
Towards Secure Multi-Agent Deep Reinforcement
Learning: Adversarial Attacks and Countermeasures

Changgang Zheng†, Chen Zhen⋄, Haiyong Xie⋄, Shufan Yang§

†Department of Engineering Science, University of Oxford, Oxford, UK
⋄School of Computer Science and Technology, University of Science and Technology of China, Hefei, China

§School of Computing, Edinburgh Napier University, Edinburgh, UK

changgang.zheng@eng.ox.ac.uk, cz2016@mail.ustc.edu.cn, haiyong.xie@ieee.org, S.Yang@napier.ac.uk

Abstract—Reinforcement Learning (RL) is one of the most
popular methods for solving complex sequential decision-making
problems. Deep RL needs careful sensing of the environment,
selecting algorithms as well as hyper-parameters via soft agents,
and simultaneously predicting which best actions should be. The
RL computing paradigm is progressively becoming a popular
solution in numerous fields. However, many deployment decisions,
such as security of distributed computing, the defence system of
network communication and algorithms details such as frequency
of batch updating and the number of time steps, are typically not
treated as an integrated system. This makes it difficult to have
appropriate vulnerability management when applying deep RL
in real life problems. For these reasons, we propose a framework
that allows users to focus on the algorithm of reasoning, trust,
and explainability in accordance with human perception, followed
by exploring potential threats, especially adversarial attacks and
countermeasures.

Index Terms—Secure computing, Multi-agents, Deep reinforce-
ment learning

I. INTRODUCTION

Reinforcement learning (RL), as a research paradigm, not
only learns from trial-and-error without prior knowledge of
the environment modelling but also learns a more power-
ful strategy that can deal with dynamic environments [1].
In the simplest case, this means that RL can estimate the
state-transition probabilities of the environment and how the
immediate rewards under the new environment [2]. It also
means that RL has the ability to predict the future response
of the environment under agents’ behaviours (a.k.a action).
Therefore, observing software agents’ behaviours in an RL
system could provide insights into the future environment
through software agents’ self replay. It also helps researchers
to investigate which policy will be the best to fit long-term
goals.

Most popular RL methods that are based on temporal dif-
ference predictions can be categorised as either deterministic
policy methods [3] or policy gradient based methods [4]: a
deterministic policy method offers optimal policies for model

The authors thank the BCS Edinburgh Branch Committee for their support.

based scenarios, while a policy gradient method offers a set
of optimal solutions via stochastic gradient based optimisation.
Deep RL combines the deep learning and the reinforcement
learning methods [5], where deep learning tackles the problem
of training artificial neural networks in an effective way such
that it can be leveraged in the deep RL computing paradigm
as a function approximation. Deep RL is one of key advances
in recent advanced algorithm development; however, only a
fraction of real life applications have successful RL case
studies [6]. A fundamental problem remains: how to enable
a secure multi-agent deep RL paradigm? This secure system
should provide a framework to support computer security
foundations such as risk based log analysis, ease of use,
increased resilience, reduced vulnerabilities, and design with
communication networks in mind to provide scalability.

We believe that there exist three key barriers for the
widespread adoption of deep RL: reasoning, trust, and
explainability. These fundamental questions are not sepa-
rate. Together, they form a holistic strategy for applying
the deep RL paradigm to a secure system. So far, solving
these questions simultaneously has not been attempted, owing
to the scale of the problem and depth of understanding of
deep RL on multi-agents scenarios. In this paper we review
threats that potentially exist in canonical distributed learning
environments and multi-agent deep learning systems, followed
by an overview of adversarial attack and countermeasures
are provided. Finally based on our previous works [7]–[9], a
secure system with the three elements of reasoning, trust, and
explainability is proposed to allow the community to make
further progress in building more secure models.

The contribution of this paper is to propose a new frame-
work to provide a secure deep RL computing paradigm for
real life applications. We hypothesize that a best solution of
building secure deep RL framework is to provide a framework
with scalable machine reasoning techniques and explainability
techniques to explain behaviours of those algorithms in accor-
dance with human perception. Our proposed new framework
can effectively cope with the inherent uncertainty and variation
in a dynamic environment with the ability to respond to
adversarial attacks and other threats.978-1-6654-2141-6/22/$31.00 ©2022 IEEE

II. THREAT ANALYSIS

In this section, we go through threats that may potentially
cause harm to the multi-agent reinforcement learning program-
ming paradigm. We start with the threats that are generated
from distributed learning systems, followed by discussions on
deep RL methods in multi-agent scenarios.

A. Distributed Learning Systems

Different from centralised systems, distributed systems have
a different set of potential problems that threaten the normal
system functions [10]. Use the computer network as an ex-
ample, when nodes communicate with each other, packets are
transmitted and queued throughout the network, which results
in communication delays. Such delays are totally acceptable
in small-size networks; however, when it scales to hundreds or
thousands of nodes, it is inevitably possible that a node will
fail [11]. Another typical severe case is the massive failure
of nodes due to unstable network environments (e.g., the lost
connection of nodes located in a server room due to the failure
of the network) [12], which can easily result in the collapse
of a distributed system.

There have been many theories and algorithms proposed:
for instance, the CAP theorem [13] and the BASE theorem
(i.e., basically available, soft-state, eventually-consistent) [14]
that are related to distributed learning system design and
implementation. In a distributed system, only two of the
three attributes, namely, consistency, availability and partition
tolerance, can be satisfied simultaneously [15]. Among them,
partition tolerance must be satisfied by default. Thus, a balance
must be made between consistency and availability. Satisfying
consistency will sacrifice availability, where the client requests
access to data but the server cannot respond in a timely
manner. The requirement for availability comes at the expense
of consistency, which can lead to inconsistent results when
clients access data from different nodes.

