
Dynamic Branch Prediction using Neural Networks

Gordon Steven’, RubCn Anguera’, Colin Eganl, Fleur Steven’ and Lucian Vintan2
’. University of Hertfordshire, Hatfield, UK.

2. University “Lucian Blaga” of Sibiu, Sibiu, Romania
e-mail: G.B.Steven@herts.ac.uk

Abstract

Dynamic branch prediction in high-performance
processors is a specific instance of a general Time
Series Prediction problem that occurs in many areas of
science. In contrast, most branch prediction research
focuses on Two-Level Adaptive Branch Prediction
techniques, a very specific solution to the branch
prediction problem. An alternative approach is to look
to other application areas and fields f o r novel
solutions to the problem. In this paper, we examine the
application of neural networks to dynamic branch
prediction. Two neural networks are considered: a
Learning Vector Quantisation (L VQ) Network and a
Backpropagation Network. We demonstrate that a
neural predictor can achieve misprediction rates
comparable to conventional Two-level Adaptive
Predictors and suggest that neural predictors merit
further investigation.

Key Words
Neural Branch Prediction, Two-level Adaptive Branch
Prediction, Backpropagation

1. Introduction

As the average instruction issue rate in multiple-
instruction-issue (MII) processors increases, accurate
dynamic branch prediction becomes increasingly
important. Very high prediction accuracy is required
because an increasing number of instructions are lost
before a branch misprediction can be corrected. As a
result even a misprediction rate of a few percent involves
a substantial performance loss.

If branch prediction is to improve performance,
branches must be detected within the dynamic instruction
stream, and both the direction taken by each branch and
the branch target address must be correctly predicted.
Furthermore, all of the above must be completed in time
to fetch instructions from the branch target address
without interrupting the flow of new instructions to the
processor pipeline. A classic Branch Target Cache
(BTC) [13 achieves these objectives by holding the
following information for previously executed branches:
the address of the branch instruction, the branch target

address and information on the previous outcomes of the
branch. Branches are then pedicted by using the PC
address to access the BTC in parallel with the instruction
fetch process. As a result each branch is predicted while
the branch instruction itself is being fetched from the
instruction cache. Whenever a branch is detected and
predicted as taken, the appropriate branch target is
available at the end of the instruction fetch cycle, and
instructions can be fetched from the branch target in the
next cycle. Straightforward prediction mechanisms
based on the previous history of each branch give a
prediction accuracy of around 80 to 95% [I]. This
success rate proved adequate for scalar processors, but is
generally regarded as inadequate for superscalar designs.

The requirement for higher branch prediction
accuracy in superscalar systems and the availability of
additional silicon area led to a dramatic breakthrough in
the early 90s with the development of Two-Level
Adaptive Branch Prediction [2, 31. Two -Level Adaptive
Branch Predictors use two levels of branch history
information to make a branch prediction. The first level
consists of a History Register (HR) that records the
outcome of the last k branches encountered. The HR
may be a single global register, HRg, that records the
outcome of last k branches executed in the dynamic
instruction stream or one of multiple local history
registers, HRI, that records the last k outcomes of each
branch. The second level of the predictor known as the
Pattern History Table (PHT) records the behaviour of a
branch during previous occurrences of the first level
predictor. The PHT consists of an array of two bit
saturating counters that is indexed by the HR to obtain
the prediction. With a k-bit HR, 2k entries are therefore
required if a global PHT is provided, or many times this
number if separate HRs and therefore PHTs are provided
for each branch.

Although all the new predictors are called Two-level
Adaptive Predictors, this is misleading. Two distinct
prediction techniques have in fact been developed. If a
global history register is used, the pedictor exploits
correlation between the outcome of a branch and the
outcome of neighbouring branches that are executed
immediately prior to the branch. If a local history
register is used, the predictor exploits correlation
between the outcome of a branch and previous outcomes
of the same branch. A global two -level predictor is more

0-7695-1239-9/01 $10.00 0 2001 IEEE
178

mailto:G.B.Steven@herts.ac.uk

accurate than a classic BTC because it exploits new
information. In contrast, a local two-level branch
predictor is more accurate because it keeps a record of
the next outcome in a time series, whereas a BTC
records the most frequent outcome of each branch.

