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Abstract 

Dynamic branch prediction in high-performance 
processors is a specific instance of a general Time 
Series Prediction problem that occurs in many areas of 
science. In contrast, most branch prediction research 
focuses on Two-Level Adaptive Branch Prediction 
techniques, a very specific solution to the branch 
prediction problem. An alternative approach is to look 
to other application areas and fields f o r  novel 
solutions to the problem. In this paper, we examine the 
application of neural networks to dynamic branch 
prediction. Two neural networks are considered: a 
Learning Vector Quantisation (L VQ) Network and a 
Backpropagation Network. We demonstrate that a 
neural predictor can achieve misprediction rates 
comparable to conventional Two-level Adaptive 
Predictors and suggest that neural predictors merit 
further investigation. 
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1. Introduction 

As the average instruction issue rate in multiple- 
instruction-issue (MII) processors increases, accurate 
dynamic branch prediction becomes increasingly 
important. Very high prediction accuracy is required 
because an increasing number of instructions are lost 
before a branch misprediction can be corrected. As a 
result even a misprediction rate of a few percent involves 
a substantial performance loss. 

If branch prediction is to improve performance, 
branches must be detected within the dynamic instruction 
stream, and both the direction taken by each branch and 
the branch target address must be correctly predicted. 
Furthermore, all of the above must be completed in time 
to fetch instructions from the branch target address 
without interrupting the flow of new instructions to the 
processor pipeline. A classic Branch Target Cache 
(BTC) [ 13 achieves these objectives by holding the 
following information for previously executed branches: 
the address of the branch instruction, the branch target 

address and information on the previous outcomes of the 
branch. Branches are then pedicted by using the PC 
address to access the BTC in parallel with the instruction 
fetch process. As a result each branch is predicted while 
the branch instruction itself is being fetched from the 
instruction cache. Whenever a branch is detected and 
predicted as taken, the appropriate branch target is 
available at the end of the instruction fetch cycle, and 
instructions can be fetched from the branch target in the 
next cycle. Straightforward prediction mechanisms 
based on the previous history of each branch give a 
prediction accuracy of around 80 to 95% [I]. This 
success rate proved adequate for scalar processors, but is 
generally regarded as inadequate for superscalar designs. 

The requirement for higher branch prediction 
accuracy in superscalar systems and the availability of 
additional silicon area led to a dramatic breakthrough in 
the early 90s with the development of Two-Level 
Adaptive Branch Prediction [2, 31. Two -Level Adaptive 
Branch Predictors use two levels of branch history 
information to make a branch prediction. The first level 
consists of a History Register (HR) that records the 
outcome of the last k branches encountered. The HR 
may be a single global register, HRg, that records the 
outcome of last k branches executed in the dynamic 
instruction stream or one of multiple local history 
registers, HRI, that records the last k outcomes of each 
branch. The second level of the predictor known as the 
Pattern History Table (PHT) records the behaviour of a 
branch during previous occurrences of the first level 
predictor. The PHT consists of an array of two bit 
saturating counters that is indexed by the HR to obtain 
the prediction. With a k-bit HR, 2k entries are therefore 
required if a global PHT is provided, or many times this 
number if separate HRs and therefore PHTs are provided 
for each branch. 

Although all the new predictors are called Two-level 
Adaptive Predictors, this is misleading. Two distinct 
prediction techniques have in fact been developed. If a 
global history register is used, the pedictor exploits 
correlation between the outcome of a branch and the 
outcome of neighbouring branches that are executed 
immediately prior to the branch. If a local history 
register is used, the predictor exploits correlation 
between the outcome of a branch and previous outcomes 
of the same branch. A global two -level predictor is more 
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accurate than a classic BTC because it exploits new 
information. In contrast, a local two-level branch 
predictor is more accurate because it keeps a record of 
the next outcome in a time series, whereas a BTC 
records the most frequent outcome of each branch. 