Although less emphasis on availability, there are many
distributed locks targeting to improve the consistency of
distributed systems. A typical example is a key-value store
system named Redis [16]. Even with high consistency, Redis
can still be vulnerable to several threats, such as unauthorized
access, writing to web shell, and key secure login. Among
these, one typical scenario is that client A forgets to release
the lock, which expires and therefore is automatically released;
however, the task is not terminated and client B acquires a
lock, at which point the shared resource is not secure. Another
scenario is that locking and setting timeouts are separate
operations and are not atomic. As a result, if the lock is
successful but the timeout fails, the lock key will not expire, in
which case the number of non-expiring lock keys will increase
and potentially cause Redis to run out of memory space.

B. Multi-agent Deep Reinforcement Learning

Reinforcement learning is a learning method that allows
agents to interact with the environment, which performs well
for complex tasks in various applications, such as playing

video games like StarCraft [17], HoK [18], [19], the tradi-
tional board game of Go [20], or cooling data centres [21].
However, the recent International Conference on Learning
Representation (ICLR) revealed that most methods are limited
to single, stationary agents instead of a learning environment
with multi-agents and multi-objective [22], [23]. Under this
assumption, when each agent is motivated by its own rewards
and does actions to advance its local goals, local goals can be
opposed to the interests of other agents, resulting in complex
group decision-making behaviour [24]. For instance, resources
allocations in health and social care systems, such as hospital
beds, care home capacity, and associated resources of doctors,
nurses, social care workers and equipment [25], [26]. These
medical resources should be simultaneously allocated to those
patients who are in need of care, and thus, each entity in this
system has multiple objectives. For example, in an acute care
setting, patients may care about delay related objectives, such
as reducing mortality. In primary care, patients may care about
minimising the expected waiting time for seeing consultants.
In community care, patients may care about the satisfaction of
care receivers. This will be a complex group decision-making
behaviour and will be hard to find a policy for global optimal.

Solving distributed optimisation for multi-agent reinforce-
ment learning is a closely related task of multi-agent networks.
Every agent has a private input, where the interest between
each agent’s private input value may have conflicts. The goal
of the overall agents is to balance these inputs and reach
an agreement that optimises the overall system performance.
Specifically, the goal is to collaboratively arrange the cost
function of every agent and formulate a proper global objec-
tive. The threats from multi-agent optimisation are particularly
related to the perturbation of agent actions and false environ-
ment sensing and failed gradient-based optimisation [27], [28].
In multi-agent deep RL, those treats are particularly hard to
detect since the nature of distribution and stochastic elements
of reward, states or reward-states pair.

Reaching consensus and solving distributed optimisation
is not an easy task and may threats the overall multi-agent
networks. When the agent number is large and agents are dif-
ferent from each other, especially the environment is complex
and dynamic, it will be difficult to reach an agreement on
a value function and thus result in low system performance.
The consensus between agents in multi-agent systems is hard
to reach [29], [30]. However, when using simple consensus
methods, like an average consensus, it is much easier to be
attacked and result in the leaking of privacy.

III. ADVERSARIAL ATTACK

Since software agents are vulnerable to small adversarial
perturbations on the agent’s inputs under the deep reinforce-
ment learning paradigms [31], it is important to overview
adversarial attacks as one of the main threats.

A. Adversarial Attack in Deep Learning

Adversarial attack is a major threat in deep learning methods
that rely on stochastic gradient descent. This attack is able to

fool the machine with some minor and well-designed changes,
which are hard for even humans to detect [32]. This section
introduces these attacks through different attacking paradigms.

1) Classified by Attacking Environment: The most common
adversarial attacks on deep learning algorithms are white-box
attacks, grey-box attacks, and black-box attacks.

A white-box attack refers to when the attacker can access all
information about the network, including model, parameters,
weights, and test input and output. Typical white-box attacks
include FGSM [33], JSMA [34], DeepFool [35], C&W [36],
PGD [37].

Grey-box attacks represent the middle groud of black and
white box attacks. Attackers can access the input and output
of the network and have limited information about the model,
such as the model structure, but have no access to the model
parameters and weights.

Black-box attacks only allows attackers to access the input
and output of the target network. Some typical black-box
attacks include NES [38], ZOO [39], SPSA [40], N-Attack
[41], Boundary [42], Evolutionary [43], which are usually
limited by scalability.

2) Classified by Attacking Targets: Adversarial attacks can
be classified as untargeted attacks and targeted attacks. The
untargeted attack aims to fool neural networks, misleading the
network to make false decisions. The targeted attack, more
than simply fooling the network, has some extra requirements,
which aim to generate a particular false pattern.

3) Typical Attacking Method: Attacking deep learning
mainly focuses on three targets: the gradient, the optimization
process, and the decision.

• Gradient-based Attacks: The gradient-based attack im-
poses certain hardly perceptible perturbations to mislead
the network by maximising the network’s prediction error.
However, the end to end mappings of deep neural net-
works is fairly discontinuous to a significant extent [44].

• Optimisation-based Attacks: Unlike attacks that utilise
the transferability of the substitutes model, the optimised
attack uses a zero-order (derivative-free) optimisation
[39] to directly estimate the gradient of the target DNN
for generating adversarial examples.

• Decision-based Adversarial Attack: This type of attack
works on both a robust decision boundary of the sad-
dle point problem and a decision boundary that simply
separates the benign data points. The decision-based
attack is a one method of attacking based on mainly
hyperparameter tuning [42].

B. Adversarial Attacks in Deep Reinforcement Learning

Most researches focus on adversarial attacks in deep learn-
ing for classification or prediction purposes. Deep RL not
only includes adversarial perturbations on the training stage,
but also the state space, reward, and action spaces. Generally
deep RL can be attacked from five perspectives: observation,
environment, reward, action, and policy.

