e.g. change smart contract code and account
balances). The authors identified detailed attack scenarios and
proposed mitigation strategies, e.g. by communicating with a
trusted third party.

A more advanced solution to protect against malicious forks
was proposed in [12]. The client is no longer limited to
request proofs only from trusted nodes, instead it can identify
when the received information comes from a forked chain.
The authors of [12] propose the concept of so-called Beacon
Transactions to confirm to the client, that it is indeed receiving
block information for the official chain. Those transactions are
periodically added to the Blockchain by trusted nodes to verify
the chain up to a certain point in the past. The forged chain
of the adversary does not contain the beacons and it is also
not able to produce valid copies without owning the private
signing key of the trusted node.

A detailed survey about Blockchain integration for IoT is
presented in [13]. One of the selected use cases is a data
market for distributed sensor networks, similar to our example
application. In addition to the improved authenticity and
integrity properties of the Blockchain solution, the authors also
discuss future applications of Machine Economy (e.g. devices
can autonomously trade and pay for consumed services).

IV. CONTRIBUTION AND NOVEL ARCHITECTURE

This section describes the contribution and main compo-
nents of the proposed architecture, which are illustrated in
Fig. 1. The example application uses [oT devices to build a
network of distributed environmental sensors. They can either
be connected to privately owned Gateways, or use a public
Gateway Service to access the Blockchain.

A. Contribution

The related work examples show the significance of
Ethereum and smart contracts for [oT networks. Infura and the
proposal in [10] also demonstrate the practical implementation
of Blockchain gateways and light clients. Our implemen-
tation uses the Quorum Blockchain which supports private
transactions and efficient consensus algorithms. This novel
gateway design for the Quorum Blockchain is needed for the
practical application in consortium networks. It allows efficient
operation of the backbone infrastructure with high transaction
throughput, while preserving the support for private smart
contracts and data validation by the client.

The main contributions of this paper are:

o The high-level architecture of a proposed Blockchain
Gateway in Section IV, describing the main compo-
nents and their interactions. This novel design enables
lightweight devices to interact with a dApp deployed on
the Blockchain.

o The design of the client features a hybrid approach by
using the dedicated gateway for private transactions and
LES to validate the public data of the Blockchain. The
implementation also demonstrates the secured key storage
and transaction signing with a Hardware Security Module
(HSM) embedded in the client platform.

o A detailed description of the application protocol, illus-
trating the required transaction sequence for deployment
of private smart contracts, as well as read/write interac-
tions is given in Section V.

« Validation of the proposed scheme is done with a proof
of concept implementation. The results in Section VII
provide references for future adaptations and deployment
in real-world applications.

B. Client Application

The client application offers all features required for the spe-
cific application domain, e.g. Graphical User Interface (GUI),
interaction to sensors or control systems. In this document
only the Blockchain related features are described. A new
transaction might be triggered by an external event (e.g. user
request, sensor limit reached) or created periodically. The main
responsibilities of the client application are authentication to
the gateway, encryption and transferring of the raw data to
the server, as well as cryptographic signing of the Blockchain
transactions. A HSM is used for key management and correct
execution of the cryptographic operations for authentication
and transaction signing.

In the simplest form, the client exclusively communicates
with a statically configured gateway in a client/server model.
However, platforms with adequate computational resources
can optionally use the LES to confirm the validity of transac-
tions by requesting proofs from other nodes in the network.

C. Access Control Manager

All interactions with Quorum and Tessera are filtered by the
Access Control Manager (ACM). Firstly, it authorizes clients
to access the restricted Application Programming Interface



(API) by verifying the JSON Web Token (JWT) attached to
the request. This prevents unauthorized clients from using the
special functions for private smart contracts.

The second step of the access control restricts read requests
for private contract data. Because the Tessera transaction man-
ager of the gateway handles private transactions on behalf of
many clients, it is trusted with the unencrypted data of all those
users (authenticity is still preserved with the cryptographic
signature of the client). For this reason, the ACM must only
allow access to contracts, which belong to the client. This is
done by registering the owner in the Access Control Contract
(ACC) when a contract is deployed (see next section for
details), and verifying each request. Unprivileged clients only
see the publicly available data (e.g. encrypted payload hashes)
on the ledger.