In complete contrast to earlier work, this paper 
explores the possibility of using neural networks to 
dynamically predict branch outcomes. Conventional 
two-level branch predictors rely on one of only two 
correlation mechanisms. One of our main research 
objectives is to use neural networks to identify new 
correlations that can be exploited by branch predictors. 
We also wish to determine whether more accurate branch 
prediction is possible and to gain a greater understanding 
of the underlying prediction mechanisms. Finally, we 
hope to design and evaluate hardware implementations of 
simplified neural branch predictors. Alternatively, our 
research may lead to the design of more effective two- 
level branch predictors. 

In this first paper on dynamic neural branch 
prediction, we explore the suitability of two neural 
networks, a Learning Vector Quantisation Network 
(LVQ) and a Backpropagation Network, for branch 
prediction. Through trace driven simulation, we 
demonstrate that neural predictors can achieve success 
rates that are comparable to conventional two -level 
adaptive predictors. 

2. Previous Work 

As far as we are aware, only one paper by Calder [4] 
has discussed the application of neural networks to the 
problem of branch prediction. Calder is concerned 
entirely with static or compile-time branch prediction. 
His predictions are therefore based on information about 
a program’s structure that can be readily determined by a 
compiler. For example, a branch successor path that 
leads out of a loop or function is less likely to be 
followed than a path that remains within the loop or 
function. Using a neural network, Calder achieves a 
misprediction rate of only 20%, remarkably low for 
static branch prediction. Since Calder’s predictions were 
performed at compile time, he was unable to feed the 
dynamic branch histories used by two -level predictors 
into his neural networks. As a result, perhaps the most 
useful contribution of his paper is to suggest a wide 
range of alternative inputs that might correlate with 
branch outcomes and which might therefore be usefully 
added to dynamic predictors. 

Since most recent research on branch prediction has 
concentrated on two-level adaptive techniques [2 ,3 ,4 ,5,  
6, 7, 8 ,9 ,  IO, 1 1, 12, 131, it is useful to explore some of 
the drawbacks of two-level predictors. The main 
disadvantages can be found in the following areas: 

High cost of PHT 
Branch interference 

Slow Initialisation 
“Hard-to-Predict” Branches 

With a global predictor using a single Pattern History 
Table (PHT) 2k entries are required, where k is the 
number of bits in HRg. This is the GAg predictor in 
Patt’s classification system [ l l ] .  To achieve a 3% 
misprediction rate with the Spec benchmarks an 18-bit 
HRg is required [ l l ]  giving a PHT with 2“ or 256K 
entries. Moreover, if a separate PHT is used for each 
branch, as in Patt’s GAp configuration, a far greater area 
must be devoted to the PHT. For example if HRI is 12 
bits long and 16 bits are used to distinguish each branch, 
a total of 2’ entries is required. Similar high storage 
requirements apply to local branch predictors - PAg and 
PAp in Patt’s system - even though fewer local history 
register bits are generally required to achieve a given 
success rate. 

The high implementation cost of conventional two- 
level predictors has had a subtle, but important, impact on 
branch prediction research; it has discouraged any 
developments that increase the size of the PHT. Perhaps 
the most obvious example is that researchers are 
deterred from attempting to extract additional prediction 
accuracy from very long HRs. Similarly, researchers are 
discouraged from describing the program path leading to 
each branch more accurately by recording the full path 
information [14], and from combining global and local 
history information in a single predictor. Finally, the use 
of additional prediction information, such as the branch 
direction information used in the simple BTFNT 
(Backwards Taken, Forward Not Taken) heuristic, is 
discouraged 

The high cost of a conventional PHT suggests that 
alternative configurations should be considered. One 
possibility is to replace the PHT with a Prediction Cache 
[ 15, 161. Although a tag field must be added to each PHT 
entry, the very large size of conventional PHTs suggests 
that the total number of entries and therefore the total 
cost of the PHT could be significantly reduced. The 
danger with a Prediction Cache is that cache misses will 
increase the misprediction rate. The impact of 
prediction cache misses can, however, be minimised by 
restoring a two-bit prediction counter to each entry of 
the conventional BTC, which is still required in all two- 
level predictors to furnish the target address for each 
branch. These BTC counters can then be used to provide 
a default prediction whenever there is a miss in the 
prediction cache [ 151. Alternatively, an entirely different 
approach, such as the neural branch predictors introduced 
in this paper, can be investigated. 