1) Observation-based Attack: The observation based attack
includes a series of attacks applied to all procedures of obser-
vation. On top of deep learning-based attacks, observation-
based attacks create a proxy environment [45], [46], using
the proxy environment to create attacker modified observa-
tions. Thus, this leads to the malfunctioning of the deep
RL algorithm. Attackers can even input carefully trained
fake observations which lead to a faulty pattern [47]–[49].
Moreover, timing is also important in attacking deep RL.
Researchers have focused on using thresholds to determine
the critical time, action, or environment at which the attack
can be released [47], [48], [50].

2) Reward-based Attack: The reward-based attack tampers
with the action values that the environment gives to the agent.
For example, when some key instance occurs (e.g., identified
by time or space information), changing or flipping the action
values (rewards) of each agent can slow done or even break
the learning process [51]–[53]. The most obvious reward-based
attack is to change the reward to optimise the loss function of
the attack. Besides, these flips and changes can mislead deep
reinforcement learning agents so that they are unable to learn
or act under a mislead paradigm.

3) Environment-based Attack: Similar but different from
the observation-based attack, environment-based attacks focus
only on the environment instead of when and how to observe.
These attacks focus on changing the environment at key steps
to slow down or mislead the learning process. Attackers can
place obstacles at some key points based on reward or gradient
information [54], [55]. There is a more diverse and complex
index to find the key points and paradigms of the changing
environment [56].

4) Action-based Attack: Action-based attackers impose at-
tacks across the action space dimensions. Attackers usually
place noise in the action space and minimise the reward value
during the policy evaluation process of agents [57]. Similar
to the environment-based attack, the action space is separate
from the policy, which can be fatal to deep RL, especially
those combined with time-coherent attacks.

5) Policy-based Attack: The policy-based attack aims to
confuse the policy. Deep RL agents usually learn well in terms
of policy and are able to achieve a high score in the zero-
sum game. However, under the usual training environment,
the learned policy does not apply to all circumstances in the
rule space. When there are other agents who show a valid
move allowed by the rules but do not learn from the agent in
advance, the learned policy may be fooled, resulting in a low
reward [58].

IV. COUNTER MEASUREMENTS

Here we review methods for developing effective counter-
measures for adversarial attacks.

A. Common Defence Methods

1) Adversarial training: Adversarial training is also a
commonly used defence technique in deep RL. It trains the
deep neural network together with attacking samples, which

increases the robustness of the trained network to attacks. One
simple example is adding distribution and noise to the training
sample (agents) for higher robustness [49], [59]. Other than
inputs, adversarial training is also applied based on gradient
[55], where the trained model has a high generalization ability
to defend against similar attacks. Not all the time needs
adversarial training inputs, some works use the greedy method
or significant level of actions to determine if the adversarial
training needs to be applied, and have a similar result with
less adversarial training inputs [60], [61].

2) Robustness training: Robustness training is another
method of defence against adversarial attacks. The robustness
can be represented in adding noise to both environment, action
and reward [62]–[64]. These noises can also be simulated by
adding an additional dummy agent and competing against it
[62], [65]. The additional agent brings a higher level of com-
petition, which increases the capacity of agents’ robustness in
acting on the original environment.

3) Adversarial detection: Adversarial detection techniques
can be used to provide an early warning to adversarial attacks
and trigger defence actions so as to realise the defence. The
detection can be environment-based, policy-based, and action-
based, where the system will evaluate if the current applied
policy [66], action [67] and environment are being attacked.
When that happens, the system will take action, such as
interrupting the learning process, predicting the input [68],
and fixing or changing the policy.

4) Federated learning: Threats from distributed learning
systems that use the deep learning techniques often rely
on leveraging the reduction of raw data process implied by
the federated learning techniques [69]. Federated Learning is
a new framework to address those threats. Basic federated
learning consists in distributing multiple computing units that
form an artificial neural network for completing tasks such as
object detection and recognition in a mobile device, standalone
device and computer server, without exchanging users’ data
samples. Due to this learning paradigm, federated learning can
take advantage of the distributed computing power and data
(with different privacy level) from all end users to obtain a
more powerful model [70].

B. Four Key Procedures

In summary, the mitigation of adversarial attacks has four
key procedures. Preventing failures, detecting attacks, locating
attacks, and mitigating attacks. The previous four counter
measurement methods are used in these procedures.

1) Preventing Failures: Failure prevention can be done
through robustness and adversarial training. More generalized
models can survive in many attacks. Besides, early warning of
weaknesses and early detection of attacks both help to prevent
system failure.

2) Detecting Attacks: The key to the survival of the deep
RL system is the detection of attacks. Accurately reporting
the happening of the attack can help the system to reduce
the effect of the attack. The runtime analysis of attacks, e.g.,

Intrinsic Model Specific

Post-hoc Model Agnostic

Global

Local

Explainability
Method

Time of
Information
Extraction

Scope

Fig. 1. XAI methods taxonomy [71].

predicting types, volume, and procedure, helps to mitigate the
attack.

3) Locating Attacks: Knowing the time of attach, which
inputs or decisions belong to the attack, and how these changes
resulted in failure, can help to defend from the current attack
and further build RL systems with higher robustness. The
reasoning behind the failure has an influential impact on how
to mitigate and prevent the attack.

4) Mitigating Attacks: There are several attack mitigation
policies. After locating the attack and understanding the rea-
soning behind the attack, the system can apply the relevant
defence policy. For example, with the observation environment
and reward attack, the system can stop the learning process
or filter out the attacking inputs or learn from selected inputs,
for the policy-based attack, the system can switch to another
pre-trained policy. All these counter measurements can protect
the system from further attacks and push the system back to
normal functioning.