D. Access Control Contract

For every private contract managed by the gateway, an entry
in the ACC is created. It holds mappings of the contract
address to the authorized users. For new contract deploy-
ments, the ACM creates this entry and registers the owner.
An optional API subsequently enables the authorization for
additional users, if concurrent access to a smart contract is
required by the use case (e.g. to join a private sensor network
or to temporarily allow a technician to access service records).

Because the data structure of the ACC is also defined
as smart contract, the entries are implicitly synchronized to
other gateway nodes by the Blockchain network. It enables
simple deployment of multiple, synchronized gateways by
independent consortium members for increased trust and avail-
ability. The client decides during contract deployment, which
gateways are allowed to access the private data of the contract,
other gateways can only query the associated access rights.
The ACC is also a private smart contract to keep the enclosed
data confidential between the gateway nodes and prevent other
users from getting insights into the authorization structure.

E. Trust and threat model

The gateway requires access to the unencrypted data to
process the transactions on behalf of the client and to validate
the state transitions caused by incoming transactions. In an
example, where two partners cooperatively use a smart con-
tract, our architecture supports three possible configurations
with varied trust requirements:

o Both parties own a gateway (e.g. two companies in a
consortium): No additional trust requirements, because
both sides handle the raw data in any case. Reading from
the encrypted state can be done from the local instance
without requiring the other gateway.

e One party owns a gateway (e.g. user interacting with
a company): No additional trust requirements, if the
provided gateway is used exclusively. However, this in-
troduces the risk of a Denial of Service (DoS) by the
gateway provider, because the client is fully dependent
on this specific node for all operations. A trade-off with
reduced confidentiality requirements can be made when

additional gateway nodes are included in the private group
as backup.

« No party owns a gateway (e.g. two users): The users can
agree on a specific gateway node, used to deploy the
smart contract and handle subsequent interactions. The
same choice from the previous example also applies here,
where a higher risk to confidentiality can be accepted to
increase the availability.

The trust model regarding confidentiality is similar to a
conventional client/server architecture, where the user needs to
trust the service provider to honour the agreed Terms of service
(ToS). If a higher degree of confidentiality is required by the
use case, the proposed architecture can still be used when the
involved parties deploy a dedicated gateway for handling the
private data.

With the additional Blockchain infrastructure, the data is
protected from unwanted modifications and enables traceable
execution of smart contracts. In a traditional application, a
malicious or faulty server might respond with incorrect data
and fail to write received values to the database correctly.
In our design, in contrast, the data is stored in a distributed
manner and the client can always request proofs about the
actual Blockchain state by using LES.

Another threat vector is the leakage of user credentials
to allow an attacker to impersonate someone else. Our de-
sign minimizes the probability of such attacks by employing
signature-based authentication with a HSM embedded in the
client device. The user signs a fresh access token with limited
validity (in our case 15 minutes) for every session. Tokens
with longer validity are rejected by the ACM to contain
the possible harm of a leaked token. Embedding an HSM
into the IoT client device improves the resilience against
attacks and enables the allocation of complex cryptography
functions to dedicated hardware. This approach also removes
the responsibility of managing the keys from the gateway
because the client generates them independently.

V. THE NOVEL TRANSACTION SEQUENCE

This section gives a detailed description about the proposed
transaction sequence. It follows the original protocol of Quo-
rum with enhancements introduced by our protocol.

A. Authentication

All requests from the client contain a JWT for authentication
to the gateway API. Instead of the usual application, where an
authentication server signs this token to vouch for the client,
our design uses the Blockchain key to self-sign the token
by the client instead. The gateway can recover the public
key from this signature and lookup the associated contract
permissions from the ACC. The initial goal of JWT to include
the permissions in the token is not possible with this design.
Instead we mainly use it as standardized format to transmit
the self-signed tokens and verify them with available tools.
The expiration of the token is set to the duration of a typical
session, which can be shorter than one minute for simple
interactions.



HSM Client ACM Tessera Quorum

@ prepare_transaction

@ getKeyAndINonce

_feturn_ |
encryptPayload
@ updateTransaction
éiii
getSignature

@ storeRawRequest

storeraw

P
@ eth_sendRawPrivateTransaction

eth_|sendRawPrivateTransaction

send

broadcast 5— --

i
" (6) updateACC

Fig. 2. Sequence for deployment of a private smart contract.

