
-001-

Formal Verification of a DSP Chip Using an Iterative Approach

Ali Habibi1, Sofiène Tahar1 and Adel Ghazel2

1ECE Dept., Concordia University
Montreal, Quebec, H3G 1M8 Canada.

2École Superieure Des Communications de Tunis
2083 Ariana, Tunisia.

1{habibi, tahar}@ece.concordia.ca
2adel.ghazel@supcom.rnu.tn

Abstract
In this paper we describe a methodology for the formal
verification of a DSP chip using the HOL theorem prover.
We used an iterative method to specify both the behavioral
and structural descriptions of the processor. Our method-
ology consists of first simplifying the representations of the
DSP units. We then prove for each unit that its hardware
description implies its behavioral specification. Using the
simplified (abstracted) description of the units we have
been able to greatly reduce the cost of deducing the behav-
ior of the processor instruction set from the hardware
implementation of the processor units. The proposed meth-
odology creates a new representation of the processor at
each iteration such that its complexity can be handled by
the theorem prover. This allowed us to make a proof of the
full instruction set of this processor.

1. Introduction

Hardware and software systems are growing everyday
in scale and functionality. This increase in complexity
increases the number of subtle errors. Moreover, some of
these errors may cause catastrophic loss of money, time, or
even in some cases human life. A major goal of software
engineering or system design is to enable developers to
construct systems that operate reliably despite this com-
plexity. One way of achieving this goal is by using formal
methods, which are mathematically-based languages,
techniques, and tools for specifying and verifying systems
[6]. Although formal methods do not a priori guarantee
correctness, they can greatly increase our understanding of
a system by revealing inconsistencies, ambiguities, and
incompleteness that might otherwise go undetected. Actu-
ally, there are many tools performing hardware verifica-

tion. For instance, the two main stream approaches are
model checking and theorem proving.

Model checking is a technique that relies on building a
finite model of a system and checking that a desired prop-
erty holds in that model [6]. Roughly speaking, the check
is performed as an exhaustive state space search which is
guaranteed to terminate since the model is finite. The tech-
nical challenge in model checking is in devising algo-
rithms and data structures that allow us to handle large
search spaces. Model checking has been used primarily in
hardware and protocol verification; the current trend is to
apply this technique to analyze specifications of software
systems.

Theorem proving is a technique where both the system
and its desired properties are expressed as formulas in
some mathematical logic [7]. This logic is given by a for-
mal system, which defines a set of axioms and a set of
inference rules. Theorem proving is the process of finding
a proof of a property from the axioms of the system. Steps
in the proof appeal to the axioms and rules, and possibly
derived definitions and intermediate lemmas. While
proofs can be constructed by hand, here, we focus only on
machine-assisted theorem proving. Theorem provers are
increasingly being used today in the mechanical verifica-
tion of safety-critical properties of hardware and software
designs.

In contrast to model checking, theorem proving can
deal with infinite state spaces [11]. It relies on techniques
like structural induction to prove over infinite domains.
Interactive theorem provers, by definition, require interac-
tion with a human, so the theorem proving process is
tedious and requires some level of expertise. In the process
of finding the proof, however, the human user often gains
invaluable insight into the system or the property being
proved

-002-

2. Related Work

Notable examples about using theorem proving are
described in the literature [9]. The most related to our
study is the Motorola CAP [5]. During 1992-1996 Brock
of Computational Logic, Inc., working in collaboration
with Motorola designers, developed an ACL2 [5] specifi-
cation of the entire Motorola Complex Arithmetic Proces-
sor (CAP), a microprocessor for digital signal processing
(DSP). The formal specification tracked the evolving
design and included a simpler non-pipelined view that was
proved equivalent on a certain class of programs.

In this paper, we describe the formal verification using
the theorem prover HOL (Higher Order Logic) of the Dig-
ital Signal Processor ADSP-2100 of Analog Devices. This
processor is a 16 bit fixed-point machine with three com-
putational units, two address generators and one program
sequencer. The verification of this processor is very simi-
lar in complexity to the Motorola CAP. However, to be
able to verify the full instruction set of this processor, we
defined an iterative methodology based on the particular
characteristics of the architecture of the processor and the
way the HOL theorem prover works efficiently.