In complete contrast to earlier work, this paper
explores the possibility of using neural networks to
dynamically predict branch outcomes. Conventional
two-level branch predictors rely on one of only two
correlation mechanisms. One of our main research
objectives is to use neural networks to identify new
correlations that can be exploited by branch predictors.
We also wish to determine whether more accurate branch
prediction is possible and to gain a greater understanding
of the underlying prediction mechanisms. Finally, we
hope to design and evaluate hardware implementations of
simplified neural branch predictors. Alternatively, our
research may lead to the design of more effective two-
level branch predictors.

In this first paper on dynamic neural branch
prediction, we explore the suitability of two neural
networks, a Learning Vector Quantisation Network
(LVQ) and a Backpropagation Network, for branch
prediction. Through trace driven simulation, we
demonstrate that neural predictors can achieve success
rates that are comparable to conventional two -level
adaptive predictors.

2. Previous Work

As far as we are aware, only one paper by Calder [4]
has discussed the application of neural networks to the
problem of branch prediction. Calder is concerned
entirely with static or compile-time branch prediction.
His predictions are therefore based on information about
a program’s structure that can be readily determined by a
compiler. For example, a branch successor path that
leads out of a loop or function is less likely to be
followed than a path that remains within the loop or
function. Using a neural network, Calder achieves a
misprediction rate of only 20%, remarkably low for
static branch prediction. Since Calder’s predictions were
performed at compile time, he was unable to feed the
dynamic branch histories used by two -level predictors
into his neural networks. As a result, perhaps the most
useful contribution of his paper is to suggest a wide
range of alternative inputs that might correlate with
branch outcomes and which might therefore be usefully
added to dynamic predictors.

Since most recent research on branch prediction has
concentrated on two-level adaptive techniques [2 ,3 ,4 ,5,
6, 7, 8 ,9 , IO, 1 1, 12, 131, it is useful to explore some of
the drawbacks of two-level predictors. The main
disadvantages can be found in the following areas:

High cost of PHT
Branch interference

Slow Initialisation
“Hard-to-Predict” Branches

With a global predictor using a single Pattern History
Table (PHT) 2k entries are required, where k is the
number of bits in HRg. This is the GAg predictor in
Patt’s classification system [l l] . To achieve a 3%
misprediction rate with the Spec benchmarks an 18-bit
HRg is required [l l] giving a PHT with 2“ or 256K
entries. Moreover, if a separate PHT is used for each
branch, as in Patt’s GAp configuration, a far greater area
must be devoted to the PHT. For example if HRI is 12
bits long and 16 bits are used to distinguish each branch,
a total of 2’ entries is required. Similar high storage
requirements apply to local branch predictors - PAg and
PAp in Patt’s system - even though fewer local history
register bits are generally required to achieve a given
success rate.

The high implementation cost of conventional two-
level predictors has had a subtle, but important, impact on
branch prediction research; it has discouraged any
developments that increase the size of the PHT. Perhaps
the most obvious example is that researchers are
deterred from attempting to extract additional prediction
accuracy from very long HRs. Similarly, researchers are
discouraged from describing the program path leading to
each branch more accurately by recording the full path
information [14], and from combining global and local
history information in a single predictor. Finally, the use
of additional prediction information, such as the branch
direction information used in the simple BTFNT
(Backwards Taken, Forward Not Taken) heuristic, is
discouraged

The high cost of a conventional PHT suggests that
alternative configurations should be considered. One
possibility is to replace the PHT with a Prediction Cache
[15, 161. Although a tag field must be added to each PHT
entry, the very large size of conventional PHTs suggests
that the total number of entries and therefore the total
cost of the PHT could be significantly reduced. The
danger with a Prediction Cache is that cache misses will
increase the misprediction rate. The impact of
prediction cache misses can, however, be minimised by
restoring a two-bit prediction counter to each entry of
the conventional BTC, which is still required in all two-
level predictors to furnish the target address for each
branch. These BTC counters can then be used to provide
a default prediction whenever there is a miss in the
prediction cache [151. Alternatively, an entirely different
approach, such as the neural branch predictors introduced
in this paper, can be investigated.

