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Abstract—
In this study we synthesize zigzag persistence from topological

data analysis with autoencoder-based approaches to detect ma-
licious cyber activity and derive analytic insights. Cybersecurity
aims to safeguard computers, networks, and servers from various
forms of malicious attacks, including network damage, data
theft, and activity monitoring. Here we focus on the detection
of malicious activity using log data. To do this we consider the
dynamics of the data by exploring the changing topology of a
hypergraph representation gaining insights into the underlying
activity. Hypergraphs provide a natural representation of cyber
log data by capturing complex interactions between processes.
To study the changing topology we use zigzag persistence
which captures how topological features persist at multiple
dimensions over time. We observe that the resulting barcodes
represent malicious activity differently than benign activity. To
automate this detection we implement an autoencoder trained
on a vectorization of the resulting zigzag persistence barcodes.
Our experimental results demonstrate the effectiveness of the
autoencoder in detecting malicious activity in comparison to
standard summary statistics. Overall, this study highlights the
potential of zigzag persistence and its combination with temporal
hypergraphs for analyzing cybersecurity log data and detecting
malicious behavior.

I. INTRODUCTION

In this study, we leverage zigzag persistence [10], a method
from topological data analysis (TDA) [11], [26], coupled with
autoencoder anomaly detection to delve into the temporal
activity of cyber data and effectively detect malicious behavior.

Cybersecurity aims to safeguard computers, networks, and
users from various forms of malicious attacks that undermine
confidentiality, integrity, or availability [5], [24]. These attacks
are typically carried out by gaining unauthorized access to
systems or services, often leaving behind evidence of the
attacks in the underlying log data which captures information
such as timestamps, Internet Protocol (IP) addresses, ports, ex-
ecutable paths, and command line entries. However, detecting
that malicious activity in the log data is challenging due to the
data’s size and complexity.

One common approach to finding malicious activity in cyber
logs involves constructing and analyzing graph representations
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of the data, such as process trees [17] or flow networks [4], that
model dyadic relations between entities. However, standard
graphs cannot capture multi-way interactions that are com-
mon in cyber data. Instead, using higher dimensional graphs,
known as hypergraphs [8], for modeling cyber log data more
effectively captures the complex interactions present between
users, processes, ports, and other resources. Hypergraphs have
proven valuable in diverse branches of data science, including
machine learning, biology, and social networks [14], [16], [25].

While hypergraphs capture the complex multi-way rela-
tionships, traditional static hypergraphs may fail to addi-
tionally represent the dynamic nature of cyber systems. By
incorporating temporal information on vertices, hyperedges,
or incidences, temporal hypergraphs [6], [12], [21] offer a
solution. Temporal hypergraphs allow vertices and hyperedges
to appear and disappear over time and connect different
sets of vertices at different points in time. As such, they
provide a suitable framework for studying dynamical systems
of complex relations. Cyber log data falls squarely into this
category as temporal information is present on all log records,
and each record or collection of records captures complex
relationships among groups of network entities, e.g., hosts,
IPs, ports, users, and executable files.

One approach to representing temporal hypergraphs that
we implement in this work is as a sequence, one hypergraph
per sliding time window, representing the state of the system
during that time. This sequential representation of the temporal
hypergraph allows one to treat the sequence as a dynamical
process Gt 7→ Gt+1 gaining a dynamical systems perspective.
Each hypergraph in the sequence is a set of vertices and a
multiset of hyperedges. Each vertex and hyperedge represents
a distinct named entity (e.g., an IP, port, user, program
executable). All vertices are the same type (e.g., all IPs), as
are all edges, but edges and vertices represent different types.
The hyperedge corresponding to a specific entity can include
different sets of vertices at different times. This will be made
more concrete in Section II.

Our primary objective is to analyze temporal hypergraph
representations of cyber log data to effectively detect malicious
activity. Our claim is that malicious cyber activity will often
exhibit unique attack patterns in the log data, resulting in topo-
logical changes in the representations over time. Specifically,
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we investigate a hypergraph representation constructed with
executables as vertices and destination ports as hyperedges.
The dynamics of the topology of this hypergraph should be
different during malicious times than it is during benign since
malicious activity often has more complexity and quantity
in the executables interactions changing at faster time scales
compared to benign activity. This intuition will be illustrated
in Section III-C. We considered many combinations of hyper-
edges and vertices for constructing hypergraphs and found the
clearest malicious activity detection using this construction.