The HOL system is a powerful and widely used com-
puter program for constructing formal specifications and
proofs in higher-order logic [3]. It is implemented using
the programming language ML (Meta Language) [10].
The strength of HOL comes from two principles propri-
eties. First backward (goal-directed) proof is supported,
and may be freely mixed with forward proof. Second,
adherence to definitional extension guarantees that the
consistency of the logic is not compromised [4].

This paper describes a methodology to use the HOL
theorem prover to formally verify a DSP. The classical
way to use HOL is to write specification and implementa-
tion descriptions in HOL and to prove that the latter
implies the former. What we present here is not just these
steps but also the way we construct the representation of
our system in each step. The specification task, for exam-
ple, is iterated several times until we get the optimized
specification that we can use in the verification phase. So
it is not just a matter of specifying the processor in the
classical way but the purpose is to solve the problem of
complexity of the processor.

We think that the assets of our methodology are:
1. The ability to treat the full instruction set of a commer-
cial DSP processor despite its design complexity.
2. The application of the proposed methodology to any
DSP processor since our approach is based principally on
the hierarchical aspect of this class of processors.
3. It opens the first step to define a semi-automated verifi-
cation approach using the HOL theorem proving system

by adapting the proofs that we made while studying the
ADSP-2100 family to other processors.

The rest of the paper is structured as following: In Sec-
tion 2, we describe the ADSP-2100 processor. In Section
3, we define the methodology that we used in the verifica-
tion process. In Section 4, we present the specification of
the processor and we provide the steps of the verification
of its instruction set. We conclude the paper in Section 5.

3. The ADSP-2100 Processor

3.1. Architecture of the ADSP-2100 Processor

The ADSP-2100 family is a collection of programma-
ble single-chip microprocessors that share a common base
architecture (Figure 1) optimized for digital signal pro-
cessing (DSP) and other high-speed numeric processing
applications [1]. The various family processors differ prin-
cipally in the type of on-chip peripherals they add to the
base architecture. On-chip memory, a timer, serial port(s),
and parallel ports are available in different members of the
family. In addition, the ADSP-21msp58/59 processors
include an on-chip analog interface for voiceband signal
conversion [2].

The principle components of the processor are:
Computational Units—Every processor in the ADSP-

2100 family contains three independent, full-function
computational units: an arithmetic/logic unit (ALU), a
multiplier/accumulator (MAC) and a barrel shifter. The
computational units process 16-bit data directly and also
provide hardware support for multiprecision computa-
tions.

Data Address Generators & Program Sequencer—
Two dedicated address generators and a program
sequencer supply addresses for on-chip or external mem-
ory access. The sequencer supports single-cycle condi-
tional branching and executes program loops with zero
overhead. Dual data address generators allow the proces-
sor to generate simultaneous addresses for dual operand
fetches. Together the sequencer and data address genera-
tors keep the computational units continuously working,
maximizing throughput.

Memory—The ADSP-2100 family uses a modified
Harvard architecture in which data memory stores data,
and program memory stores both instructions and data. All
ADSP-2100 family processors contain on-chip RAM that
comprises a portion of the program memory space and
data memory space. The speed of the on-chip memory
allows the processor to fetch two operands (one from data
memory and one from program memory) and an instruc-
tion (from program memory) in a single cycle.

-003-

Figure 1. ADSP 2100 Processor Architecture [2].

The processors have five internal buses. The program
memory address (PMA) and data memory address (DMA)
buses are used internally for the addresses associated with
program and data memory. The program memory data
(PMD) and data memory data (DMD) buses are used for
the data associated with the memory spaces. The buses are
multiplexed into a single external address bus and a single
external data bus; the BMS, DMS and PMS signals select
the different address spaces. The R bus transfers interme-
diate results directly between the various computational
units.

3.2. Instruction Set of the ADSP-2100 Processor

The ADSP-2100 family shares a single unified instruc-
tion set designed for upward compatibility with higher-
integration devices. For instance, the ADSP-2171, ADSP-
2181, and ADSP-21msp58/59 processors have a number
of additional and enhanced instructions [11].