The second problem, branch interference, is a direct
result of excessive PHT sizes. Because of the high cost
of PHTs, researchers are reluctant to provide a separate
PHT array for each branch. Instead, each PHT is shared,
either between all branches in the GAg or PAg
Configurations, or between a set of branches in the GAS

179

and PAS configurations. Unfortunately, prediction
information is now also shared between several branches,
leading to interference [9]. The Gshare Predictor [8, 171
attempts to minimise this interference by hashing the PC
and HR fields before accessing the PHT. The objective
is to spread accesses more evenly throughout the PHT.
Alternatively, the Bimodal Predictor [7] uses twin PHT
arrays to decrease destructive interference between
branch predictions and to maximise positive
interference. Note that the problem of branch
interference can be completely avoided by using a
Prediction Cache.

The third problem is PHT initialisation. In the worst
case, the 2k prediction counters associated with each
branch, where k is the length of the HR, must be trained
before the predictor is fully effective. Even allowing for
the fact that a PHT is effectively a sparse matrix with
many unused entries, this situation contrasts sharply with
a classic BTC that is fully initialised after one execution
of each branch. The impact of PHT training can be
reduced by combining a two-level predictor with a
classic BTC in a hybrid predictor [5]. The BTC will then
be used in preference to the two -level predictor while the
latter is being initialised. Alternatively, explicit PHT
counter initialisation can be combined with the simple
default predictor in the BTC mentioned earlier [181.

Finally, some branches remain stubbornly hard-to-
predict [19, 201. There are two cases. The outcome of
some data dependent branches is effectively random and
these branches will never be accurately predicted.
However, it should be possible to predict certain
branches that are currently hard-to-predict more
accurately by identifying new correlation mechanisms
and adding them to the prediction process. We suggest
that neural predictors may prove to be a useful vehicle
for investigating potential new correlation mechanisms.

We have emphasised earlier that most branch
prediction research is based on two closely related
correlation mechanisms. Yet branch prediction is a
specific example of a far more general time series
prediction problem that occurs in many diverse fields of
science. It is therefore surprising that there has not been
more cross-fertilisation of ideas between different
application areas. A notable exception is a paper by
Mudge [I91 that demonstrates that all two-level adaptive
predictors implement special cases of the Prediction by
Partial Matching [PPM] algorithm that is widely used in
data compression. Mudge uses the PPM algorithm to
compute a theoretical upper bound on the accuracy of
branch prediction. In a later paper, Steven [18]
demonstrates that a two -level predictor can be extended
to implement a simplified PPM algorithm with a
resultant reduction in the misprediction rate. Time
series prediction is also an important research topic in
neural networks. It therefore appears natural to look to
neural networks for a further cross-fertilisation of ideas.

In this paper, we apply neural networks to dynamic
branch prediction. Our objective is to demonstrate that
neural networks can achieve the same prediction
accuracy as a conventional Two -level Adaptive Predictor.
In this initial study, we therefore restrict our neural
network inputs to using the same dynamic HR
information as a conventional two -level predictor.

3. Branch Prediction Models

We first briefly consider the performance of a simple
LVQ (Learning Vector Quantisation) neural predictor.
We then compare the performance of conventional two-
level adaptive predictors with a Neural Predictor using a
Backpropagation Network. In both cases the prediction
process is based on two inputs: the branch PCs least
significant bits and the history of the k previous branches

We assume that all predictions are being made during
the Instruction Fetch stage of the processor pipeline. All
our predictors therefore operate in parallel with a classic
BTC that detects branches and furnishes the branch target
address. The actual prediction is generated by either a
neural network or a two-level predictor. Nevertheless, a
miss in a BTC always results in a default prediction of
not taken, irrespective of the prediction delivered by the
predictor. A I K four-way set associative BTC is used
throughout the paper.