The evolution of hypergraph structure and topology over
time naturally fits into a use case of zigzag persistence,
a tool from TDA. With temporal hypergraphs providing a
valuable framework for capturing complex dynamical systems
we need to build an understanding of the complex patterns and
structural changes in these temporal hypergraphs, and this is
where zigzag persistence comes into play. Zigzag persistence
captures how, when, and for how long topological features
at multiple dimensions persist. For example, is a distinct
component seen over a long time, and if so, is it always
present, or does it intermittently appear?

Zigzag persistence has been previously used for studying
temporal graph models [20] of transportation networks and for
intermittency detection. This method has also been recently
extended to study temporal hypergraphs for both cyber and
social network data [19]. By leveraging the power of zigzag
persistence, one is able to delve deep into the intricate temporal
dynamics of (hyper)graphs, unveiling hidden trends, detecting
critical events, and revealing the underlying structural trans-
formations that shape the system’s behavior.

To determine the viability of this approach we implement an
autoencoder as a form of anomaly detection on a vectorization
of the resulting zigzag persistence barcodes. We train the
model to detect suspicious activity and investigate vectors that
have high reconstruction loss. We chose to use an autoencoder
based on the assumption that a large proportion of traffic on the
network is typical benign activity, whereas malicious activity
is fairly uncommon.

We begin in Section II by introducing notation and defini-
tions for temporal hypergraphs, zigzag persistence, and how
we use zigzag persistence to study temporal hypergraphs. We
also introduce the concept of an autoencoder. In Section III
we describe the cyber data, our experimental design, and some
intuition behind using dynamic topology to identify anomalous
behavior. We then demonstrate the ability of the pipeline to
detect malicious activity in Section IV. We provide future
goals and conclusions on this work in Section V.

II. COMPUTATIONAL TOOLS

The process of computing zigzag persistence for a temporal
hypergraph begins with a sequence of representative hyper-
graphs. We then transform each hypergraph into an abstract
simplicial complex and examine the appearance and disap-
pearance of topological features across multiple dimensions
in this sequence using zigzag persistence. In the final step of
our pipeline we vectorize the zigzag persistence barcode and

use an autoencoder to identify anomalous barcodes. In order
to describe our experimental design in the context of cyber
log data in Section III-B, we begin by first introducing the
necessary definitions and background in a general setting.

A. Hypergraphs and Abstract Simplicial Complexes

A hypergraph, G = (V,E), analogous to a graph, is repre-
sented by a set of vertices, V and a family of (hyper)edges
E. The main difference between a hypergraph and a classical
graph is that an edge e ∈ E can be an arbitrary subset of
vertices e ⊆ V as opposed to a pair. If |e| = k then we say
that e is a k-edge. A temporal hypergraph is a sequence of n
hypergraphs, denoted as G = G0, G1, G2, . . . , Gn−1, where
Gi = ⟨V,Ei⟩. The sequence can be viewed as a discrete
dynamical process, where Gt transitions to Gt+1, enabling us
to gain insights into the dynamics of the underlying system.

An abstract simplicial complex (ASC), denoted as K, is a
non-empty collection of non-empty sets that is closed under
taking subsets. Formally, K = {σ} is an ASC if whenever
τ ⊂ σ ∈ K then τ ∈ K. Each set, σ, is called a simplex,
and if |σ| = k then σ has dimension k − 1 and is called a
(k − 1)-simplex. Geometrically, 0-simplices represent points
or vertices, 1-simplices represent lines or edges, 2-simplices
represent filled-in triangles, 3-simplices filled in tetrahedrons,
and so on for arbitrary hyper-tetrahedrons (see Figure 1). For
τ, σ ∈ K we say that τ ̸= ∅ is a face of σ if τ ⊆ σ. The
definition of an ASC implies that every simplex is closed under
the face relation, meaning it includes all of its faces (except
for the empty set) as defined by the power set of the simplex.