V. EXPLAINABILITY

Explainability is often referred to interpretability, which is
the ability to explain how the optimal solutions are found
through training or searching in problem spaces. In RL, the
explainability can be divided into two dimensions [71], [72]
(Figure 1):

1) When to explain: When information is extracted is
essential to the explainability of the overall multi-agent RL
system [8]. There are two trends, one is to allow the system
to be intrinsically explainable from the training phase [73]
[71]. Specifically, this ensures every step of training (training
data, cost function, rule formulation) is explainable. Although
not directly belonging to the RL system, Decision Tree and
Explainable Artificial Intelligence [74] are two good examples
of training explainability, where the trained model have a
clear structure that can originally provide easy reasoning and
can be understandable to domain experts [75]. The other
trend is to explain the model after the model is trained and
converged, which is also named as post-hoc explainability
[8]. This type of explainability does not need to have the
knowledge of the model [76]. It just learns from the system
input-output and extracts the explainable rules to model the
system behaviour [77].

2) Scope of the explanations: The explanation scope can
be global or local [71]. Local explanation focus on fine-
grained system activities, for example, why an agent does
some specific activities at a certain time [71]. The fine-
grained explanation allows experts to diagnose the system in
a easier way, which helps to do early warning and provide
a more secure system. The global explanations are more

Reinforcement
Learning

Agent

Policy
Select Action

Translator

Secured Framework

Trace Log
{JSON}

Reasoning **Explainer

TGDB
Runtime
Model

1

Environment

Action
Reward
State

CEP Engine

Event Patterns

Reasoning *Agent Traces

User Interface

Visual Analytics

2

4
3

7
8

6 5

Fig. 2. Framework of a secured multi-agent reinforcement learning program-
ming paradigm. The secured system is based on the extension work of the
first explanation for reinforcement learning, ETeMoX framework [8].

coarse-grained and usually focused on multi-agent and their
interactive activities and trends. The coarse-grained system
usually lasts for a longer time to better understand the strategy
and how it influences the reward in a broader time period,
which helps to provide a more general understanding of the
system [73].

The first explanation for reinforcement learning by using
temporal database run time mode was published in 2021 [8].
Parrar et al. described the feasibility of using hark query on a
temporal database to provide explainable deep RL (e.g. [9]) for
run-time explanations and post-hoc analyses. This work also
lays the foundation of our proposed secure deep RL computing
paradigm.

VI. A SECURE MULTI-AGENT REINFORCEMENT LEARNING
PROGRAMMING PARADIGM

We hypothesis that a secure multi-agent deep RL computing
paradigm needs support machine reasoning, trust, and explain-
ability. The framework we proposed in below, as shown in
Figure 2, can provide support to defend against malicious
attack and provide capability for a general multi-agent deep
RL systems. There are four components in the framework:
Agent Traces, Machine Reasoning *, Machine Reasoning **
and Explainer and Trust Authentication Interfaces. These will
be described in detail below.

1) Agents’ Traces: Our implementation decouples observa-
tion in the system from agents’ traces. The agent traces will be
extracted as log files and forwarded to the Agent Traces com-
ponent. These logs contain all agent-related information from
its environment input, model parameters, hyperparameters,
actions, rewards, and other sensing data, or even information
from human observers. These collected time series logs files
will be send to a translator component through a authentication
interface (❶ in Figure 2). Based on the different translator
designs, the log file can be self-defined and structured like
JSON, XML, or plain text with key-value pairs. These raw data
will then be processed into a format that can be understood by
the complex event engine for further process in the Machine
Reasoning* component(❷ in Figure 2).

POJOs Output
Adapters

Esper Engines

Event Stream
Connectors &

Adapters

Statements

Historical Data
Access Layer Event Query & Causality Language

Core Container

Esper: Lightweight ESP/CEP container
Historical

Data

Event Stream Intelligence for line rate EDALine rate data streams

Fig. 3. Esper systems [78], one of the typical CEP engine.

2) Machine Reasoning*: This component mainly aims to
locate conditions (patterns or events) from the traces of the
translated log files from the Agent Traces component. The
located patterns, events and their associate information will
be sent to the Runtime Model and Temporal Graph Database
(TGDB) in the second stage of Machine Reasoning** com-
ponent. In detail, based on the complex event engine (CEP),
as the first stage of machine reasoning, the event and pattern
will be selected and the reasoning of agent traces selection
will be located. One typical CEP example is the Esper [78].
As shown in Figure 3, Esper is able to realise runtime
correlations location between simple events and the predefined
paradigm from log files of each individual agent trace. Esper
provides streaming analysis, available for Java as well as
for .NET framework [79]. Users will define the outlook and
characteristics of these paradigms based on their tasks and
interests (e.g. what is the characteristic of an agent when it is
stuck somewhere). These can be defined in the Esper EPL and
deployed to the Esper engine. When the Esper engine detects
the event, the system will do the predefined event-triggered
actions (e.g. where, when, and how the agent is stuck) and will
collect the data based on needs and send them to the second
Machine Reasoning** component for further process (❸ to ❹
in Figure 2). Again the interfaces are clients authenticated to
guarantee secure communication.

3) Machine Reasoning**: In this component, the obser-
vations and reasoning (received indexed event data) from
the previous component reasoning* are linked to the system
goals and decisions. This linking task is realised by using
the Eclipse Modeling Framework1 (EMF) [7], which focus on
two directions. The first direction is generalised observation,
which mainly analyses the general system performance over a
long period. The second direction is goal-oriented observation,
which mainly focuses on specific task-related events.