3.1. An LVQ Neural Predictor

The first neural network we examined was an LVQ
[21] model. Our objective was to determine whether
respectable success rates could be delivered by a simple
LVQ network that was dynamically trained after each
branch prediction.

The LVQ predictor contains two “codebook” vectors:
the first vector, Vt, is associated with the branch taken
event and the second, Vnt, with the not taken event. Vt is
initialised to all ones and Vnt to all zeros. During the
prediction process, the input parameters of the predictor
are concatenated to form a single input vector, X.
Hamming distances are then computed between X and the
two codebook vectors.

HD = C (Xi - Vi)2
I

The vector with the smallest Hamming distance is
defined as the winning vector, Vw, and is used to predict
the branch. A win for Vt therefore indicates “predict
taken”, while a win for Vnt indicates “predict not taken”.
When the branch outcome is determined, the codebook
vector Vw that was used to make the prediction is then
adjusted as follows:

Vw (t + 1) = Vw (t) +/- a(t)[X(t) - Vw(t)]
To reinforce correct predictions, the vector is

increniented whenever a prediction was correct and

180

decremented otherwise. The factor a(t) represents the
learning factor and is usually set to a small constant less
than 0.1. In contrast, the losing vector is unchanged. The
neural predictor will therefore be trained continuously as
each branch is encountered. It will also be adaptive since
the codebook vectors will always tend to reflect the
outcome of the branches most recently encountered.

3.2. Branch Prediction using a Backpropagation
Neural Network Predictor

Our second neural network is a Backpropagation
Neural Network [22]. The prediction information is fed
into a backpropagation net (Fig. 1) which predicts the
outcome of each branch. Later when the outcome of the
branch is known, the error in the prediction is
backpropagated through the neural network using the
classic backpropagation algorithm.

Four different networks have been developed: two of
them use global history information while the other two
use local information. The two versions of each arise
because the inputs to the net are coded in two different
ways: binary using 0 and 1 for not taken and taken
branches respectively, and bipolar, using - 1 and 1. To
exploit these different input encodings, two different
activation functions are also required, a sigmoidal
function for binary inputs and a bipolar sigmoidal
function for bipolar inputs:

Sigmoidal function: 1/(1 +e+")
Bipolar Sigmoidal function: 2 4 1 + e-P") - 1

The factor p controls the degree of linearity in the
two activation function. In particular, as p approaches
infinity, the functions become step functions, the form
of the activation. function used in MLP (Multi-Layer
Perceptron) networks.

When predicting a branch using binary inputs, a value
higher than 0.5 on the output cell is considered to be a
taken prediction, whereas any value lower than 0.5 is a
not taken prediction. In the bipolar case, positive values
indicate a taken prediction and negative values not taken.
The network is not initially trained, so random values are
chosen for the weights between [2/X, 21x1, where X
corresponds to the number of inputs to the net. This
selection of weights guarantees that both the weights and
their average value will be close to zero and that the net
is not biased initially towards either taken or not taken.

4. Trace Driven Simulation Results

4.1. Simulation Environment

Our simulations-used the Stanford integer benchmark
suite, a collection of eight C programs designed to be
representative of non-numeric code, while at the same
time being compact. The benchmarks are

computationally intensive, with an average dynamic
instruction count of 273,000. About 18% of the
instructions are branches of which around 76% are taken.
Some of the branches in these benchmarks are known to
be particularly difficult to predict; see for example
Mudge's detailed analysis [19] of the branches in
quicksort.