Note that an ASC can be thought of as a hypergraph with
an extra requirement on the edges, but the reverse is not
true: a general hypergraph need not be an ASC. Although
various methods exist for constructing an ASC from a hyper-
graph [13] in this paper we consider the associated ASC of
a hypergraph [23]. The associated ASC consists of a simplex
for each hyperedge. In other words, the associated ASC of a
hypergraph G contains all subsets of all hyperedges:

K(G) = {σ ⊆ V : ∃e ∈ E, σ ⊆ e}.

As many real-world hypergraphs have some large hyperedges,
constructing K(G) can be costly, and unnecessary if comput-
ing only low dimensional homology. In practice, to reduce
computational complexity, we keep only those simplicies up
to a small maximum dimension, p = 2 or 3.

B. Simplicial Homology

Simplicial homology is an algebraic approach to analyze
the structure of an ASC by quantifying the number of p-
dimensional features. 0-dimensional features are connected
components, 1-dimensional features are graph cycles, 2-
dimensional features are hollow tetrahedra, and so on. The
p-dimensional simplicial homology of an ASC, K, denoted
Hp(K), is a vector space whose basis represents the p-
dimensional features of K. The rank of Hp(K) then counts
the number of p-dimensional features. This rank is denoted βp

and called the pth Betti number of K. The algebraic details



of simplicial homology computations and Betti numbers can
be found in [15].

While Betti numbers provide valuable insights into the
changing topology of hypergraph snapshots, they do not
capture the relationships between the topology of consecutive
snapshots. In other words, Betti numbers alone do not reveal if
a feature persists throughout the entire sequence. To address
this limitation and track the changes in homology and their
interconnections across a sequence of ASCs, we employ the
technique of zigzag persistent homology.

C. Persistent and Zigzag Homology

This section provides an introduction to persistent homology
(PH) [26] and how it generalizes to zigzag persistent homol-
ogy. For a detailed introduction to PH we suggest [18], [22],
for zigzag see [10].

PH is used to obtain a sense of the shape and size of a
data set at multiple scale resolutions. To gain some intuition
on what this means we describe a common setting in which
PH is applied, that of a point cloud X ⊆ Rn. At a given scale
(i.e., distance value) we connect points in X within the given
distance to form an ASC. As that scale increases so does the
ASC and topological features are born (appear) and die (are
filled in). PH tracks the birth and death of these features as the
distance scale varies to form a topological fingerprint. Short-
lived features may indicate noise while long-lived ones often
indicate meaningful features. The birth and death thresholds
provide an idea of the general size or geometry of each feature,
which can in turn provide intuition and interpretation back into
the data itself. For example, the presence of a 1-dimensional
loop might mean that the data is cyclical or repetitive whereas
the presence of multiple 0-dimensional components could
indicate strong clustering of the data.

A point cloud is not the only setting for PH. In general, only
a sequence of nested ASCs1, often referred to as a filtration,
is necessary:

K = K0 ⊆ K1 ⊆ K2 ⊆ . . . ⊆ Kn. (1)

For a given dimension p we can calculate Hp(Ki) for each
Ki. In order to capture how the homology changes from Ki

to Ki+1 we rely on the fact that Ki is a sub-complex of Ki+1

and so the components of the topological features found in Ki

(e.g., the vertices, edges, and higher dimensional simplices)
must also be found in Ki+1. If these components also form
a topological feature in Ki+1 then the feature persists. If
they do not form a feature in Ki+1 then the feature dies.
In Figure 1 we see a filtration with a 1-dimensional feature
in K1 consisting of the edges (a, b), (a, c), (b, c). These edges
are present in K2 but they no longer form a 1-dimensional
feature because of the presence of the triangle (a, b, c). The
appearance and disappearance of p-dimensional features in
the filtration is tracked in a summary known as a persistence
barcode, a collection of intervals, one for each topological

1In fact, persistent homology can be applied in even more general settings
but for the purposes of this paper we won’t consider arbitrary topological
spaces or chain complexes.