The runtime model based on Java will update the TGDB
and help to create strategies based on a predefined response
paradigm. The updated temporal graph will be auto-generated
and adjusted by the model indexer according to the coming
logs. The updated graph will replace the old one at some
specific time based on needs. The TGBD can help to trace
the log (e.g. changing of model parameters) of each agent and
show the intrinsic relationship between different log parame-

1Eclipse Modeling Framework: https://www.eclipse.org/modeling/emf/

https://www.eclipse.org/modeling/emf/

ters. These will be sent to the final component Explainer via
clients authenticated interfaces (❺ to ❻ in Figure 2) for further
process.

4) Explainer: Obligations of this kind are especially rele-
vant for systems that rely on reinforcement learning since the
reasoning processes of such systems are typically opaque. It is
essential to provide a graphical explanation system that helps
carers and people who need care to understand the operation
and limitations of the high dimension data that is used in soft-
ware, particularly with optimisation problems. The explainer
component is based on temporal difference algorithms read
MQTT message through ❼ to ❽ in Figure 2, in which RL
algorithms to be equipped with the ability to provide human
understandable reasoning including user oriented interface and
high dimension visual analytic techniques.

5) Trust Authentication Interfaces: The most easy way
of adding authentication interfaces is based on assigning an
individual secret key to each user, so that machine reasoning
components can sign off their own downstream data, which
is based on first conceptualized and implemented in 1984
by Shamir [80]. However, those may bring limitations of
privacy with deniable signatures. Enabling regular change of
signature does make, and this method is arguably still the best
lightweight authentication technique. Take the advantage of
the fast computing techniques, those lightweight authentication
methods are still one of the best practical solutions. Those
lightweight authentication brings a level of secured communi-
cation in a general communication network.

VII. DISCUSSION AND FUTURE WORK

The classical adversarial attack is only focused on the
threats from the artificial neural networks, with most of
the work focused on supervised learning and unsupervised
learning methods. Deep RL learning is used to generate opti-
mal actions, which depends on consecutively neural network
predictions unlike single predictions at a time in classification
or regression problems. It is essential to look into potential
threats and adversarial attacks to allow research communities
to have a secure system to apply deep RL algorithms into real
life scenarios with safeguarding procedures.

We discussed the adversarial attacks by categorising
them into observation-based attack, reward-based attach,
environment-based attack, action-based attack and policy-
based attack. Most of counter measurements are focusing on
making the RL or deep RL algorithms to learn a robust policy
or alternatively depending on the observation base on image
inputs instead of environment sensing from agents.

Due to the evolution of new attack techniques, the chance
of developing of a inherently robust deep RL algorithms is
challenging. We hypnosis that a best solution of building
defensible deep RL framework is to provide a framework with
scalable machine reasoning techniques and explainability tech-
niques to explain behaviour of those algorithms in accordance
with human perception. In this paper, we propose a framework
of providing secure defense system and discuss the feasibility
of use temporal database to provide safeguarding for deep RL

systems. Despite the vulnerabilities of deep RL methods, it
is possible to build a secure multi-agent deep RL framework
to benefit in robotics, smart city and industry4.0 initiatives.
A decoupled approach with temporal database and advanced
machine reasoning methods could provide techniques to im-
plement necessary surveillance. Our future work will focus on
thoroughly testing our framework using widely popular adver-
sarial attackers, such as Foolbox [81] to evaluate our systems.
Also like traditional standard secure computing systems, we
are planning to develop benchmarks to quantify the robustness
and resilience of those RL and deep RL algorithms.

ACKNOWLEDGMENT

We would like to thank Juan Marcelo Parra-Ullauri, Antonio
Garcı́a-Domı́nguez, Nelly Bencomo, Juan Boubeta-Puig and
Guadalupe Ortiz for initiating the conversion of this framework
and for providing the first public repository.

REFERENCES

[1] Y. Wang, H. He, and C. Sun, “Learning to navigate through complex
dynamic environment with modular deep reinforcement learning,” IEEE
Transactions on Games, vol. 10, no. 4, pp. 400–412, 2018.

[2] S. Ishii, W. Yoshida, and J. Yoshimoto, “Control of exploitation–
exploration meta-parameter in reinforcement learning,” Neural networks,
vol. 15, no. 4-6, pp. 665–687, 2002.

[3] P. Wang, H. Li, and C.-Y. Chan, “Continuous control for automated lane
change behavior based on deep deterministic policy gradient algorithm,”
in 2019 IEEE Intelligent Vehicles Symposium (IV). IEEE, 2019, pp.
1454–1460.

[4] Z. Zheng, J. Oh, and S. Singh, “On learning intrinsic rewards for policy
gradient methods,” Advances in Neural Information Processing Systems,
vol. 31, 2018.

[5] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
nature, vol. 518, no. 7540, pp. 529–533, 2015.

[6] V. Pong, S. Gu, M. Dalal, and S. Levine, “Temporal difference
models: Model-free deep rl for model-based control,” arXiv preprint
arXiv:1802.09081, 2018.

[7] J. M. Parra-Ullauri, A. Garcı́a-Domı́nguez, L. H. Garcı́a-Paucar, and
N. Bencomo, “Temporal models for history-aware explainability,” in
Proceedings of the 12th System Analysis and Modelling Conference,
2020, pp. 155–164.

[8] J. M. Parra-Ullauri, A. Garcı́a-Domı́nguez, N. Bencomo, C. Zheng,
C. Zhen, J. Boubeta-Puig, G. Ortiz, and S. Yang, “Event-driven temporal
models for explanations - ETeMoX: explaining reinforcement learning,”
Software and Systems Modeling, Dec. 2021.

[9] C. Zheng, S. Yang, J. M. Parra-Ullauri, A. Garcia-Dominguez, and
N. Bencomo, “Reward-reinforced generative adversarial networks for
multi-agent systems,” IEEE Transactions on Emerging Topics in Com-
putational Intelligence, 2021.