The ADSP-2100 family instruction set provides flexi-
ble data moves. Multifunction instructions combine one or
more data moves with a computation. Every instruction
can be executed in a single processor cycle. The assembly
language uses an algebraic syntax for readability and ease
of coding. A comprehensive set of software and hardware
tools supports program development [8].

4. Iterative Verification Methodology

The classical way of using HOL in the verification of a
processor is to perform the following steps [9]:
1. Write a description of the behavioral of the processor
(according to the HOL syntax).
2. Write a description of the implementation of the proces-
sor (according to the HOL syntax).
3. Make the proof (using HOL) of the implication:

“Processor Implementation
 ⇒ Processor Specification”.
This classical way of verifying processors cannot be

used to verify a DSP processor like the ADSP-2100. In
fact, the complexity of such a DSP processor in terms of
number of variables, variable types and the variety of
instructions makes it impossible the use of this direct way
[6].

We propose to define a verification methodology
which will satisfy certain characteristics to take advan-
tages from the processor architecture and to prepare the
proof goal in the simplest way to the HOL system.

The methodology that we defined is described in Fig-
ure 2 including four principle steps. First, we simplify the
processor units’ descriptions. Next, we construct the
description of the implementation of the processor. Then,
we write the processor specification. Finally, we make the
proof of the goal “Processor Implementation ⇒ Processor
Specification” for every instruction.

CLKIN

Program Memory Address

Program Memory Data

TRAP

PROGRAM
MEMORY 24

14

RESET HALT

Clock
Data Address
Genrator #1

Data Address
Genrator #1

Program
Sequencer

ALU

Input Regs

Output Regs

MAC

Input Regs

Output Regs

Shifter

Input Regs

Output Regs

PMA BUS

DMA BUS

PMD BUS

DMD BUS

R BUS16

16

14

24

14
CLKOUT

Data Memory Address

Data Memory Data

IRQ BR BG

14

16

DATA
MEMORY
Data

ADDR

PERIPHER
ALS

Data

ADDR

-004-

Figure 2. Progressive verification methodology.

4.1. Simplification of the Processor Units

Before writing the full description of the implementa-
tion of the processor, we have to simplify the units imple-
mentations. This step allows the minimization of the
number of variables and parameters used in the descrip-
tion of the processor. This is done by eliminating the inter-
nal signals in each unit.

We use an iterative method in simplifying the units
descriptions. We start by the basic component in the unit.
Then we add the components of the unit one by one and
we simplify the new representation by eliminating the new
internal signals. This step is repeated until the full unit is
constructed. This can be seen as the re-assembling of the
unit from its components.

The unit simplification task is an obligatory task if we
want to succeed in the verification of the processor. In
fact, in the literature, there is no work performing the of
the instruction set of a DSP commercial processor. Even
the work in [5] has just made the specification of the pro-
cessor. The cause of the difficulty of that task comes from
the size of the formal specifications. In fact, the formal
description of the implementation of any commercial DSP
processor (in ML for our case) takes more than thousand
pages. So, just writing it will be very complex. What to
say then about manipulating such a long formal descrip-
tion using a theorem prover while constructing complex
proofs! The more reductions we are able to perform, the

higher chances to achieve our verification goal of the full
instruction set of the processor.

4.2. Stepwise Processor Architecture Specification

To construct the instruction dependent specification of
the implementation of the processor, we use both the spec-
ification of the processor units, defined in the previous
step, and a classification of the instruction set.

The instruction set is classified into different classes
[12]. Each class is defined by the used units. For example,
instructions related to the ALU form a class. Using this
classification, we will represent for each class a specific
representation of the processor such that only concerned
units are integrated. In fact, eliminating units that are not
participating in the instruction will simplify the complex-
ity of the processor representation without modifying its
behavior.

An important point to take care of while construction
the units specification is the order in which components of
a particular unit are added one by one. The purpose, in the
unit specification procedure, is to eliminate all the internal
signals. However, a random order will give a more com-
plex representation of the system making it more difficult
the verification task.

Begin

Writing The Processor Implementation (Instruction Dependent Specification)

Instruction
Class

End

Basic ALU Unit
Specification

NO

ALU
Fully Specified

?