Fig. 1: Example of a nested zigzag sequence of ASCs. (Left)
Two graph edges (2-simplices) forming a graph chain. (Center)
Three graph edges (2-simplices) forming a graph cycle. (Right)
A 2-simplex (filled triangle). The D0 and D1 PH barcodes are
shown below.

feature identified. Each feature has an associated interval [b, d]
that indicates the index of the appearance of the feature, its
birth threshold b, and its disappearance, its death threshold d.
If a feature is present in the final ASC in the sequence we
say its death is ∞ because it does not die within the filtration.
We denote the barcode for dimension p of a sequence K as
Dp(K) = {[bi, di]}, or simply Dp is the sequence is clear from
context. In the example in Figure 1 the 1-dimensional feature
is born at b = 1 and dies at d = 2. The algebraic mechanics of
tracking features across spaces via their inclusions is best left
to the references cited above. For the purposes of this paper
only the intuition is necessary.

Given a temporal hypergraph sequence we can construct
Ki := K(Gi). If we are lucky enough to have a sequence in
which Ki ⊆ Ki+1 for all i then we can apply PH directly.
However, this is rarely the case. There are plenty of examples
in which hypergraph vertices and edges are both added and
removed over time. This is where zigzag homology, which
extends the concept of PH to handle ASC sequences with
addition and removal of simplices, can be applied. Given an
arbitrary sequence of ASCs, K0,K1, . . . ,Kn, we can form an
augmented sequence with interwoven unions2:

K0 ⊆ K0 ∪ K1 ⊇ K1 ⊆ K1∪K2 · · ·Kn−1 ∪ Kn ⊇ Kn.

The idea of zigzag homology is similar to PH. Even though
the inclusions are not in the same direction throughout the
augmented sequence their presence still allows us to track
whether a feature in one ASC is the same as a feature in the
next. In Figure 2 we show an example sequence of three ASCs
with interwoven unions. There is a 1-dimensional feature in
all three ASCs but through the use of zigzag we can see that
they are all different loops. The barcode consists of three
intervals: [0,1] for loop (a, b), (a, c), (b, c), [0.5, 2] for loop
(a, c), (a, d), (c, d), and [1.5, ∞] for loop (a, b), (a, e), (b, e).
If a loop is born (resp. dies) at a union step between i and
i+1 we say that it is born (resp. dies) at the midpoint, i+ 1

2 .

For a more detailed introduction to zigzag persistence in the
context of studying temporal hypergraphs, we refer the reader
to [19], which includes an example illustrating the procedure.

2Zigzag persistence is also defined for intersections, with the subset
containments flipped. Here we explore only the union case.



Fig. 2: Example of a zigzag sequence with interwoven unions.
The D0 and D1 zigzag persistence barcodes are shown below.

D. Vectorization of Persistence Barcodes

To implement an autoencoder for studying zigzag persis-
tence barcodes we need to create a faithful vector represen-
tation of the barcode. While there are many methods for
vectorizing a barcode for machine learning applications, such
as persistence images [1] and persistence landscapes [9], these
are often high dimensional making the autoencoder training
more burdensome. In this work we use Adcock-Carlsson
Coordinates (ACCs) [2] as they are computationally and
storage efficient and have been shown to provide comparable
performance to the more advanced vectorization methods for
classification tasks [7]. The ACCs are calculated as

ACC(Dp) =
[∑

i

bi(di − bi),
∑
i

(dmax − di)(di − bi),∑
i

b2i (di − bi)
4,
∑
i

(dmax − di)
2(di − bi)

4
]
.

(2)

We then stacked the ACCs for each dimension p ∈ [0, 1] into
a single eight-dimensional vector.

E. Autoencoder

One of the ways to leverage the power of neural networks
to perform anomaly detection on a dataset is through the use
of autoencoders. An autoencoder is a particular kind of feed-
forward neural network that takes in data, compresses it via
encoding layers, and then attempts to reconstruct the original
representation from the compressed form through decoding
layers as shown in Fig. 3. The metric used to quantify the
difference between the reconstructed version and the original
data is called the reconstruction loss.

If an autoencoder is trained on “typical” data, then the
reconstruction loss for unseen typical data should be low
whereas the reconstruction loss for “atypical” data will be
much greater. This is the motivation for utilizing autoencoders
to detect anomalies in data. More precisely, if the reconstruc-
tion loss of unseen data is above a chosen threshold then the
unseen data is considered anomalous.

Fig. 3: Our autoencoder schema.