B. Contract deployment

The following steps, as illustrated in Fig. 2, are needed to
deploy a private contract with a gateway. The sequence only
describes the default case, where an authorized user sends a
valid transaction.

1) Prepare transaction: The client compiles a smart con-
tract or, as a simpler alternative, retrieves a pre-compiled

2)

3)

4)

5)

6)

definition stored in the application. The transaction must
follow the structure defined by Ethereum [3], which
holds the bytecode of the contract in the 'data’ field.
Encrypt transaction payload: The byte code contained
in the ’data’ field is encrypted by the client. For this
symmetric encryption with the XSalsa20 [14] stream
cipher, a fresh key and nonce is generated by the client
(preferably with the support of the HSM to add high
entropy).

Update and sign transaction: The payload of the orig-
inal transaction is replaced by the SHA3-512 [15] digest
of the encrypted payload resulting from the previous
step. The transaction is then signed with the Elliptic
Curve Digital Signature Algorithm (ECDSA) [16] using
the secp256k1 [17] curve parameters.

Store payload: The encrypted payload, nonce and key
from Step 2 are submitted to the gateway through a
secured channel. The ACM verifies the user authoriza-
tion and forwards the data to Tessera, if permitted.
Tessera stores the key and nonce in its key-vault and
the encrypted payload in the local database, with the
SHA3-512 digest as key. This identifier is also returned
to the client, allowing a comparison to the locally
computed value for verifying the integrity of data.
Send transaction: The signed transaction from Step 3
and the list of target nodes is send by the client. Based
on the transaction header, the ACM can classify it as
private contract deployment. It is forwarded to Quorum,
where the payload hash and private targets are internally
passed to Tessera. This request triggers the distribution
of the encrypted payload and the symmetric encryption
key to the target nodes, who also store it in their private
database. Only after Tessera confirms the multi-cast,
Quorum commits the transaction to the Blockchain.
Contract construction: Once the transaction is included
in a block, the contract is fully deployed. With the
transaction receipt returned by Quorum, the ACM can
resolve the address of the new contract and inserts
a mapping between contract and user address to the
ACC. The client can verify the correct deployment by
requesting a confirmation from LES.

C. Contract write operation

After deployment, the owner (or any other authorized user)
can interact with the contract. A write access requires the
sending of a new transaction, similar to the deployment
sequence. The identical steps from the previous operation are
omitted in Fig. 3.

7)

8)

Prepare transaction: The transaction payload for writ-
ing to a contract follows the specific format of Ethereum.
It includes part of the function name, as defined in the
ABI, and the parameter values.

Encrypt/update/sign transaction, authenticate, store
payload: Steps 2-4 from the deployment sequence are
identically repeated. Tessera stores the encrypted pay-
load, key and nonce locally at this stage. From receiving



Client ACM Tessera Quorum

@ eth_sendRawPrivateTransaction

query: ACC

is_authorized

eth_sendRawPrivateTransaction

send

Fig. 3. Sequence for writing to a private smart contract.

the payload alone, the gateway cannot identify the target
contract of the transaction and perform any access
control. This fact does not pose a significant security
risk, because the global Blockchain state is not modified
until the remaining information is received in the next
step.

9) Send transaction: The signed Blockchain transaction is
intercepted by the ACM, where the transaction header
provides the required information for the permission
check executed by the ACC. If the user is authorized, the
signed transaction is forwarded to the Quorum instance
and Tessera distributes the private payload. After the
transaction is included in a block on the ledger, the state
of all nodes is updated with the new value. The client can
again verify the correct distribution of the transaction by
requesting a confirmation from LES.

D. Contract read operation

Reading from the Blockchain, i.e. calling a contract function
which does not modify the ledger state and only returns values,
does not broadcast the transaction to the network. The request
is executed locally in the Quorum instance of the gateway
node to retrieve the required data from the state storage. Our
scheme must additionally prevent unauthorized users from
reading private contract values.

10) Prepare transaction: A transaction to call a function is
created in the same way as before, where the function
identifier and the parameters are encoded in the payload
data. However, the payload is not encrypted and this
transaction is not signed by the user.