Yes

Instruction Set Classification

Wrinting the Processor Behavioral
Specification

Make The Proof: "For Every Instruction : Processor Implementation ⇒ Processor Behavior"

Make the proof :
"Unit Specification

 ⇒ Unit Implementation"

Basic MAC Unit
specification

NO

MAC
Fully Specified

?

Yes

Make the proof :
"Unit Specification

⇒ Unit Implementation"

Basic Shifter Unit
specification

NO

Shifter
 Fully

Specified ?

Yes

Make the proof :
"Unit Specification

 ⇒ Unit Implementation"

Basic DAG Unit
specification

NO

DAG
Fully Specified

?

Yes

Make the proof :
"Unit Specification

 ⇒ Unit Implementation"

Basic Prog Seq
Unit specification

NO

Prog. Seq.
 Fully

Specified ?

Yes

Make the proof :
"Unit Specification

 ⇒ Unit Implementation"

Add Components To the
last Unit

Add Components To the
last Unit

Add Components To the
last Unit

Add Components To the
last Unit

Add Components To the
last Unit

Re-write the unit
Specification

Re-write the unit
Implementation

Re-write the unit
Specification

Re-write the unit
Implementation

Re-write the unit
Specification

Re-write the unit
Implementation

Re-write the unit
Specification

Re-write the unit
Implementation

Re-write the unit
Specification

Re-write the unit
Implementation

-005-

4.3. Verification of the Instruction Set

The first step in the instruction set verification is to
write the specification of the behavior (the programmer
level) of the processor for each instruction according to
the instruction set classification discussed in the previous
paragraph. Then, it will be possible to construct the goal
“Processor Implementation ⇒ Processor Behavior”. This
time the proof of this goal will be relatively simple since
the two descriptions are close in terms of level of abstrac-
tion. But, even in this step, we think that performing a pro-
gressive proof is better than working directly in the goal as
it is.

The instruction dependent representation of the proces-
sor can be seen as a re-writing of both descriptions of the
Implementation and the Behavior of the processor accord-
ing to the verified instruction. This task can be automated
since it is just a matter of connecting units concerned by
the instruction. This will require the definition of a table
representing the mapping between the instructions and
their related units. In this work we made this task manu-
ally. However, in a future work, we plan to define a rigor-
ous mathematical context for the automation of that
procedure.

Dealing with Complexity

For the users of HOL the proposed method can be con-
sidered as a natural way to solve the problem of complex-
ity of the system. Nevertheless, we can say that it is very
simple to guess that the correct way to verify a complex
system is to divide it into a collection of small subsystems,
but is it always possible to do that division? This method
requires a very good knowledge about the system to be
verified and about the theorem prover. In fact, we did not
need just to reduce the system complexity but also to
reduce it in the way that the theorem prover system can
handle it

5. ADSP-2100 Specification and Verification

5.1. Specification of the Units

As defined in the methodology, the unit specification is
performed in an iterative way. Figure 3 presents the con-
struction of the specification of the ALU unit. As
described in this figure, we start with the basic unit of the
ALU, and then we progressively add the components of
this unit (registers, multiplexers, bus connections,) until
we construct the whole ALU.

In each step, we perform two actions:

1. Write the description of the implementation of the con-
structed unit and the specification of the same constructed
unit.
2. Make the proof of the goal:

“Unit Implementation ⇒ Unit Specification”.
The purpose of all these steps is to write a representa-

tion of the unit which is close to its behavior.

Experimental Results

The number of iterations and the CPU time per itera-
tion in the construction of the descriptions of the units are
summarized in Table 1. The number of iterations refers to
the number of steps performed until constructing the spec-
ification of the full unit. The average CPU time is the time
taken by the proof of the goal: “Processor Implementation
Unit ⇒ Processor Specification Unit”. The experiments
were done on a Pentium II PC with 64 MB memory.

The number of iterations depends on the complexity of
the unit. The average CPU time illustrates the effect of our
methodology in constructing the specification of the units.
It can be noticed from this table that all the proofs took a
short time (few seconds) which highlights the effect of our
methodology in simplifying the unit specifications.

Table 1. Iterative Unit Specification.