The second problem, branch interference, is a direct 
result of excessive PHT sizes. Because of the high cost 
of PHTs, researchers are reluctant to provide a separate 
PHT array for each branch. Instead, each PHT is shared, 
either between all branches in the GAg or PAg 
Configurations, or between a set of branches in the GAS 
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and PAS configurations. Unfortunately, prediction 
information is now also shared between several branches, 
leading to interference [9]. The Gshare Predictor [8, 171 
attempts to minimise this interference by hashing the PC 
and HR fields before accessing the PHT. The objective 
is to spread accesses more evenly throughout the PHT. 
Alternatively, the Bimodal Predictor [7] uses twin PHT 
arrays to decrease destructive interference between 
branch predictions and to maximise positive 
interference. Note that the problem of branch 
interference can be completely avoided by using a 
Prediction Cache. 

The third problem is PHT initialisation. In the worst 
case, the 2k prediction counters associated with each 
branch, where k is the length of the HR, must be trained 
before the predictor is fully effective. Even allowing for 
the fact that a PHT is effectively a sparse matrix with 
many unused entries, this situation contrasts sharply with 
a classic BTC that is fully initialised after one execution 
of each branch. The impact of PHT training can be 
reduced by combining a two-level predictor with a 
classic BTC in a hybrid predictor [5]. The BTC will then 
be used in preference to the two -level predictor while the 
latter is being initialised. Alternatively, explicit PHT 
counter initialisation can be combined with the simple 
default predictor in the BTC mentioned earlier [ 181. 

Finally, some branches remain stubbornly hard-to- 
predict [19, 201. There are two cases. The outcome of 
some data dependent branches is effectively random and 
these branches will never be accurately predicted. 
However, it should be possible to predict certain 
branches that are currently hard-to-predict more 
accurately by identifying new correlation mechanisms 
and adding them to the prediction process. We suggest 
that neural predictors may prove to be a useful vehicle 
for investigating potential new correlation mechanisms. 

We have emphasised earlier that most branch 
prediction research is based on two closely related 
correlation mechanisms. Yet branch prediction is a 
specific example of a far more general time series 
prediction problem that occurs in many diverse fields of 
science. It is therefore surprising that there has not been 
more cross-fertilisation of ideas between different 
application areas. A notable exception is a paper by 
Mudge [I91 that demonstrates that all two-level adaptive 
predictors implement special cases of the Prediction by 
Partial Matching [PPM] algorithm that is widely used in 
data compression. Mudge uses the PPM algorithm to 
compute a theoretical upper bound on the accuracy of 
branch prediction. In a later paper, Steven [18] 
demonstrates that a two -level predictor can be extended 
to implement a simplified PPM algorithm with a 
resultant reduction in the misprediction rate. Time 
series prediction is also an important research topic in 
neural networks. It therefore appears natural to look to 
neural networks for a further cross-fertilisation of ideas. 

In this paper, we apply neural networks to dynamic 
branch prediction. Our objective is to demonstrate that 
neural networks can achieve the same prediction 
accuracy as a conventional Two -level Adaptive Predictor. 
In this initial study, we therefore restrict our neural 
network inputs to using the same dynamic HR 
information as a conventional two -level predictor. 