Process transaction: The ACM retrieves the target
address from the transaction and the user identification
from the JWT to query the ACC. The need for an
additional authentication scheme becomes apparent in

1)

Client ACM Tessera

M @ eth_call

Quorum

query: ACC

is_authorized

Fig. 4. Sequence for reading from a private smart contract.

this sequence. Whereas deployment and write transac-
tions require cryptographically signed messages, read-
only calls are anonymous in the default scheme. In our
design, the public key of the client can be recovered
by the JWT attached to the request. If the user has
the necessary access rights, the request is forwarded to
Quorum. The private state of the contract is retrieved
from the encrypted database of Tessera to call the
requested function and return the result to the client.
Verify return value: Because the contract state is
private, LES cannot directly be used to confirm the
authenticity of the return value. The proposed solution
requires a special function to be implemented in the
smart contract: The previously received value (or the
hash of multiple values) is again passed to this function,
which compares it to the actual state. An error is returned
if the comparison fails, reverting the transaction. Other-
wise the function finishes successfully and a receipt is
broadcasted. The client can check a previously received
value by calling this function and verifying the resulting
transaction with LES.

12)

VI. IMPLEMENTATION

The proposed design was verified by a proof-of-concept
implementation of the required components. The client ap-
plication, ACM and ACC were developed from scratch; we
modified Tessera to support our API extensions and a modified
version of Quorum was compiled to allow it to launch as light
client. A local network with three validating nodes was de-
ployed, whereof one instance hosted the modified transaction
manager and the ACM service.

A. Client implementation

The client application is implemented as Python program,
offering a GUI to simplify the interaction with the test network
and perform test requests. Key management and signing of
the authentication and transactions was solved by interacting



with the ”Blockchain Security 2 Go Starter Kit” [18], a smart-
card developed by Infineon Technologies offering ECDSA with
the secp256kl curve parameters. This was done to prove the
feasibility of using an external HSM for increasing the security
properties. It could also simplify the upgrade of a legacy
system, where it is not trivial to add the ECDSA functions
and secured key management in software.

B. Gateway implementation

The ACM includes a web server, responsible for handling
the requests from the clients and forwarding them to Quorum
and Tessera. It mirrors the JSON-RPC format defined by
Quorum, to preserve compatibility with third-party tools and
libraries. Requests for the eth_sendRawPrivateTransaction and
eth_call JSON-RPCs are filtered with the help of the ACC.
Only the publicly available data is return to the client if the
verification fails. The ACC offers functions for adding and
verifying contract permissions for the authenticated user. The
contract owner can add additional authorized keys to share a
private contract with other users. Future implementations can
also offer permissions with time or usage limit and read-only
access.

The Tessera API was modified to support the storing op-
eration as described in V-B.4. Originally, the raw payload is
provided by the client and the hash of the encrypted payload
is returned as payload for the Blockchain transaction. This
would open an attack vector, because the encryption is done in
Tessera and the client cannot verify this hash. It would need to
blindly sign the returned hash, allowing a dishonest gateway to
arbitrarily change the transaction beforehand. Our modification
of Tessera allows the client to supply the symmetric encryption
key and nonce, allowing it to contribute entropy from a
HSM and independently calculate the hash of the encrypted
payload.

VII. EVALUATION

The proof-of-concept implementation confirms the feasibil-
ity of the proposed scheme. Although the client application
was not optimized, it gives a good indication about the
additional system requirements when Blockchain interaction is
added to an existing IoT application. Because computational-
and memory requirements are dependent on the target plat-
form, this evaluation focuses on the security aspects and
constant communication overhead of the design.

A. Security aspects

The main motivation to replace a traditional client/server
architecture with a Blockchain-based dApp is the increased
level of data authenticity. As long as the private key is
not leaked, a signed transaction originated from the genuine
client with high probability. Our design does not weaken
the correctness claims of Quorum/Ethereum, allowing us to
disregard the possibility of successful attacks on the ledger
for this evaluation.

The main threat in our design comes from a malicious or
faulty gateway, which isolates the client with a forked chain

and responds with manipulated data. This attack vector is
weakened by providing multiple independent gateways and
supporting additional validation by the client with LES.