[10] R. L. Sherman, “Distributed systems security,” Computers & Security,
vol. 11, no. 1, pp. 24–28, 1992.

[11] C. Dobre, C. Stratan, and V. Cristea, “Realistic simulation of large scale
distributed systems using monitoring,” in 2008 International Symposium
on Parallel and Distributed Computing, 2008, pp. 434–438.

[12] Z. Huang, C. Wang, M. Stojmenovic, and A. Nayak, “Characterization
of cascading failures in interdependent cyber-physical systems,” IEEE
Transactions on Computers, vol. 64, no. 8, pp. 2158–2168, 2015.

[13] E. Brewer, “A certain freedom: thoughts on the cap theorem,” in Pro-
ceedings of the 29th ACM SIGACT-SIGOPS symposium on Principles
of distributed computing, 2010, pp. 335–335.

[14] D. Pritchett, “Base: An acid alternative: In partitioned databases, trading
some consistency for availability can lead to dramatic improvements
in scalability.” Queue, vol. 6, no. 3, p. 48–55, may 2008. [Online].
Available: https://doi.org/10.1145/1394127.1394128

[15] S. De Angelis, L. Aniello, R. Baldoni, F. Lombardi, A. Margheri, and
V. Sassone, “Pbft vs proof-of-authority: Applying the cap theorem to
permissioned blockchain,” 2018.

https://doi.org/10.1145/1394127.1394128

[16] “Redis,” https://redis.io/, accessed: 2022-05-17.
[17] O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik,

J. Chung, D. H. Choi, R. Powell, T. Ewalds, P. Georgiev et al., “Grand-
master level in starcraft ii using multi-agent reinforcement learning,”
Nature, vol. 575, no. 7782, pp. 350–354, 2019.

[18] D. Ye, G. Chen, W. Zhang, S. Chen, B. Yuan, B. Liu, J. Chen, Z. Liu,
F. Qiu, H. Yu et al., “Towards playing full moba games with deep
reinforcement learning,” Advances in Neural Information Processing
Systems, vol. 33, pp. 621–632, 2020.

[19] D. Ye, Z. Liu, M. Sun, B. Shi, P. Zhao, H. Wu, H. Yu, S. Yang,
X. Wu, Q. Guo et al., “Mastering complex control in moba games with
deep reinforcement learning,” in Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 34, no. 04, 2020, pp. 6672–6679.

[20] E. Gibney et al., “Google ai algorithm masters ancient game of go,”
Nature, vol. 529, no. 7587, pp. 445–446, 2016.

[21] T. Wei, S. Ren, and Q. Zhu, “Deep reinforcement learning for joint
datacenter and hvac load control in distributed mixed-use buildings,”
IEEE Transactions on Sustainable Computing, vol. 6, no. 3, pp. 370–
384, 2019.

[22] Y. Wang, Y. Xia, T. He, F. Tian, T. Qin, C. Zhai, and T.-Y. Liu, “Multi-
agent dual learning,” in Proceedings of the International Conference on
Learning Representations (ICLR) 2019, 2019.

[23] J. Kang, M. Liu, A. Gupta, C. Pal, X. Liu, and J. Fu, “Learning multi-
objective curricula for deep reinforcement learning,” arXiv preprint
arXiv:2110.03032, 2021.

[24] C. Zheng, S. Yang, J. Parra-Ullauri, A. Garcia-Dominguez, and
N. Bencomo, “Reward-reinforced reinforcement learning for multi-agent
systems,” 2021. [Online]. Available: https://arxiv.org/abs/2103.12192

[25] C. Zhang, C. Gupta, A. Farahat, K. Ristovski, and D. Ghosh, “Equipment
health indicator learning using deep reinforcement learning,” in Joint
European Conference on Machine Learning and Knowledge Discovery
in Databases. Springer, 2018, pp. 488–504.

[26] J. Weltz, A. Volfovsky, and E. B. Laber, “Reinforcement learning
methods in public health,” Clinical therapeutics, 2022.

[27] J. Tu, T. Wang, J. Wang, S. Manivasagam, M. Ren, and R. Urtasun,
“Adversarial attacks on multi-agent communication,” in Proceedings of
the IEEE/CVF International Conference on Computer Vision, 2021, pp.
7768–7777.

[28] N. N. Bakhtadze, I. B. Yadykin, V. A. Lototsky, E. M. Maximov,
and E. A. Sakrutina, “Multi-agent approach to design of multimodal
intelligent immune system for smart grid,” IFAC Proceedings Volumes,
vol. 46, no. 9, pp. 1164–1169, 2013.

[29] C. N. Hadjicostis and T. Charalambous, “Average consensus in the
presence of delays in directed graph topologies,” IEEE Transactions
on Automatic Control, vol. 59, no. 3, pp. 763–768, 2013.

[30] C. N. Hadjicostis, N. H. Vaidya, and A. D. Domı́nguez-Garcı́a, “Robust
distributed average consensus via exchange of running sums,” IEEE
Transactions on Automatic Control, vol. 61, no. 6, pp. 1492–1507, 2015.

[31] B. G. Tekgul, S. Wang, S. Marchal, and N. Asokan, “Real-time
attacks against deep reinforcement learning policies,” arXiv preprint
arXiv:2106.08746, 2021.

[32] J. Zhang and C. Li, “Adversarial examples: Opportunities and chal-
lenges,” IEEE transactions on neural networks and learning systems,
vol. 31, no. 7, pp. 2578–2593, 2019.

[33] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” arXiv preprint arXiv:1412.6572, 2014.

[34] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and
A. Swami, “The limitations of deep learning in adversarial settings,” in
2016 IEEE European symposium on security and privacy (EuroS&P).
IEEE, 2016, pp. 372–387.

