

System Modeling in the COSMA Environment

W. B. Daszczuk, W. Grabski, J. Mieścicki, J. Wytrębowicz

Institute of Computer Science, Warsaw University of Technology

ul. Nowowiejska 15/19, Warsaw 00-665, Poland,

Abstract
The aim of this paper is to demonstrate how the COSMA

environment can be used for system modeling. This

environment is a set of tools based on Concurrent State

Machines paradigm and is developed in the Institute of

Computer Science at the Warsaw University of Technology.

Our demonstration example is a distributed brake control

system dedicated for a railway transport. The paper shortly

introduces COSMA. Next it shows how the example model

can be validated by our temporal logic analyzer.

1. Introduction

Modeling is an obligatory step during design of any system,

which is crucial for people safety or whose unreliability can

lead to important lost of money. This step is recommended

during design of any large size system, where it is the only

way to define a complete functionality of the system. A

designer performs the behavioral modeling of software

implemented, hardware implemented or mixed systems. The

implementation details have no regard at this step.

Redundancies of an implementation increase its reliability,

however they cannot resolve conceptual deficiencies. The

first important labor is to build a complete behavioral

specification that is correct with respect to demands of the

system users and its environment. We call this step

validation of the system.

Unfortunately we can notice, that in practice the modeling is

frequently neglected. One of the reasons is the lack of

inexpensive and easy to use modeling platforms for

designers. This is the motivation to develop in our Institute

such a platform that we call COSMA. The principle of

Concurrent State Machines is the basis for modeling of

reactive, discrete and control oriented systems. Due to this

paradigm it is possible to build analytic tools, which can

process designer questions. In COSMA, the designer

formulates them in a TLA notation. The responses approve

the desired model behavior or show its incompleteness,

overhead or conceptual errors.

There is other environment that allows to perform similar

tasks. It is the Promela specification language and the Spin

validation engine developed by Gerard Holzmann at Bell

Labs [18] [5]. That environment is older and more matured

than COSMA. However our intention in the COSMA

development was to make it more general. As Spin/Promela

is well adapted for software system validation, especially for

communication protocols, the COSMA environment is

appropriate for modeling hardware [7] and software [6] as

well.

Many formal verification methods has been proposed and

vast literature describes them [4] [8] [9] [10] [16]. However,

still small number verification environments exists, and more

less are used by engineers. This paper is not devoted to

compare them. It reports just a case study in the aim to

introduce a new tool, which is developed in pragmatic view,

using modern algorithms to enable an elaboration of a huge

state space model.

2. COSMA tools

We develop an original software toolset COSMA 2.0 in the

Institute of Computer Science (Warsaw University of

Technology). The main part of its present version consists of

three modules: Grapher, Product Engine and TempoRG.

The conception of Concurrent State Machines (CSM) [3]

[13] is the basis for COSMA environment. The Concurrent

State Machines (or automata) are labeled, directed graphs,

which can be abstract models of discrete objects, e.g.,

control units, programs, processes, protocols etc. The

ultimate goal of this modeling is the analysis or verification

of the behavior of a system of cooperating, concurrent

components.

A designer assigns one automaton for every structural sub-

unit of his system, as well as the communication connections

among them. Then, the CSM models of individual system

components have to be developed.

Figure 1. Grapher window at COSMA environment.

The Grapher module provides the user interface for drawing

and editing CSM models. It also converts graphical

specification of system components into XML-like language

called CXL [15]. Figure 1 shows a screen snap from

Grapher.

At a first glance, a module resembles a typical and well-

known Moore finite automaton. However, in contrast to

conventional FSM, in CSM arcs are labeled with Boolean

formulas rather than with symbols from an input alphabet.

For instance, formula a would mean that ‘symbol a occurs at

machine’s input’ , !a*!b means that ‘neither a nor b occurs’

etc.

The arc (s, s') from node s=b2_3bufEmpty to

s'=b2_3bufBreak1, labeled with formula f=b2.rightBreak1,

means that s' can follow s if (and only if) formula f is true. If

s=s'=b2_3bufEmpty (i.e., an arc makes a 'loop' over the same

state), then formula f=! b2.rightBreak1 * ! b2.rightBreak2

represents a condition under which the machine can remain

in s. Otherwise (i.e., if s ≠ s)', the arc represents a transition

(from s to s') while its formula f specifies a condition that

enables this transition. Note that two or more Boolean

formulas can be simultaneously true and – consecutively -

more than one arc from a state can be simultaneously

enabled. Then, only one of them is selected. The choice is

non-deterministic. Note also that arcs labeled with the

condition 1 (‘unconditionally true’, by the definition) can be

used. They are interpreted as spontaneous transitions that

require no external events or messages to be enabled.