III. METHODOLOGY

A. Data and Data Preparation

The Operationally Transparent Cyber (OpTC) dataset [3]
used in our experiments was created by the Defense Advanced
Research Projects Agency (DARPA) as part of a mission
to test scaling of cyber attack detection. The data consists
of log records of both benign and malicious activity, with
an associated ground truth document describing the attack
events. The attack events include downloading and executing
malicious PowerShell Empire payloads, privilege escalation,
credential theft, network scanning, and lateral movement. The
data contains both flow and host logs. The elements of each
record vary depending on the type of log but the format is
standardized allowing for easy analysis across log-types. In
this paper we consider only the flow subset of records and
only 4 of the 58 data fields available. In future work we plan
to complete a more comprehensive analysis. The subset of keys
in the flow records we use are time, destination port, source
IP, and image path (i.e., executable). A sample of records,
restricted to those fields, is shown in Table I.

Time Dest. Port Source IP Image Path
9/23/19 11:25 80 142.20.56.202 powershell.exe
9/23/19 11:25 5355 10.20.1.209 svchost.exe
9/23/19 11:25 5355 10.20.1.209 svchost.exe
9/23/19 11:25 5355 142.20.56.149 svchost.exe
9/23/19 11:25 5355 142.20.56.139 svchost.exe
9/23/19 11:25 8000 142.20.56.202 firefox.exe
9/23/19 11:25 5355 10.20.2.67 svchost.exe

...
...

...
...

9/23/19 11:45 138 142.20.58.104 System
9/23/19 11:45 5355 10.20.2.164 svchost.exe
9/23/19 11:45 5355 10.20.2.164 svchost.exe

TABLE I: Example OpTC log data of four keys used to
construct destination-image path hypergraphs on host 201.

We focus our analysis of the data on the first day of
malicious activity, September 23, on a sampling of both benign
and malicious hosts, see Table II. Here we classify a host as
malicious if there is any malicious activity that occurred on
that host, according to the ground truth document. We chose



hosts 201, 402, and 660 as our malicious hosts. The data from
these hosts forms our test set. For the benign set, we identified
hosts that did not appear in the ground truth document and
then chose a subset of those hosts with varying levels of
activity relative to the malicious hosts. In particular, hosts
0005, 0006, 0010, 0012 had significantly less (approximately
half as much) activity, hosts 0162, 0304, 0461, 0906 had
comparable amounts of activity, and hosts 0071, 0213, 0222,
0274 had more activity compared to the malicious hosts. Data
from the benign hosts forms our training set.

Benign (Training) Hosts: 0005, 0006, 0010, 0012, 0071, 0162
0213, 0222, 0274, 0304, 0461, 0906

Malicious (Testing) Hosts: 0201, 0402, 0660

TABLE II: Subset of hosts used for training and testing

We performed selective filtering of the data as an initial
preprocessing step. In particular, we filtered out actions where
the image path or source IP address were missing and where
the source IP address corresponded to local host activity. Since
the network traffic data in the dataset is unidirectional, we also
filtered out actions where the destination port was ephemeral
thereby focusing on flow records where the source IP is the
likely originator of the communication. Ephemeral ports, also
called dynamic ports, are port numbers above 49152 that are
not formally assigned to a service designation and are often
used by the originator of the communication.

B. Experimental Design

We designed an experiment with the aim to identify source
IPs that are responsible for malicious activity captured on a
host and the particular time window in which the malicious
activity occurs, by using the topology of the interactions of
the IPs with image paths. We create hypergraphs for a given
source IP and sequence of timeframes, and then vectorize the
hypergraph sequences in two ways: 1) using zigzag persistence
and 2) a more naive hypergraph property embedding. In order
to understand the viability of zigzag persistence diagrams to
encode differences in the topological dynamics of benign and
malicious activity we trained two autoencoders, one on the
vectors derived from zigzag persistence and a second on the
hypergraph property vectors. We then perform autoencoder-
based anomaly detection separately on the two vectorizations
and examine how the anomalies align with the ground truth
document. If our zigzag autoencoder successfully identifies
malicious activity on the network, this provides evidence that
the topological information encoded by the zigzag persistence
barcodes can aid in cybersecurity efforts. We use the autoen-
coder trained on hypergraph property vectors as a comparison.