5.2. Instruction Set Classification

The second step in simplifying the verification is to
classify the instructions of the ADSP-2100 processor. In
fact, these instructions can be classified into subsets corre-
sponding to the concerned unit or to the performed opera-
tion. We made the following classification:

Class1: Memory access instructions: This class con-
tains the instructions that have access to external mem-
ory without doing any other instruction.
Class2: Registers manipulation instructions: These
instructions concern the manipulation of the data regis-
ters (registers of ALU, MAC and Shifter units) and the
non-data registers (state registers, addresses, etc.).

Unit Number of Iterations CPU time

ALU 7 0.5 s/iteration

MAC 9 2.2 s/iteration

Shifter 11 3.7 s/iteration

DAG 8 3.1 s/iteration

Program Seq. 18 4.8 s/iteration

-006-

Figure 3. Iterative construction of the ALU unit specification.

Iteration 4

Iteration 3

Iteration 2

Iteration 1

Implementation Specification

ALU

X Y

R

CI

AZ
AN
AC

AV
AS
AQ

ALU

R

AZ
AN
AC

AV
AS
AQ

CI

ALU

X Y

R

CI

AZ
AN
AC

AV
AS
AQ

MUX MUX

ALU

R

AZ
AN
AC

AV
AS
AQ

CI

AF
REGISTER

MUX

ALU

AZ
AN
AC

AV
AS
AQ

CI

A
F

R
E

G
IS

TE
R

AZ
AN
AC

AV
AS
AQ

CIALU
A

F
R

E
G

IS
T

E
R

AX
REGISTER

AY
REGISTER

AR
REGISTER

ALU

AZ
AN
AC

AV
AS
AQ

CI

A
F

R
E

G
IS

TE
R

AX
REGISTER

AY
REGISTER

AR
REGISTER

ALU
AZ
AN
AC

AV
AS
AQ

CI

DMD BUS

PMD BUS

R - BUS

A
F

R
E

G
IS

T
E

R

AX
REGISTER

AY
REGISTER

AR
REGISTER

AZ
AN
AC

AV
AS
AQ

CI

MUX

DMD BUS

PMD BUS

R - BUS

ALU

A
F

R
E

G
IS

T
E

R

AX
REGISTER

AY
REGISTER

AR
REGISTER

-007-

Class3: ALU instructions: This set of instructions con-
cerns the operations of the ALU with access to the pro-
gram and data memories or the inter-registers transfer.
Class4: MAC instructions: This set of instructions con-
cerns the operations of the MAC with access to the
program and data memories or the inter-registers trans-
fer.
Class5: Shifter instructions: This set of instructions
concerns the operations of the Shifter with access to
the program and data memories or the inter-registers
transfer.

5.3. Verification of the Complete Processor

For every class of instruction we wrote a description of
the implementation of the processor. In this description we
integrated only the units or components (buses, memo-
ries,) related to the instruction. We defined an instruction
dependent description of the processor to simplify its rep-
resentation as much as possible. In fact, integrating the
units that are not related to the instruction increases the
complexity of the problem without changing the behavior
of the processor.

Goal Division

Despite the simplification of the units specifications,
mentioned in Section 4.1, the processor description is still
complex because of the big number of parameters. To deal
with this problem, we performed the instruction set verifi-
cation in two steps:
1. Defining an instruction dependant representation of the
processor: This is a simplified representation of the pro-
cessor containing only the components involved in the
instruction.
2. Making the global proof: Using the proofs of the last
step, it is relatively simple to consider all the full processor
description in a global proof.

The Idea of goal division is summarized in Figure 4.

5.4. Experimental Results

Table 2 gives the average CPU times of the proofs for
each class. These results prove the capability of our meth-
odology to perform the verification of a DSP chip using
the HOL theorem prover. In fact, despite the complexity of
the studied DSP processor, the total time taken by all the
proofs did not exceed few minutes (if we consider the full
instruction set).

Figure 4. Goal division procedure.

Table 2. Instruction Set Verification.