Thus, Concurrent State Machines represent the conditions

for changes of states in terms of occurrences of abstract

symbols from some finite input alphabet. The practical

interpretation depends on the nature of a system under

consideration. In a model of communicating software

processes, 'symbols' may stand for specific events, messages

or conditions. In hardware models, symbols are usually

interpreted in terms of logical values assumed by binary

variables. For example, the formula 'ready*!bbsy' would

mean that the transition has to be executed 'if bus line ready

is set to 1 while bbsy is reset to 0'. The use of abstract

symbols instead of application-specific conventions is an

advantage of the CSM model, as it provides the common

framework for the specification of both hardware or software

structures.

This way of symbol perceiving differs our CSM model from

other formal specification techniques such as Estelle, SDL or

LOTOS [16], where the symbol interpretation is fixed. The

automata communicate via messages. Thus the hardware

signals cannot be modeled in a simple manner. A message

can be treated as signal transition, but this overcome make

the specification bigger and more difficult to understand.

The key point in the CSM model is that (again in contrast to

conventional FSM) the sequential occurrence of input

symbols is not assumed. Input symbols are not ‘pre-

synchronized’ (e.g., sequenced or interleaved) in any way.

At any instant of time, they can come either alone or

simultaneously or even not come at all. Moreover, any

component of a system can transmit its own output symbol

that can be an input to neighboring machines (and even to

itself). No implicit synchronization among component's

activities is assumed. This way, the CSM model supports

communication among mutually asynchronous, concurrent

system components and their environment.

A computation of so-called Reachability Graph (RG) of the

system is the key element of the CSM modeling. RG is a tree

of all system states reachable from the system's initial state

along with appropriate Boolean formulas.

The Product Engine module converts the CXL specification

into a set of Binary Decision Diagrams (BDD) and then

computes the system's Reachability Graph, which is again a

large BDD. This module uses the state-of-the-art library of

functions for processing ROBDDs, implemented by Geert

Janssen from Eindhoven University of Technology.

The Product Engine module computes the product of

individual models of components. In that way it generates all

configurations or co-incidences of component states and all

transitions that are likely to occur. This product constitutes

input data for the next COSMA tool:

the TempoRG module that contains a set of algorithms for

the evaluation of temporal requirements in a given RG of a

system.

The analysis of RG may detect and identify harmful

synchronization errors, like a deadlock, a livelock, possible

lack of response for some specific event, unwanted

simultaneous activity of two components etc. These errors

(practically unavoidable in the design of asynchronous and

concurrent structures) are hardly detectable by simulation

and testing, as they may result from very rare coincidences

of components' states and external stimuli. RG includes all

practically possible states and transitions, therefore it

highlights even very rare sequences of events.

In general, RG can be of an enormous size, which causes

well-known time and space complexity problems. In the case

of simple systems analyzed just for tutorial purposes one can

draw or print the RG and analyze it 'by hand'. In more

practical cases, the number of RG nodes (i.e., system states)

can be of order of 10
20

 – 10
50

 or even more [2]. To manage

the problem, large graphs are usually represented in a form

of data structures known as ROBDD (Reduced Ordered

Binary Decision Diagrams [1]) that allow for very concise

representation. Due to this, in many practical cases the

development and analysis of system's RG does not exceed

storage and processing power capabilities of an average

workstation.

The inspection of such a large RG cannot be done 'by naked

eye'. Thus, one should formally specify the requirements for

system’s behavior and then use the appropriate algorithm for

the evaluation if these requirements are actually satisfied in a

given RG. The commonplace approach involves the use of

temporal logic, where the requirements have the form of

temporal formulas. There are many types of temporal logic,

but generally they allow for constructing sentences, where

temporal connectives (always, eventually, next, until) can be

used in addition to 'classical' Boolean operators (not, and, or,

if ... then ... etc.) and two quantificators (for all ..., exists ...).

Temporal propositions expressed this way can cover a very

wide class of requirements addressing the issues of the flow

of control, communication and synchronization among

components.

 COSMA is already a powerful symbolic model checker.