The details and pipeline of these experiments are illustrated
in Fig. 4. Our experimental design begins with the log data,
see the box labeled Log Data in Fig. 4. We show a small
set of the OpTC log data including the specific columns
needed: timestamp, source IP, destination port, and image path
(executable). Using the timestamps, we break this log data into
10-minute windows that overlap by 5 minutes. We then filter

down the 10 minutes of data from each window by a source IP
to construct a hypergraph for each window where vertices are
the executable files and hyperedges are the destination ports.
Specifically, for the hypergraph pertaining to source IP X the
vertex for executable t is contained in the destination port
edge r if there is a record with the (source IP, destination
port, executable) tuple (X, t, r).

For each source IP we apply zigzag persistence to the
temporal sequence of hypergraph snapshots, as shown in Fig. 4
in the box labeled Zigzag Persistence, resulting in a barcode
for each dimension (0 and 1). This full time barcode is further
broken into sub-barcodes over 1 hour sub-windows. Each of
these sub-barcodes are vectorized using the ACCs described
in Section II-D. We trained the zigzag autoencoder on these
ACC vectors from IPs in the benign host list from Table II
and tested on those from the evaluation hosts. We initialized
the autoencoder with random weights using random seed 0.
For each source IP we calculated the time series of mean
squared error reconstruction loss as an indicator of abnormal
or malicious activity. This is shown in Fig. 4, in the box labeled
Autoencoder.

The zigzag autoencoder contains one fully-connected neural
layer as the encoder and decoder. The input zigzag vectors
are 8-dimensional, the autoencoder compresses the data into
2-dimensional vectors, and decompresses them back into 8-
dimensions, as illustrated in Figure 3. We chose this shallow
single layer encoder/decoder schema due to the low dimen-
sionality of the ACC vectors. The encoder and decoder of the
model learn by minimizing the mean squared error between
the original vector and the reconstructed vector.

We trained a second autoencoder on some standard sum-
mary statistics of the hypergraphs as a feature vector on
the collection of hypergraphs that occurred during the 1
hour sub-windows. For each of the hypergraphs during each
sub-window we calculated the number of edges, number of
vertices, number of components, and diameter of the largest
component and then concatenated them together. This results
in a 48-dimensional feature vector for each 1 hour window
that also should capture the dynamics. The autoencoder again
had a latent space of 2-dimensions to make a fair comparison
to the first autoencoder.

By analyzing the reconstruction loss of the two autoen-
coders, we can compare the ability of the zigzag persistence
barcodes and standard summary statistics to detect malicious
activity.

C. Intuition

Before we transition to the results of our experiment we
provide some intuition, through an example, for why the
dynamics of the hypergraph topology, and not just the static
topology of each snapshot, are important for detecting ma-
licious activity. Fig. 5 shows hypergraphs from one benign
and one malicious time period for source IP 142.20.56.202
on Host 201. It is apparent that the structural configuration
of the hypergraph during benign activity differs from that
during malicious activity, but from a topological perspective,



...

Log Data Hypergraph Snapshots Zigzag Persistence Autoencoder

Fig. 4: Experimental design pipeline for study OpTC log data with autoencoder trained on the ACC vectors (e.g.,
ACC0, . . . , ACC14) of the subwindowed zigzag persistence barcodes. An additional autoencoder trained on summary statistics
of the hypergraph snapshots was also used for comparison without that pipeline shown.

the two snapshots are equivalent. Both hypergraphs exhibit two
components and no higher-dimensional homology, indicating
a similarity in their topological properties.

(a) Benign Activity (b) Malicious Activity.

Fig. 5: Hypergraphs formed during malicious and benign activ-
ity for source IP 142.20.56.202 on host 201 using destination
ports as hyperedges and image path executables as vertices.