[35] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “Deepfool: a simple
and accurate method to fool deep neural networks,” in Proceedings of
the IEEE conference on computer vision and pattern recognition, 2016,
pp. 2574–2582.

[36] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural
networks,” in 2017 ieee symposium on security and privacy (sp). IEEE,
2017, pp. 39–57.

[37] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards
deep learning models resistant to adversarial attacks,” arXiv preprint
arXiv:1706.06083, 2017.

[38] A. Ilyas, L. Engstrom, A. Athalye, and J. Lin, “Black-box adversarial at-
tacks with limited queries and information,” in International Conference
on Machine Learning. PMLR, 2018, pp. 2137–2146.

[39] P.-Y. Chen, H. Zhang, Y. Sharma, J. Yi, and C.-J. Hsieh, “Zoo: Zeroth
order optimization based black-box attacks to deep neural networks
without training substitute models,” in Proceedings of the 10th ACM
workshop on artificial intelligence and security, 2017, pp. 15–26.

[40] T. Foroud, A. Baradaran, and A. Seifi, “A comparative evaluation of
global search algorithms in black box optimization of oil production:
A case study on brugge field,” Journal of Petroleum Science and
Engineering, vol. 167, pp. 131–151, 2018.

[41] Y. Li, L. Li, L. Wang, T. Zhang, and B. Gong, “Nattack: Learning the
distributions of adversarial examples for an improved black-box attack
on deep neural networks,” in International Conference on Machine
Learning. PMLR, 2019, pp. 3866–3876.

[42] W. Brendel, J. Rauber, and M. Bethge, “Decision-based adversarial
attacks: Reliable attacks against black-box machine learning models,”
arXiv preprint arXiv:1712.04248, 2017.

[43] Y. Dong, H. Su, B. Wu, Z. Li, W. Liu, T. Zhang, and J. Zhu, “Efficient
decision-based black-box adversarial attacks on face recognition,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2019, pp. 7714–7722.

[44] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,
and R. Fergus, “Intriguing properties of neural networks,” arXiv preprint
arXiv:1312.6199, 2013.

[45] V. Behzadan and W. Hsu, “Adversarial exploitation of policy imitation,”
arXiv preprint arXiv:1906.01121, 2019.

[46] L. Hussenot, M. Geist, and O. Pietquin, “Copycat: Taking control of
neural policies with constant attacks,” arXiv preprint arXiv:1905.12282,
2019.

[47] V. Behzadan and A. Munir, “Vulnerability of deep reinforcement learn-
ing to policy induction attacks,” in International Conference on Machine
Learning and Data Mining in Pattern Recognition. Springer, 2017, pp.
262–275.

[48] Y.-C. Lin, Z.-W. Hong, Y.-H. Liao, M.-L. Shih, M.-Y. Liu, and M. Sun,
“Tactics of adversarial attack on deep reinforcement learning agents,”
arXiv preprint arXiv:1703.06748, 2017.

[49] J. Kos and D. Song, “Delving into adversarial attacks on deep policies,”
arXiv preprint arXiv:1705.06452, 2017.

[50] S. Huang, N. Papernot, I. Goodfellow, Y. Duan, and P. Abbeel,
“Adversarial attacks on neural network policies,” arXiv preprint
arXiv:1702.02284, 2017.

[51] E. Tretschk, S. J. Oh, and M. Fritz, “Sequential attacks on agents for
long-term adversarial goals,” arXiv preprint arXiv:1805.12487, 2018.

[52] P. Kiourti, K. Wardega, S. Jha, and W. Li, “Trojdrl: Trojan attacks on
deep reinforcement learning agents,” arXiv preprint arXiv:1903.06638,
2019.

[53] Y. Han, B. I. Rubinstein, T. Abraham, T. Alpcan, O. D. Vel, S. Erfani,
D. Hubczenko, C. Leckie, and P. Montague, “Reinforcement learning for
autonomous defence in software-defined networking,” in International
Conference on Decision and Game Theory for Security. Springer, 2018,
pp. 145–165.

[54] T. Chen, W. Niu, Y. Xiang, X. Bai, J. Liu, Z. Han, and G. Li, “Gradient
band-based adversarial training for generalized attack immunity of a3c
path finding,” arXiv preprint arXiv:1807.06752, 2018.

[55] X. Bai, W. Niu, J. Liu, X. Gao, Y. Xiang, and J. Liu, “Adversarial
examples construction towards white-box q table variation in dqn
pathfinding training,” in 2018 IEEE Third International Conference on
Data Science in Cyberspace (DSC). IEEE, 2018, pp. 781–787.

[56] C. Xiao, X. Pan, W. He, J. Peng, M. Sun, J. Yi, M. Liu, B. Li, and
D. Song, “Characterizing attacks on deep reinforcement learning,” arXiv
preprint arXiv:1907.09470, 2019.

[57] X. Y. Lee, S. Ghadai, K. L. Tan, C. Hegde, and S. Sarkar, “Spa-
tiotemporally constrained action space attacks on deep reinforcement
learning agents,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 34, no. 04, 2020, pp. 4577–4584.

[58] A. Gleave, M. Dennis, C. Wild, N. Kant, S. Levine, and S. Russell,
“Adversarial policies: Attacking deep reinforcement learning,” arXiv
preprint arXiv:1905.10615, 2019.

[59] A. Pattanaik, Z. Tang, S. Liu, G. Bommannan, and G. Chowdhary,
“Robust deep reinforcement learning with adversarial attacks,” arXiv
preprint arXiv:1712.03632, 2017.

[60] V. Behzadan and A. Munir, “Whatever does not kill deep reinforcement
learning, makes it stronger,” arXiv preprint arXiv:1712.09344, 2017.