The secp256kl ECDSA key, which is used for signing the
Blockchain transactions and authentication, requires secured
storage (all other keys are only used for single sessions). It
should be generated by the end-user with an HSM to have
a strong non-repudiation claim. If pre-initialized devices are
provided to the user, an attacker (or dishonest issuer) could
sign a large quantity of deterministic Blockchain transactions
and authentication tokens in advance, and publish them once
an attack has the desired effect.

One apparent trade-off caused by the gateway design is the
partially compromised confidentiality of private smart con-
tracts. The gateway requires the plain data to distribute it
and verify incoming state transitions on behalf of the users.
They must trust the gateway to keep their data secret or
deploy a dedicated gateway. However, we do not see this as
large disadvantage for many applications, as long as multiple
certified gateways exist. If clients want to consume a service,
they have to reveal the underlying data in any case.

B. Communication overhead

The lightweight design of our proposal makes it a good
candidate for mobile- and IoT applications, where connectivity
can be limited. This part of the evaluation focuses on the com-
munication overhead of our extended Blockchain protocol for
interactions with private smart contracts. We do not consider
the overhead of low-level transaction protocols and Transport
Layer Security (TLS), because it is also present for traditional
applications in a client/server model.

The most commonly used operations are contract deploy-
ment, reading and writing of data. The transaction data is
consisting of the Ethereum header and payload data, encrypted
private data and symmetric key, as well as authentication to-
kens. Figure 5 compares the transaction sizes for the common
operations.

The example illustrates the deployment of a smart contract
with a raw payload of 658 byte. The deployment operation
has a high payload ratio and is usually only performed
rarely by the client. Disregarding the authorization token,
read operations have the same size for private and public
contracts, because the same JSON-RPC from Ethereum is
used. Writing the same 32 byte data to a private contract nearly
triples the transactions size, because this operation requires
two transactions when done privately: The encrypted payload
is firstly committed to 7Tessera together with the symmetric
encryption key and nonce. Afterwards, the 64 byte identifier
and the selected recipients are committed by the Blockchain
transaction. One-third of the size is the result of adding the
authorization token for both operations.

The evaluation shows the high transaction overhead caused
by authorizing every private transaction with a JWT. It allows
the stateless authorization of each request and removes the
need for managing client sessions, at the cost of increasing
the size. For applications with short payload sizes and frequent



m Ethereum-RPC ® Tessera
Public read
Private read
Public write [INEZIIN
Private write [IIZEIFZEN
Public deploy [N
Private deploy N

Response

Fig. 5. Total transaction sizes (in byte) when writing a 32 byte payload or
deploying a 658 byte contract.

interactions, this might exceed the bandwidth limit and shorter
session keys should be used instead.

C. Platform considerations

Other performance parameters are dependent on the specific
implementation of the client application. Our test implemen-
tation is developed with Python and executed on a Raspberry
Pi 3 Model B+. The client application requires 35 MB of
RAM and demonstrated a full contract deployment in under 4
seconds.

For using the optional transaction validation with LES, the
full Geth binary is currently deployed to the client. Due to the
large amount of included features (e.g. transaction verification,
block mining, management of the state database) the binary
has a size of 47 MB when compiled for the ARMvVS-A
architecture. It is expected that this size can be reduced similar
to the results of [10], where the required code size for a
minimal deployment of the Geth Client was decreased by more
than 80%.

Signature based authentication and validation with LES
are optional features to reduce the trust requirements to the
gateway. They can be removed if a trusted gateway is available
in the local network to further reduce the system requirements
of the client platform.

VIII. CONCLUSION AND FUTURE WORK

This paper presents a lightweight architecture to host gate-
way nodes for interactions with the Quorum Blockchain, and
describes the necessary transaction sequence in detail. The
proposed client implementation allows mobile and resource-
constrained IoT-devices to be used as interface for dApps built
from private smart contracts. The gateway is fully compatible
to the default implementation of Quorum and does not change
the internal structure of the Blockchain network, allowing the
installation on already deployed networks. Data authenticity
is preserved with signatures and the client can optionally use
LES to request proofs for the information received from the
gateway. This can even be used to confirm the internal state
of private smart contracts with publicly available information.