However, the two isolated snapshots do not tell the entire
story of the topology. While the snapshots are topologically
equivalent they do not account for the underlying dynam-
ics of the topology (e.g., do these two components persist
for long periods of time or do they quickly evolve?). By
looking beyond the isolated snapshots we can gain a quick
insight that, in fact, the dynamics of the malicious activity
change at a much higher rate than the dynamics of the
benign activity. Figure 6 shows the sequence of image path
(executables) for source IP 142.20.56.202 on host 201 during
the same 20 minute benign and malicious activity windows
associated to the hypergraphs in Fig. 5. As shown, during
the benign activity the only executables used were System
and svchost.exe and tend to be executed every few minutes,
while in the malicious activity many executables are used
and are executed much more frequently. During the benign
activity the processes are associated with operating system
control and inter-process communications. For the malicious
activity, powershell.exe and python.exe are present which are
indicative of PowerShell Empire (the C2 capability listed in
the ground truth). Furthermore, the lsass.exe process is present
which can be associated with benign activity such as logging
into a computer; however, frequently the process is co-opted
by malicious actors to harvest credentials. During malicious
activity there is an increase over the normal activity due to
the addition of activity without the removal of normal activity.
We do note that the OpTC dataset is a test environment (i.e.,

the normal activity is simulated) and as such the benign user
activity threshold may be lower than standard traffic. However,
they were simulated to be representative of typical system
usage.

(a) Benign Activity

(b) Malicious Activity.

Fig. 6: Sequence of image path executables for source IP
142.20.56.202 during 20 minute benign and malicious activity
windows on host 201 (same windows as used to generate the
hypergraphs in Fig. 5).

We show in the results that these dynamics of the topology
are captured by the zigzag barcode vectorizations allowing us
to detect a difference between benign and malicious activity
patterns.

IV. RESULTS

Here we demonstrate the ability of both the zigzag persis-
tence and summary statistics to detect malicious activity for an
example source IP. Namely, we demonstrate these results for
source IP 142.20.56.202 for malicious activity and source IP
142.20.56.175 for benign activity on host 201 on September
23, 2019. We chose this malicious source IP and host to



demonstrate the effectiveness of this autoencoder due to the
variety of attacks during this time as shown in the ground
truth data provided in the GitHub repository3. While there are
limited malicious source IPs during this time window there are
a very large number of benign source IPs. We chose source IP
142.20.56.175 as an exemplary benign source IP, but we found
very similar dynamics and reconstruction loss values for other
benign source IPs.

Figure 7 shows the zigzag persistence barcode (7a) and the
reconstruction losses over time for the ACC vectors and the
hypergraph summary statistics (7b). In both plots we have
highlighted each of the malicious events from the OpTC
ground truth diary as red vertical bars. From these events it
is clear that there are two main sequences of attacks: the first
from approximately 11:30 to 12:00 and the second from 13:00
to 13:30. The first group of attacks consist of a password
collection attempt through Mimikatz to elevate the agent
and then attempts at injecting into the LSASS process using
psinject. The second group of attacks is based on scanning
procedures including a ping sweep and ARP scan.

The main takeaway from Figure 7 is that while both ACCs
and hypergraph summary statistics seem to show an anomaly
during the malicious activity through a peak in the reconstruc-
tion loss, the autoencoder trained on the ACCs more precisely
detects the first group of malicious activity. The summary
statistics show a broad range in time when the reconstruction
loss is high (approximately 9:30 to 14:30) which is larger than
the range occupied by the malicious activity. On the other
hand, the autoencoder trained on the ACCs is able to accu-
rately detect the first sequence of attacks with a sharp spike in
reconstruction loss from approximately 11:00 to 11:40, which
closely correlates to when the first attack sequence occurred.
However, there is no peak during the second sequence of
attacks which was dominated by ARP scans and ping sweeps.
We believe these were not clearly detected due to the specific
hypergraph construction we chose: hyperedges as destination
ports and image paths as vertices. Our hypergraph construction
is not sensitive to this attack as many of the lines in the log
data corresponding to ARP scans and ping sweeps are not
labeled with a source IP. And when the log data is associated
with a source IP they are repetitive (e.g., the ping responses
repeatedly have image path System and destination port 0)
and do not show up as significant changes in the hypergraph’s
topology. In future work we plan to use our same pipeline with
different hypergraph constructions to better identify different
attack types.

As a point of comparison we show the same zigzag and
reconstruction loss plots for an exemplary benign source IP
in Fig. 8. From the zigzag barcode (8a) we see that there are
typically no 1-dimensional features, as evidenced by the empty
D1 barcode, for benign activity. Moreover, the 0-dimensional
features have a predictable, periodic behavior. This is further
substantiated by the reconstruction loss for both the ACCs and

3See https://github.com/FiveDirections/OpTC-data for red team ground
truth data

summary statistics being very low (compare the y-axis scales
in Fig. 8b to those in Fig. 7b).