The benchmarks were compiled using a C compiler
developed at the University of Hertfordshire for the HSA
(Hatfield Superscalar Architecture) [2 3] . Instruction
traces were then obtained using the HSA instruction-
level simulator, with each trace entry providing
information on the branch address, branch type and target
address. These traces were used to drive a series of
trace-driven branch predictors. The trace-driven
simulators are highly configurable, the most important
parameter being the number of HR bits. As output, the
simulators generate the overall prediction accuracy, the
number of incorrect target addresses and other useful
statistics .

4.2. Conventional Two-level Predictors

For comparative purposes, we first simulated three
global predictors, a GAg predictor, a GAS predictors with
16 PHTs and a GAp predictor (Fig. 2). The average
misprediction rate initially falls steadily as a function of
global HR length, before flattening out at a misprediction
rate of around 9.5%. In general, there is no benefit in
increasing the HR length beyond 16 bits for the GAg
predictor and 14 bits for the GAs/GAp predictors.
Beyond this point there is either no significant benefit
from new correlations or any benefit is negated by the
additional number of initialisations required in the PHTs.

We also simulated three local predictors: a PAg, a
PAS and a PAp predictor (Fig. 3) . The local predictors
achieve rnisprediction rates of around 7.5%, significantly
better than the global predictors. The best performance
is of 7.48% is achieved with a PAp predictor and a 28-bit
HR. This improvement is largely achieved because local
predictors, unlike their global counterparts, continue to
benefit from additional HR bits. However, with both
global and local two-level predictors the accuracy does
not improve smoothly as a function of HR length.

4.3. An LVQ Branch Predictor

Three LVQ predictors were considered with the
following inputs:

PC+HRI
P C + H R g
P C + H R I + H R g

The input vector for the neural network was
constructed by concatenating the least significant bits of
the PC with HRg and HRI as appropriate. Initially the
values of the learning step a(t) were varied between 0.1

18 1

and 0.001. Eventually the value a(t) = 0.01 was
standardised after it had been demonstrated that the
predictor was largely insensitive to slight variations in
a(t). The simulation results are presented in Fig. 4.

The global LVQ predictor achieved an average
misprediction rate of 13.54%. Furthermore, only
modest further benefits were realised by increasing HR
beyond four bits. The global predictor was therefore
unable to benefit from large amounts of HRg
information. The local LVQ predictor achieved a
significantly lower misprediction rate of 10.91%.
However, although this figure was recorded with a 30-bit
HRI, the local predictor was also unable to adapt to a
large amount of history register information, and no
significant improvements were observed with HR sizes
greater than 6 1 0 bits. The superior performance of the
local predictor is not entirely unexpected; there is likely
to be far more positive re-enforcement of prediction
information between distinct branches in a local
predictor. In contrast, a global predictor must “learn”
about each branch separately.

Finally, a hybrid global and local predictor, with equal
numbers of HRg and HRI bits, yielded a marginal
improvement on the local predictor levels, pushing the
best average misprediction rate down to 10.78%.

Overall, the results of the LVQ predictor are in line
with the average accuracy of 88.10% achieved by a
classic BTC with these benchmarks. A simple LVQ
predictor is therefore unable to compete with a
conventional two -level adaptive predictor. Nevertheless,
we found these first results very encouraging. An LVQ
network solves a binary classification problem by
attempting to find a single multi-dimensional plane that
divides the input space, in this case a taken and a not
taken space, into two. Although the plane can be changed
dynamically as each branch executes, it appears unlikely
that an entirely satisfactory solution can be found. Since
our LVQ predictor nonetheless managed to equal the
performance of a classic BTC, we w r e encouraged to
develop further neural predictors.

4.4. A Backpropagation Neural Predictor

A total of four Backpropagation Neural Predictors

A global neural predictor with binary inputs.
A global neural predictor with bipolar inputs.
A local neural predictor with binary inputs.
A local neural predictor with bipolar inputs.

The simulation results are plotted in Fig. 5 as a
function of HR length. A learning rate of 0.125 was used
throughout.