The Grapher allows to draw hierarchical states. A

hierarchical state is a shortcut of an automaton piece. Using

hierarchical states, the designer can hide some specification

details or visualize in more readable form his system. We

still enhance COSMA functionality adding new modules,

currently among them are:

 Translator from UML state diagrams to CSM,

 Extended CSM (ECSM) grapher and simulator .

ECSM enhances the expressive power of CSM, as it allows

for specification of general data structures and arbitrary

operations on these data. Operations on data can be

attributed either to states or to transitions of the CSM, which

becomes this way just a scheme of flow of control in a

process. ECSM models are analyzed by simulation. This

way, in the design process of a concurrent, asynchronous

system one can verify the correctness of communication and

synchronization mechanisms by finite state model checking

and evaluate the system's performance by simulation of its

ECSM model as well.

The future enhancements planed for the third COSMA

version consists of:

 Behavioral Constraint Language front-end to the

TempoRG module,

 generators of implementation skeletons in C

programming language and Verilog hardware

description language.

We plan to add new algorithms to the TempoRG analyzer.

The Behavioral Constraint Language will simplify their use.

System modeling is not an end of design process. Next the

designer starts to build its implementation. Having the

analyzed model in mind, he builds the implementation faster

and without conceptual errors. Although the passing from

CSM model to an implementation skeleton is not a heavy

task, the planed generators could speedup this step.

3. Model of a distributed brake control

system

Our case study is a simplified, distributed brake control

system for railway transport. The system consists of

independent controllers that communicate to each other.

Every car of a train has one controller, which activates

brakes of the car and selects a brake force. The controller

obtains signals from:

 velocity meter,

 coils detecting distance from a station (there are

activators placed longwise the rails),

 emergency brake levers.

It obtains also messages form one or two controllers, which

are situated in the next and previous car of the train. The

messages indicate the selected activity for local brakes of the

neighbor cars. While an indication of higher brake force

arrives than actually selected, in that case the higher force is

applied for local brakes.

Break
controller 2

(28)

Break
controller 3

(9)

Break
controller 1

(9)

(4)

(4)

(4)

(4)

Buffer Buffer

Environment

Figure 2. Model structure of the distributed brake control

system.

The structure of the system is straightforward, we assign one

automaton for every controller, Figure 2. The controllers

communicate via messages. To model a communication

medium with associated message buffers, we define an

automaton. A simple modification of this automaton will be

sufficient for unreliable medium modeling. Because signals

from the velocity meter and from distance detectors are not

hazardous, we need simple automata to model their

behavior, especially to express their possible malfunctions.

However in the early modeling steps we can assume that

they belong to the system environment and the signals they

generate are external. This assumption gives a smaller state

space of the generated reachability graph. Figure 2 shows

numbers in parenthesis, which are state numbers of every

automaton. The multiplication of them all gives 580 608

states. Our Product Engine generates 9 061 reachable states.

A complete brake control system can assemble any number

of controllers. The behavior of three, four or more

controllers is the same. To minimize the size of total state

space only three controllers we take into consideration. Of

course the simpler cases, i.e., one and two controllers in the

system, we should model too.

We distinguish principal states of the controller, which are

related to the applied break force. Similarly to the number of

controllers, we do not have to model a big number of

different break forces - three is enough to verify the concept

of our system. They are:

 break0 - break force is 0,

 break1 - middle force,

 break2 - big force.

Other states are related to signal and message reception.

Figure 3 depicts a part of this automaton. It shows two

principal states (i.e., b2_break1, b2_break2) and eight

transitional states, which control signal exchange.

Table I explains the meaning of all depicted signals.

TABLE I - Interpretation of signal from Figure 3

SIGNAL MEANING (when true)

b2_commCord Emergency brake lever pulled

b2_leftBreak2 Message "force 2" to the left

controller

b2_rightBreak2 Message "force 2" to the right

controller

b2_leftRecBreak2A

ck

Acknowledgement form the left

transmission buffer

b2_rightRecBreak2

Ack

Acknowledgement form the right

transmission buffer

b2_leftRecBreak2 Message "force 2" from the left

controller

b2_rightBreak2Ack Message "force 2" from the right

controller

b2_distSens1 Car passes the 1
st
 distance activator

b2_distSens2 Car passes the 2
nd

 distance activator

b2_distSens3 Car passes the 3
rd

 distance activator

speed0 Current car speed is low

speed1 Current car speed is medium

speed2 Current car speed is high

B2_commCord reception (emergency brake) causes the

transition form b2_break1 to b2_break2 through the states:

b2_leftBreak2a and b2_rightBreak2. At these states,

messages to the neighbor controllers are generated and

acknowledges are awaited.