To quantify these results across more benign data and
demonstrate the consistency we lastly compare the 25th,
50th (median) and 75th percentiles of the distributions of
reconstruction losses for both the ACC and summary statistic
trained autoencoders during benign and then malicious activity
on host 201 on the 23rd as shown in Table III. Additionally,
we calculated these same statistics for these autoencoders
tested on the training hosts (benign) on the 24th as a point of
comparison to the benign activity on the 23rd. By comparing
these percentiles we are able to quantitatively confirm the
performance of the autoencoders.

Host(s) ACC (×10−3) Summary Statistics
25% 50% 75% 25% 50% 75%

201 (Benign IPs) 0.04 0.11 0.19 0.68 0.92 1.19
201 (Malicious IPs) 1.21 3.93 7.96 5.31 6.96 8.81
Training Hosts (24th) 0.07 0.14 0.26 0.76 1.03 1.34
Training Hosts (23rd) 0.06 0.12 0.26 0.72 1.01 1.39

TABLE III: The 25th, 50th (median), and 75th percentiles of
the autoencoder (both ACC and hypergraph summary statistics
trained autoencoders) reconstruction loss distributions on host
201 on the 23rd for malicious and benign IP addresses and
for all the training hosts on both the 23rd and the 24th.

From Table III it is clear that the interquartile interval
from the 25th to the 75th percentiles for host 201 for benign
and malicious activity do not overlap for both the ACCs and
summary statistics resulting in both autoencoders being able
to accurately distinguish between the two states. This is shown
with the 75th percentile of the benign source IP reconstruction
loss being less than (6 times less than) the 25th percentile of
the malicious source IPs.

We also compare the benign activity on host 201 to the
training hosts on both the 23rd and 24th to demonstrate the
benign reconstruction loss is similar across hosts and that the
autoencoder was not over trained. This is shown with the
autoencoder loss distributions trained on ACCs and summary
statistics being similar with all having their inter-quartile
intervals significantly overlapping.

Lastly, based on the medians for both the summary statistics
and the ACCs it seems the ACCs more clearly detect malicious
activity the the median loss being approximately 35.6 times
greater during malicious compared to benign activity on host
201 and only 7.5 times greater for the summary statistics.

V. CONCLUSION

The work we present in this paper shows that the dynamics
of topology of hypergraphs representing cyber log data can
be effective for distinguishing malicious activity from benign.
However, we have noted some limitations that we plan to
explore in future work. In particular, the ACC vectorization
strategy for persistence barcodes is rather coarse. We plan to
evaluate more complex representations like persistence images
and landscapes for this vectorization step. We additionally
plan to study the sensitivity of the autoencoder to both the



(a) Zigzag persistence barcodes.

(b) Autoencoder reconstruction loss (mean squared error).

Fig. 7: Autoencoder results for malicious source IP 142.20.56.202 on host 201 using the ACCs of the windowed zigzag
persistence barcode compared to summary statistics with highlight red vertical lines for each malicious activity instance
recorded in OpTC ground truth.

(a) Zigzag persistence barcodes.

(b) Autoencoder reconstruction loss (mean squared error).

Fig. 8: Autoencoder results for benign source IP 142.20.56.175 on host 201 using the ACCs of the windowed zigzag persistence
barcode compared to summary statistics with highlight red vertical lines for each malicious activity instance recorded in OpTC
ground truth.



initialized random weights and the training data (e.g., mixing
in some malicious data into training data). We are also aware
that our hypergraph construction linking executables to desti-
nation ports does not capture all types of malicious behavior.
We will experiment with additional hypergraph constructions
to understand how other malicious behavior can be encoded.
Along those lines we additionally plan to test our methods
on data sets beyond OpTC to ensure generalizability of the
approach, and compare to other approaches of studying hy-
pergraph data including hypergraph neural networks. Finally,
in order for cyber analysts to trust the results of our pipeline
we must be able to provide some interpretation of the specific
topological features in H0 and H1 in the context of the log
data and ground truth malicious activity. This is ongoing work
and provides an exciting opportunity for collaboration between
cybersecurity researchers and mathematicians.
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