3. Branch Prediction Models 

We first briefly consider the performance of a simple 
LVQ (Learning Vector Quantisation) neural predictor. 
We then compare the performance of conventional two- 
level adaptive predictors with a Neural Predictor using a 
Backpropagation Network. In both cases the prediction 
process is based on two inputs: the branch PCs least 
significant bits and the history of the k previous branches 

We assume that all predictions are being made during 
the Instruction Fetch stage of the processor pipeline. All 
our predictors therefore operate in parallel with a classic 
BTC that detects branches and furnishes the branch target 
address. The actual prediction is generated by either a 
neural network or a two-level predictor. Nevertheless, a 
miss in a BTC always results in a default prediction of 
not taken, irrespective of the prediction delivered by the 
predictor. A I K  four-way set associative BTC is used 
throughout the paper. 

3.1. An LVQ Neural Predictor 

The first neural network we examined was an LVQ 
[21] model. Our objective was to determine whether 
respectable success rates could be delivered by a simple 
LVQ network that was dynamically trained after each 
branch prediction. 

The LVQ predictor contains two “codebook” vectors: 
the first vector, Vt, is associated with the branch taken 
event and the second, Vnt, with the not taken event. Vt is 
initialised to all ones and Vnt to all zeros. During the 
prediction process, the input parameters of the predictor 
are concatenated to form a single input vector, X. 
Hamming distances are then computed between X and the 
two codebook vectors. 

HD = C  (Xi - Vi)2 
I 

The vector with the smallest Hamming distance is 
defined as the winning vector, Vw, and is used to predict 
the branch. A win for Vt therefore indicates “predict 
taken”, while a win for Vnt indicates “predict not taken”. 
When the branch outcome is determined, the codebook 
vector Vw that was used to make the prediction is then 
adjusted as follows: 

Vw (t + 1) = Vw (t) +/- a(t)[ X(t) - Vw(t)] 
To reinforce correct predictions, the vector is 

increniented whenever a prediction was correct and 
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decremented otherwise. The factor a(t) represents the 
learning factor and is usually set to a small constant less 
than 0.1. In contrast, the losing vector is unchanged. The 
neural predictor will therefore be trained continuously as 
each branch is encountered. It will also be adaptive since 
the codebook vectors will always tend to reflect the 
outcome of the branches most recently encountered. 

3.2. Branch Prediction using a Backpropagation 
Neural Network Predictor 

Our second neural network is a Backpropagation 
Neural Network [22]. The prediction information is fed 
into a backpropagation net (Fig. 1) which predicts the 
outcome of each branch. Later when the outcome of the 
branch is known, the error in the prediction is 
backpropagated through the neural network using the 
classic backpropagation algorithm. 

Four different networks have been developed: two of 
them use global history information while the other two 
use local information. The two versions of each arise 
because the inputs to the net are coded in two different 
ways: binary using 0 and 1 for not taken and taken 
branches respectively, and bipolar, using - 1 and 1. To 
exploit these different input encodings, two different 
activation functions are also required, a sigmoidal 
function for binary inputs and a bipolar sigmoidal 
function for bipolar inputs: 

Sigmoidal function: 1/(1 +e+")  
Bipolar Sigmoidal function: 2 4  1 + e-P") - 1 

The factor p controls the degree of linearity in the 
two activation function. In particular, as p approaches 
infinity, the functions become step functions, the form 
of the activation. function used in MLP (Multi-Layer 
Perceptron) networks. 

When predicting a branch using binary inputs, a value 
higher than 0.5 on the output cell is considered to be a 
taken prediction, whereas any value lower than 0.5 is a 
not taken prediction. In the bipolar case, positive values 
indicate a taken prediction and negative values not taken. 
The network is not initially trained, so random values are 
chosen for the weights between [2/X, 21x1, where X 
corresponds to the number of inputs to the net. This 
selection of weights guarantees that both the weights and 
their average value will be close to zero and that the net 
is not biased initially towards either taken or not taken. 

4. Trace Driven Simulation Results 

4.1. Simulation Environment 

Our simulations-used the Stanford integer benchmark 
suite, a collection of eight C programs designed to be 
representative of non-numeric code, while at the same 
time being compact. The benchmarks are 

computationally intensive, with an average dynamic 
instruction count of 273,000. About 18% of the 
instructions are branches of which around 76% are taken. 
Some of the branches in these benchmarks are known to 
be particularly difficult to predict; see for example 
Mudge's detailed analysis [19] of the branches in 
quicksort. 