To the best of our knowledge, the presented architecture is
a novel approach to enhance the flexibility of the Quorum
Blockchain. The evaluation confirmed that the transaction
format only adds a constant size overhead to the requests and
the security level of the client is improved by introducing a

Authorization token dedicated HSM for key management and efficient execution

of the cryptographic primitives. A traditional IoT application
could therefore be ported to a dApp without increasing the
performance requirements of the system. The flexible design
allows the client, at the time of contract deployment, to
select the security parameters based on the capabilities of
the platform, tolerable communication overhead and security
requirements of the application.

Future research will focus on the further application of
HSMs for secured key exchange and privacy-preserving au-
thentication schemes. Additionally, attestation of the gateway
software and trusted computing techniques will be evaluated
to reduce the trust requirements and prevent the leakage of
confidential data by malicious or faulty gateways.

REFERENCES

[1] (2021) Ethereum developer resources: Nodes and clients. [Online].
Available: https://ethereum.org/en/developers/docs/nodes-and-clients/

[2] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 03
2009. [Online]. Available: http://www.bitcoin.org/bitcoin.pdf

[31 G. Wood et al, “Ethereum: A secure decentralised generalised
transaction ledger,” Ethereum project yellow paper, vol. 151, no.
2014, pp. 1-32, 2014. [Online]. Available: https://ethereum.github.io/
yellowpaper/paper.pdf

[4] “Quorum Whitepaper,” 2018. [Online]. Available: https://github.com/
ConsenSys/quorum/raw/360d7a8ad8ef51a89d4d4af44aee333ad4ccOeba/
docs/Quorum)\ %20Whitepaper\ %20v0.2.pdf

[5] go-ethereum Authors. (2021) Go ethereum project website. [Online].
Available: https://geth.ethereum.org/

[6] D. Ongaro and J. Ousterhout, “In search of an understandable consensus
algorithm,” in 2014 USENIX Annual Technical Conference (USENIX
ATC 14), 2014, pp. 305-319.

[71 H. Moniz, “The Istanbul BFT Consensus Algorithm,” 2020, _eprint:
2002.03613. [Online]. Available: https://arxiv.org/abs/2002.03613

[8] (2021) Light ethereum subprotocol (les). [Online]. Available: https:
//github.com/ethereum/devp2p/blob/master/caps/les.md

[9] Infura Inc. (2021) Infura project website. [Online].

https://infura.io/product/ethereum

E. Reilly, M. Maloney, M. Siegel, and G. Falco, “A smart city iot

integrity-first communication protocol via an ethereum blockchain light

client,” in Proceedings of the International Workshop on Software En-
gineering Research and Practices for the Internet of Things (SERP4IoT

2019), Marrakech, Morocco, 2019, pp. 15-19.

S. Paavolainen and C. Carr, “Security Properties of Light Clients on the

Ethereum Blockchain,” IEEE Access, vol. 8, pp. 124 339-124 358, 2020.

S. Paavolainen and P. Nikander, “Decentralized Beacons: Attesting the

Ground Truth of Blockchain State for Constrained IoT Devices,” in 2079

Global IoT Summit (GIoTS), 2019, pp. 1-6.

A. Panarello, N. Tapas, G. Merlino, F. Longo, and A. Puliafito,

“Blockchain and IoT Integration: A Systematic Survey,” Sensors (Basel,

Switzerland), vol. 18, no. 8, p. 2575, 2018, place: Switzerland Publisher:

MDPI AG.

D. J. Bernstein, “Extending the salsa20 nonce,” in Workshop record of

Symmetric Key Encryption Workshop, vol. 2011. Citeseer, 2011.

M. Dworkin, “Sha-3 standard: Permutation-based hash and extendable-

output functions,” 2015-08-04 2015.

E. Barker, “Digital signature standard (dss),” 2013-07-19 2013.

S. E. C. Certicom, “Sec 2: Recommended elliptic curve domain

parameters,” Proceeding of Standards for Efficient Cryptography, 2010.

[Online]. Available: http://www.secg.org/sec2-v2.pdf

Infineon Technologies AG, “Blockchain Security 2Go Starter Kit -

User Manual,” 2019. [Online]. Available: https://github.com/Infineon/

Blockchain/blob/master/doc/BlockchainSecurity2Go_UserManual.pdf

Available:

[10]

(11]
[12]

[13]

[14]

[15]

[16]

(17]

(18]