6. Conclusions

In this paper, we investigated the formal verification
using the HOL theorem prover of the DSP ADSP-2100
processor. The main contributions of this work are: (1)
successful use of an iterative proof by construction
approach in the HOL theorem prover environment; (2) this
is the first time the full instruction set of a DSP commer-
cial chip is verified using a theorem prover; finally, (3) the
verification of any other DSP processor will be a matter of

Instruction Class CPU Times

Class1 2.5 s

Class2 2.8 s

Class3 2.1 s

Class4 4.1 s

Class5 3.8 s

“Processor Implementation ⇒ Processor Specification”

Main Goal:

Goal Division:
For Every Instruction:

“Instruction Dependent Processor Implementation
 ⇒ Instruction Dependent Processor Specification”

Decode The Instruction Class

Instruction
Depenedent Processor

Implementation

Instruction Depenedent
Processor

Specification

Construct the goal

Make The Proof

Begin

Instruction

Last Instruction ?

End
YES

Next
Instruction

NO

-008-

adapting and reusing the proofs that we made according to
the methodology that we defined in this paper.

We did not present an automatic method but we think
that our methodology can be automated. While using any
higher-order theorem prover we are under the obligation to
guide the proving system to complete the proof. Neverthe-
less, when dealing with simple goals and for a class of sys-
tems (DSP processors for example), we think it is possible
to define some algorithms that try to make the proofs auto-
matically. This is will be one of our principal future work
in continuation to the one presented in this paper.

By using HOL to verify a complex DSP processor we
confirmed the strength of this tool to support the verifica-
tion of complex systems. However, to verify large circuits
it is a must to define a methodology which is strongly
dependent on the circuit architecture. Hence, we think it
would be better to integrate the verification within the
design steps.

Integrating verification in the design flow requires that
system developers would all be trained sufficiently well to
use formal methods or tools. Ideally, they would routinely
use the mathematics underlying the notation of a formal
specification language as simply as means of communicat-
ing ideas to others on their team or of documenting their
own design decisions. They would also routinely use tools
like model and proof checkers with as much ease as they
use compilers. To make this possible, tools have to inte-
grate the design flow with verification using a problem-
dependant methodology and accessible notations to non-
experts.

7. References

[1] Applications Engineering Staff of Analog Devices, DSP
Division. Digital Signal Processing Applications Using the
ADSP-2100 Family. Prentice Hall, Englewood Cliffs, NJ
07632, 1996.

[2] Applications Engineering Staff of Analog Devices, DSP
Division. Data sheet of the ADSP-2100 Family DSP -
Microcomputers - ADSP-21xx, 1996.

[3] P. Andrews. An Introduction to Higher Order Logic: To
Truth through Proof. Academic Press, New York, 1986.

[4] G. Birtwistle, B. Graham, and S.- K. Chin: new_ theory
‘HOL‘; An Introduction to Hardware Verification in Higher
Order Logic, August 1994.

[5] B. Brock, M. Kauffmann and J.S. Moore, ACL2 Theorems
about Commercial Microprocessors, Formal Methods in
Computer-Aided Design, Lecture Notes in Computer Sci-
ence 1166, Springer-Verlag, November 1996, pp. 275-293.

[6] E. M. Clarke and J. M. Wing. Formal Methods: State of the
Art and Future Directions. ACM Computing Surveys,
December 1996.

[7] M. Gordon, and T. Melham, Introduction to HOL: A theo-
rem Proving Environment for Higher-Order Logic, Cam-
bridge University Press: Cambridge, UK, 1993.

[8] R. J. Higgins, Digital Signal Processing in VLSI. Engle-
wood Cliffs, NJ: Prentice-Hall, 1990.

[9] T.F. Melham, Higher Order Logic and Hardware Verifica-
tion, Cambridge Tracts in Theoretical Computer Science 31,
Cambridge University Press, 1993.

[10] R. Milner, M. Tofte, R. Harper and D. MacQueen. The def-
inition of Standard ML. The MIT Press, Cambridge, Massa-
chusetts and London, England, 1997.

[11] W. S. Steven, The Scientist and Engineer's Guide to Digital
Signal Processing, Second Edition. California Technical
Publishing, 1999.

[12] Tahar and R. Kumar: A Practical Methodology for the For-
mal Verification of RISC Processors; Formal Methods in
Systems Design, Kluwer Academic Publishers, 13(2): 159-
225, September 1998