B2_leftRecBreak2 reception from the left neighbor (his

brake force is 2) causes the transition form b2_break1 to

b2_break2 through the states: b2_leftBreak2Ack and

speed1 + speed2

! speed1 * ! speed2 speed2

! speed2

b2_rightRecBreak2Ack

! b2_rightRecBreak2Ack

b2_leftRecBreak2Ack

! b2_leftRecBreak2Ack

speed2

! speed2

! b2_leftRecBreak2Ack

b2_leftRecBreak2Ack

1

1

! b2_rightRecBreak2 * ! b2_leftRecBreak2 * ! b2_distSens1 * ! b2_distSens2 * ! b2_distSens3

b2_commCord

b2_distSens3

b2_distSens1

b2_distSens2

! b2_rightRecBreak2 * ! b2_leftRecBreak2 * ! b2_distSens1 * ! b2_distSens2 * ! b2_distSens3 * ! b2_commCord

b2_rightRecBreak2

b2_leftRecBreak2

b2_distSens1Break1

b2_distSens1Ack

b2_dispSens3Break1

b2_distSens3Ack

b2_rightBreak2

b2_rightBreak2

b2_leftBreak2a

b2_leftBreak2

b2_distSens2Break1

b2_distSens2Ack

b2_leftBreak2

b2_leftBreak2

b2_rightBreak2Ack

b2_rightBreak2Ack

b2_leftBreak2Ack

b2_leftBreak2Ack

b2_break2

b2_break2

b2_break1

b2_break1

Figure 3. Part of the break controller model.

b2_rightBreak2, where respectively an acknowledgement to

the left and message (force is 2) to the right are generated.

In the same way is processed b2_rightRecBreak2 signal

from the right. In this case the intermediate states are:

b2_rightBreak2Ack and b2_leftBreak2.

Distance detector generates three signals: b2_distSens1,

b2_distSens2, b2_distSens3. Reception of one leads to the

respective state b2_distSens1Break1, b2_distSens1Break2 or

b2_distSens1Break3, where an acknowledgement is

generated. The following transition depends on the actual

train speed and can conduct to the states:

b2_break1 - no change of brake force,

b2_break2 - through the states b2_leftBreak2a and

b2_rightBreak2, where respective messages to the neighbors

are generated.

We have defined the rest of the model, not depicted on

Figure 3, in similar fashion as described above. The Product

Engine generates a reachability tree, and we can display it in

a COSMA window. However due to the tree size it is better

to analyze it by our TempoRG analyzer than by a naked eye.

4. Validation of the brake control system

The first almost ritual question asked in every validation or

verification process is: "Is there any possible deadlock in my

system?" This question applied to the CSM model can be

formulated: "Is there any state, when no other state can be

reached?" We write it in the temporal logic notation:

?- s: (in s)

The analyzer answer is:

 --> FULFILLED FOR STATES:

 ALL

 Evaluation time is 00:00:15/422 (15422 ms)

This answer means that there is no deadlock in our

specification. The next question every designer likely ask is

about a livelock. In the CSM model this is the question about

cycles: "Find strongly connected subgraphs." We write it in

the temporal logic notation:

? s: ○ s

There are about 500 cycles, listed by analyzer:

 --> FULFILLED FOR STATES:

b1_2_bufEmpty:b1_break0:b2_1_bufEmpty:b2_3_bufE

mpty:b2_break0:b3_2_bufEmpty:b3_break0

 Evaluation time is 00:06:34/207 (394207 ms)

…

b1_2_bufBreak1a:b1_distSensBreak2Right:b2_1_bufBr

eak1a:b2_3_bufEmpty:b2_distSensBreak1Left:b3_2_buf

Break1a:b3_break0

 Evaluation time is 00:00:00/00 (0 ms)

The analyzer cannot distinguish itself, which cycle is a

correct and which one is a lifelock. Designer should resolve

this problem by post processing the obtained cycles or by

asking a more precise question. In our example case we have

not found any livelock.

Next designer asks questions about system functionality.