[61] V. Behzadan and W. Hsu, “Analysis and improvement of adversarial
training in dqn agents with adversarially-guided exploration (age),” arXiv
preprint arXiv:1906.01119, 2019.

https://redis.io/
https://arxiv.org/abs/2103.12192

[62] L. Pinto, J. Davidson, R. Sukthankar, and A. Gupta, “Robust adver-
sarial reinforcement learning,” in International Conference on Machine
Learning. PMLR, 2017, pp. 2817–2826.

[63] V. Behzadan and A. Munir, “Mitigation of policy manipulation attacks
on deep q-networks with parameter-space noise,” in International Con-
ference on Computer Safety, Reliability, and Security. Springer, 2018,
pp. 406–417.

[64] K. Neklyudov, D. Molchanov, A. Ashukha, and D. Vetrov, “Variance
networks: When expectation does not meet your expectations,” arXiv
preprint arXiv:1803.03764, 2018.

[65] Z. Gu, Z. Jia, and H. Choset, “Adversary a3c for robust reinforcement
learning,” arXiv preprint arXiv:1912.00330, 2019.

[66] A. Havens, Z. Jiang, and S. Sarkar, “Online robust policy learning in
the presence of unknown adversaries,” Advances in neural information
processing systems, vol. 31, 2018.

[67] B. Lütjens, M. Everett, and J. P. How, “Certified adversarial robustness
for deep reinforcement learning,” in Conference on Robot Learning.
PMLR, 2020, pp. 1328–1337.

[68] Y.-C. Lin, M.-Y. Liu, M. Sun, and J.-B. Huang, “Detecting adversarial
attacks on neural network policies with visual foresight,” arXiv preprint
arXiv:1710.00814, 2017.

[69] Q. Yang, Y. Liu, Y. Cheng, Y. Kang, T. Chen, and H. Yu, “Federated
learning,” Synthesis Lectures on Artificial Intelligence and Machine
Learning, vol. 13, no. 3, pp. 1–207, 2019.

[70] A. Fallah, A. Mokhtari, and A. Ozdaglar, “Personalized federated
learning with theoretical guarantees: A model-agnostic meta-learning
approach,” Advances in Neural Information Processing Systems, vol. 33,
pp. 3557–3568, 2020.

[71] E. Puiutta and E. Veith, “Explainable reinforcement learning: A survey,”
in International cross-domain conference for machine learning and
knowledge extraction. Springer, 2020, pp. 77–95.

[72] A. Heuillet, F. Couthouis, and N. Dı́az-Rodrı́guez, “Explainability in
deep reinforcement learning,” Knowledge-Based Systems, vol. 214, p.
106685, 2021.

[73] A. Adadi and M. Berrada, “Peeking inside the black-box: a survey on
explainable artificial intelligence (xai),” IEEE access, vol. 6, pp. 52 138–
52 160, 2018.

[74] D. Gunning, M. Stefik, J. Choi, T. Miller, S. Stumpf, and G.-Z.
Yang, “Xai—explainable artificial intelligence,” Science robotics, vol. 4,
no. 37, p. eaay7120, 2019.

[75] B. Letham, C. Rudin, T. H. McCormick, and D. Madigan, “Interpretable
classifiers using rules and bayesian analysis: Building a better stroke
prediction model,” The Annals of Applied Statistics, vol. 9, no. 3, pp.
1350–1371, 2015.

[76] Z. C. Lipton, “The mythos of model interpretability: In machine
learning, the concept of interpretability is both important and slippery.”
Queue, vol. 16, no. 3, pp. 31–57, 2018.

[77] G. Ras, M. van Gerven, and P. Haselager, “Explanation methods in
deep learning: Users, values, concerns and challenges,” in Explainable
and interpretable models in computer vision and machine learning.
Springer, 2018, pp. 19–36.

[78] A. Mathew, “Benchmarking of complex event processing engine-esper,”
Dept. Comput. Sci. Eng., Indian Inst. Technol. Bombay, Maharashtra,
India, Tech. Rep. IITB/CSE/2014/April/61, 2014.

[79] J. Richter, Applied Microsoft. NET framework programming. Microsoft
Press Redmond, 2002, vol. 1.

[80] A. Shamir, “Identity-based cryptosystems and signature schemes,” in
Workshop on the theory and application of cryptographic techniques.
Springer, 1984, pp. 47–53.

[81] M.-I. Nicolae, M. Sinn, M. N. Tran, B. Buesser, A. Rawat, M. Wistuba,
V. Zantedeschi, N. Baracaldo, B. Chen, H. Ludwig et al., “Adversarial
robustness toolbox v1. 0.0,” arXiv preprint arXiv:1807.01069, 2018.

	Introduction
	Threat Analysis
	Distributed Learning Systems
	Multi-agent Deep Reinforcement Learning

	Adversarial Attack
	Adversarial Attack in Deep Learning
	Classified by Attacking Environment
	Classified by Attacking Targets
	Typical Attacking Method

	Adversarial Attacks in Deep Reinforcement Learning
	Observation-based Attack
	Reward-based Attack
	Environment-based Attack
	Action-based Attack
	Policy-based Attack

	Counter measurements
	Common Defence Methods
	Adversarial training
	Robustness training
	Adversarial detection
	Federated learning

	Four Key Procedures
	Preventing Failures
	Detecting Attacks
	Locating Attacks
	Mitigating Attacks

	Explainability
	When to explain
	Scope of the explanations

	A secure multi-agent reinforcement learning programming paradigm
	Agents' Traces
	Machine Reasoning*
	Machine Reasoning**
	Explainer
	Trust Authentication Interfaces

	Discussion and Future Work
	References