The benchmarks were compiled using a C compiler 
developed at the University of Hertfordshire for the HSA 
(Hatfield Superscalar Architecture) [ 2 3 ] .  Instruction 
traces were then obtained using the HSA instruction- 
level simulator, with each trace entry providing 
information on the branch address, branch type and target 
address. These traces were used to drive a series of 
trace-driven branch predictors. The trace-driven 
simulators are highly configurable, the most important 
parameter being the number of HR bits. As output, the 
simulators generate the overall prediction accuracy, the 
number of incorrect target addresses and other useful 
statistics . 

4.2. Conventional Two-level Predictors 

For comparative purposes, we first simulated three 
global predictors, a GAg predictor, a GAS predictors with 
16 PHTs and a GAp predictor (Fig. 2).  The average 
misprediction rate initially falls steadily as a function of 
global HR length, before flattening out at a misprediction 
rate of around 9.5%. In general, there is no benefit in 
increasing the HR length beyond 16 bits for the GAg 
predictor and 14 bits for the GAs/GAp predictors. 
Beyond this point there is either no significant benefit 
from new correlations or any benefit is negated by the 
additional number of initialisations required in the PHTs. 

We also simulated three local predictors: a PAg, a 
PAS and a PAp predictor (Fig. 3 ) .  The local predictors 
achieve rnisprediction rates of around 7.5%, significantly 
better than the global predictors. The best performance 
is of 7.48% is achieved with a PAp predictor and a 28-bit 
HR. This improvement is largely achieved because local 
predictors, unlike their global counterparts, continue to 
benefit from additional HR bits. However, with both 
global and local two-level predictors the accuracy does 
not improve smoothly as a function of HR length. 

4.3. An LVQ Branch Predictor 

Three LVQ predictors were considered with the 
following inputs: 

PC+HRI 
P C + H R g  
P C + H R I + H R g  

The input vector for the neural network was 
constructed by concatenating the least significant bits of 
the PC with HRg and HRI as appropriate. Initially the 
values of the learning step a(t) were varied between 0.1 
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and 0.001. Eventually the value a(t) = 0.01 was 
standardised after it had been demonstrated that the 
predictor was largely insensitive to slight variations in 
a(t). The simulation results are presented in Fig. 4. 

The global LVQ predictor achieved an average 
misprediction rate of 13.54%. Furthermore, only 
modest further benefits were realised by increasing HR 
beyond four bits. The global predictor was therefore 
unable to benefit from large amounts of HRg 
information. The local LVQ predictor achieved a 
significantly lower misprediction rate of 10.91%. 
However, although this figure was recorded with a 30-bit 
HRI, the local predictor was also unable to adapt to a 
large amount of history register information, and no 
significant improvements were observed with HR sizes 
greater than 6 1 0  bits. The superior performance of the 
local predictor is not entirely unexpected; there is likely 
to be far more positive re-enforcement of prediction 
information between distinct branches in a local 
predictor. In contrast, a global predictor must “learn” 
about each branch separately. 

Finally, a hybrid global and local predictor, with equal 
numbers of HRg and HRI bits, yielded a marginal 
improvement on the local predictor levels, pushing the 
best average misprediction rate down to 10.78%. 

Overall, the results of the LVQ predictor are in line 
with the average accuracy of 88.10% achieved by a 
classic BTC with these benchmarks. A simple LVQ 
predictor is therefore unable to compete with a 
conventional two -level adaptive predictor. Nevertheless, 
we found these first results very encouraging. An LVQ 
network solves a binary classification problem by 
attempting to find a single multi-dimensional plane that 
divides the input space, in this case a taken and a not 
taken space, into two. Although the plane can be changed 
dynamically as each branch executes, it appears unlikely 
that an entirely satisfactory solution can be found. Since 
our LVQ predictor nonetheless managed to equal the 
performance of a classic BTC, we w r e  encouraged to 
develop further neural predictors. 