More question will be evaluated, better, more complete

verification will be done. An example question we have

asked was: "Do all cars will brake with force 2, if someone

pull emergency brake lever?" The question in temporal logic

is:

G (in AUT_5.b2_distSensBreak2Left => ((in

AUT_2.b1_break2 in AUT_5.b2_break2 in

AUT_7.b3_break2)))

The analyzer answer conforms our expectations:

--> TRUE

 Evaluation time is 00:53:58/667 (3238667 ms)

Other question we have asked was: "Does the train will start

moving after a break?" or in a simpler form "Will the middle

controller apply force 0 to its break after applying force 2?"

G ((in aut_5.b2_break2) => ((in aut_5.b2_break0)))

Unfortunately the answer is:

 --> FALSE

 Evaluation time is 00:02:49/234 (169234 ms)

We have found an error in our model - the lack of transition

from state "break force 2" to the state "break force 0" when

the train speed is equal 0. After correction of this error the

analyzer have returned the expected answer.

5. Conclusions

The CSM model and the methodology based upon the

COSMA environment have been developed for system level

design of asynchronous, cooperating circuits.

The paper not only introduces the new modeling

environment, but also gives a tutorial view on formal

verification process. Summarizing our experiences, we

would like to emphasize that:

 Specification of the behavior in terms of the CSM model

is easily understandable and close to the common

intuition.

 CSM model is a formal one and supports the formal

verification of system’s behavior.

 The CSM specification facilitates the generation of

ECSM model that can be simulated, e.g., to analyze

performance parameters.

 The CSM specification facilitates the implementation

process owing to artful understanding of the system

behavior and environment constrains.

We plan two directions for future COSMA evolution. The

first is to make TempoRG algorithms more powerful and the

human interface for this analyzer more user friendly. The

second direction is to make a link to the popular CASE

tools, with the aim of helping designers to build correct

systems.

References
1. .Bryant R. E., Binary Decision Diagrams: Enabling

Technologies for Formal Verification, Proc. IEEE/ACM Int.

Conf. on Computer-Aided Design, pp. 236-243, 1995.

2. .Burch, J. R., Clarke, E. M., and McMillan, K. L., Symbolic

Model Checking: 1020 States and Beyond, Proc. International

Workshop on Formal Methods in VLSI Design, 1991.

3. Clark E. M., Emerson E. A., Sistla A. P., "Automatic

Verification of Finite-State Concurrent Systems Using

Temporal Logic Specifications," ACM TOPLAS, Vol.8,

No.2, pp.244-263, April 1986.

4. Clarke E. M., Wing J. M., Formal methods. State of the Art and

Future Directions, ACM Computing Surveys, December

1996, vol. 28, nr 4, pp. 627 – 643.

5. Dams D., Gerth R., Leue S., Massink M., editors "Theoretical

and Practical Aspects of SPIN Model Checking." Number

1680 in LNCS Springer, Berlin, 1999.

6. Daszczuk W. B., Verification of Design Decisions in

Communication Protocols by Evaluation of Temporal Logic

Formulas, ICS WUT Research Report No 22/98.

7. Daszczuk W.B., Mieścicki J., Nowacki M., Wytrębowicz J.,

Traffic Light Controller specified and verified using the

COSMA environment. A case study, ICS Research Report

12/2000.

8. Fischer S., Wytrębowicz J., Budkowski S.: Tool support for

hardware/software co-design of communication protocols.

Computer Communications 23, pp. 1158-1168, Elsevier,

2000.

9. Gupta A., Formal Hardware Verification Methods: A Survey,

Formal Methods in System Design, vol. 1, no. 4, pp. 335-383,

December 1992.

10. Kropf T.(ed.), Formal Hardware Verification, Methods and

Systems in Comparison, Springer Verlag, 1997,

11. McMillan K.L.: Symbolic Model Checking, Kluwer, 1993.

12. .Mieścicki J., On the behavior of a system of concurrent

automata, Institute of Computer Science, WUT, Research

Report 20/92.

13. .Mieścicki J., Concurrent system of communicating machines,

Institute of Computer Science, WUT, Research Report 35/92.

14. .Mieścicki J., Boolean Formulas and the Families of Sets, Bull.

Polish Ac. of Sc., Sci. Tech, vol. 42, No 1, 1994

15. Ratajczak J., Pabiś N., CXL, a XML-based language for the

description of Hierarchical Concurrent State Machines, ICS

WUT Research Report 15/99.

16. K. Turner (editor), "Using Formal Description Techniques,"

Wiley Publishers, 1993.

17. http://archive.comlab.ox.ac.uk/formal-methods.

18. http://netlib.bell-labs.com/netlib/spin/whatispin.html.