The global neural predictor with binary inputs (0 or I)
achieves a misprediction rate of 11.28%, which is
significantly better than the LVQ predictor. However the
global predictor with bipolar inputs (-1, + I) significantly

were simulated:

improves on this figure and achieves a misprediction rate
of 8.77%. Intuitively, feeding in not taken results as
minus one allows the neural predictor to exploit
correlations between not taken branches and the branch
being predicted. In contrast, if not taken results are fed
in as zero, they can have little direct result on the final
outcome, since their weighted input into each
intermediate neural cell must always be zero.
Interestingly, the prediction accuracy also continues to
improve as HR is increased, and only finally dips below
9.0 with a HR length of 26 bits.

The local predictor consistently outperforms the
global predictor. With binary inputs, the best
misprediction rate is 10.46%, while with bipolar inputs
8.47% is achieved. Significantly, neural prediction
performance is now comparable with the performance of
two-level adaptive predictors. The best global neural
predictor with a misprediction rate of 8.77% is 5.2%
better than the best GAS predictor, while the best local
level predictor at 8.47% is 13.2% worse than the best
PAS predictor.

5. Conclusions

In this study, we sought to determine whether a neural
network could mimic a two-level adaptive branch
predictor and achieve comparable success rates. Two
types of neural predictors were simulated, an LVQ
predictor and a Backpropagation Predictor. While the
LVQ predictor only achieved results comparable to a
traditional BTC, the Backpropagation Predictor
performance was comparable to conventional two -level
adaptive predictors. In the case of global predictors, the
best neural predictor was marginally superior to the best
hvo-level predictor and, in the case of local predictors,
the best two -level predictor was marginally superior.
These results suggest that not only can neural networks
generate respectable prediction results, but in some
circumstances a neural predictor may be able to exploit
correlation information more effectively than a
conventional predictor.

Traditionally, neural networks undergo exhaustive and
often very time-consuming training before they are used.
In this respect, branch prediction appears to be an
unpromising application for neural networks. In branch
prediction, a neural network is expected to sample the
outcome of a specific branch once and to then predict the
same branch when it is encountered for a second time.
The most exciting result of these simulations is
therefore the extent to which backpropagation neural
networks are able to assimilate and benefit from large
amounts of history register information with a minimum
of training. The distinct drop in the bipolar
backpropagation misprediction rate when 26 bits of HR
are used is a good illustration of this result. Our results
therefore suggest that neural networks can adapt rapidly

182

enough to be successfully used in dynamic branch
prediction.

Neural networks provide an extremely interesting
topic for future branch prediction research. T h e
challenge is to construct composite input vectors for
neural network predictors that will enable them to
outperform conventional predictors. This task involves
both identifying new correlation mechanisms that can be
exploited by neural prediction and tailoring the input
information to fully exploit the capabilities of a neural
predictor.

References

[I] J. L. Hennessy and D. A. Patterson. Computer
Architecture: A Quantitative Approach, Morgan Kaufinann,
2nd edition, 1996.

[2] T. Yeh, T. and Y. N. Patt. Twc-Levels Adaptive Training
Branch Prediction, Micro-24, Albuquerque, New Mexico,
November 199 1, pp5 1-6 I .

[3] S. Pan, K. So and J. T. Rahrneh. Improving the Accuracy of
Dynamic Branch Prediction Using Branch Correlation,
ASPLOS-V, Boston, October 1992, pp76-84.

[4] B. Calder, D. Grunwald and D. Lindsay. Corpus-based Static
Branch Prediction, SICPLAN Notices, June 1995, pp79-92.

[5] P. Chang, E. Hao and Y. N. Patt. Alternative
Implementations of Hybrid Branch Predictors, Micro-29, Ann
Arbor, Michigan, November 1995, pp252-257.

[6] M. Evers, S. J. Patel, R. S. Chappell and Y. N. Patt. An
Analysis of Correlation and Predictability: What makes T w e
level Branch Predictors Work, ISCA '25, Barcelona, Spain,
June 1998, pp52-61.