4.4. A Backpropagation Neural Predictor 

A total of four Backpropagation Neural Predictors 

A global neural predictor with binary inputs. 
A global neural predictor with bipolar inputs. 
A local neural predictor with binary inputs. 
A local neural predictor with bipolar inputs. 

The simulation results are plotted in Fig. 5 as a 
function of HR length. A learning rate of 0.125 was used 
throughout. 

The global neural predictor with binary inputs (0 or I )  
achieves a misprediction rate of 11.28%, which is 
significantly better than the LVQ predictor. However the 
global predictor with bipolar inputs (-1, + I )  significantly 

were simulated: 

improves on this figure and achieves a misprediction rate 
of 8.77%. Intuitively, feeding in not taken results as 
minus one allows the neural predictor to exploit 
correlations between not taken branches and the branch 
being predicted. In contrast, if not taken results are fed 
in as zero, they can have little direct result on the final 
outcome, since their weighted input into each 
intermediate neural cell must always be zero. 
Interestingly, the prediction accuracy also continues to 
improve as HR is increased, and only finally dips below 
9.0 with a HR length of 26 bits. 

The local predictor consistently outperforms the 
global predictor. With binary inputs, the best 
misprediction rate is 10.46%, while with bipolar inputs 
8.47% is achieved. Significantly, neural prediction 
performance is now comparable with the performance of 
two-level adaptive predictors. The best global neural 
predictor with a misprediction rate of 8.77% is 5.2% 
better than the best GAS predictor, while the best local 
level predictor at 8.47% is 13.2% worse than the best 
PAS predictor. 

5. Conclusions 

In this study, we sought to determine whether a neural 
network could mimic a two-level adaptive branch 
predictor and achieve comparable success rates. Two 
types of neural predictors were simulated, an LVQ 
predictor and a Backpropagation Predictor. While the 
LVQ predictor only achieved results comparable to a 
traditional BTC, the Backpropagation Predictor 
performance was comparable to conventional two -level 
adaptive predictors. In the case of global predictors, the 
best neural predictor was marginally superior to the best 
hvo-level predictor and, in the case of local predictors, 
the best two -level predictor was marginally superior. 
These results suggest that not only can neural networks 
generate respectable prediction results, but in some 
circumstances a neural predictor may be able to exploit 
correlation information more effectively than a 
conventional predictor. 

Traditionally, neural networks undergo exhaustive and 
often very time-consuming training before they are used. 
In this respect, branch prediction appears to be an 
unpromising application for neural networks. In branch 
prediction, a neural network is expected to sample the 
outcome of a specific branch once and to then predict the 
same branch when it is encountered for a second time. 
The most exciting result of these simulations is 
therefore the extent to which backpropagation neural 
networks are able to assimilate and benefit from large 
amounts of history register information with a minimum 
of training. The distinct drop in the bipolar 
backpropagation misprediction rate when 26 bits of HR 
are used is a good illustration of this result. Our results 
therefore suggest that neural networks can adapt rapidly 
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enough to be successfully used in dynamic branch 
prediction. 

Neural networks provide an extremely interesting 
topic  for future branch prediction research. T h e  
challenge is to construct composite input vectors for 
neural network predictors that will enable them to 
outperform conventional predictors. This  task involves 
both identifying new correlation mechanisms that can be 
exploited by neural prediction and tailoring the input 
information to fully exploit the  capabilities of a neural 
predictor. 
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Figure 1. A Global Backpropagation Neural Predictor 
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Figure 2. Global Two-Level Predictors 
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Figure 3. Local Two-Level Predictors 

30 

184 



2 4 6 a IO 12 14 16 18 20 22 24 26 28 30 
HR Length 

Figure 4. LVQ Branch Predictors 
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Figure 5. Backpropagation Neural Predictors 
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