[7] C. C. Lee, I. -C. K. Chen, and 7. N. Mudge. The Bi-Mode
Branch Predictor, Micro-30, Research Triangle Park, North
Carolina, December 1997, pp4- 13.

[8] S. McFarling. Combining Branch Predictors, WRL Technical
Note, TN36, DEC, June 1993.

[9] S. Sechrest, C. Lee and T. Mudge. The Role of Adaptivity in
Twc-Level Branch Prediction, Micro-29, Ann Arbor,
Michigan, November 1995, pp264-269.

[IO] E. Sprangle, R. S. Chappell, M. Alsup and Y. N. Pan. The

Agree Predictor: A Mechanism for Reducing Negative
Branch History Interference, ISCA '24, Denver, Colorado,
June 1997, pp284-29 1.

[1 I] T. Yeh and Y. N. Pan. Alternative Implementations of T w e
Level Adaptive Branch Prediction, fSCA-f 9, Gold Coast,
Australia, May 1992, pp124-134.

[12] T. Yeh and Y. N. Patt. A Comprehensive Instruction Fetch
Mechanism for a Processor Supporting Speculative Execution,
Micro-25, Portland, Oregon, December 1992, pp129-139.

[I31 T. Yeh and Y. N. Patt. A Comparison of Dynamic Branch
Predictors that Use Two Levels of Branch History, ISCA-20,
San Diego, May 1993, pp257-266.

[141 R. Nair. Dynamic Path-Base Branch Correlation, Micro-28,
Ann Arbor, Michigan, November 1995, pp15-23.

[151 C. Egan. Dynamic Branch Prediction in High Performance
Superscalar Processors, PhD thesis, University of
Hertfordshire, August 2000.

[16] G. B. Steven, C. Egan and L. Vintan. A Cost Effective
Cached Correlated Two Level Adaptive Branch Predictor,
I 81h IASTED International Conference in Applied
Informatics, Innsbruck, Austria, February 2000.

Branch
Classification: A New Mechanism for Improving Branch
Predictor Performance, Micro-2 7, San Jose, California,
November 1994, pp22-31.

[I81 G. B. Steven, C. Egan, P. Quick, and L. Vintan. Reducing
Cold Start Mispredictions in Twdevel Adaptive Branch
Predictors, CSCS-12, Bucharest, May 1999, pp145-150.

Limits of Branch
Prediction, Technical Report, Electrical Engineering and
Computer Science Department, The University d Michigan,
Ann Arbor, Michigan, USA, January 1996.

[20] L. N. Vintan and C. Egan. Extending Correlation in Branch
Prediction Schemes, Euromicro99, Milan, September 1999,

[21] S. I. Gallant. Neural Networks and Expert Systems, MIT
Press, 1993.

[22] R. Callan. The Essence of Neurul Networks, Prentice-Hall,
1999.

[23] G. B. Steven, D. B. Chnstianson, R. Collins, R. Potter and F.
L. Steven. A Superscalar Architecture to Exploit Instruction
Level Parallelism, Microprocessors and Microsystem,
V01.20, No 7, March 1997, pp391-400.

[I71 P. Chang, E. Hao, T. Yeh and Y. N. Patt.

[I91 T. N. Mudge, I. Chen and J. Coffey.

Vol. 1, pp441-448.

Figure 1. A Global Backpropagation Neural Predictor

183

25

20

5

0
2 4 6 8 10 12 14 16 18 20 22 24 26 28

HR Length

Figure 2. Global Two-Level Predictors

16

14

12

10 - E
.U 8
e

c .- +
U

P

S 6

4

2

0
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

HR Length

Figure 3. Local Two-Level Predictors

30

184

2 4 6 a IO 12 14 16 18 20 22 24 26 28 30
HR Length

Figure 4. LVQ Branch Predictors

13

12

8

7
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

HR Length

Figure 5. Backpropagation Neural Predictors

185

