
A Communication Model Based on an n-Dimensional Torus Architecture Using
Deadlock-Free Wormhole Routing

Philip Hölzenspies, Erik Schepers, Wouter Bach, Mischa Jonker, Bart Sikkes,
Gerard Smit and Paul Havinga

Departement of Computer Science of the University of Twente
P.O. Box 217, 7500 AE Enschede, The Netherlands

{p.k.f.holzenspies, e.m.schepers, w.f.bach, m.d.s.x.jonker, b.sikkes}@student.utwente.nl
{smit,havinga}@cs.utwente.nl

Abstract

Routing on a two-dimensional torus architecture by
means of the wormhole routing algorithm is introduced
and extended to an n-dimensional torus model. To pre-
vent blocking deadlocks caused by this algorithm, a multi-
ple virtual channel solution is introduced. An implementa-
tion of virtual channels is introduced that allows channels
with higher labels to pre-empt ‘lower’ channels. This al-
gorithm is tested with a simplified model of a HiperLAN/2
receiver. The model proves to be capable of running this
application on the Chameleon [1] architecture.

1. Introduction

With the growth of the market for hand-held devices,
previously second rate criteria gain priority. Energy con-
sumption and heat dissipation become vital parameters in
hardware design.

ASICs meet these criteria best of all, but their inflexi-
ble nature, long time-to-market and huge development costs
makes them a less-than-ideal alternative. On the other
end of the flexibility spectrum lies the alternative of soft-
ware implementation, which would require Instruction-Set-
Processors (ISPs). ISPs, however, have a bulky energy con-
sumption and fail to meet processing power requirements
for many (in particular streaming) applications [2].

The golden mean between flexibility, processing power
and energy consumption can be found in reconfigurable
architecture. As some of the tasks (mostly the control-
flow oriented ones) are run on an ISP, the remainder of
tasks is loaded into a dynamically reconfigurable architec-
ture (FPFA) [3].

When a task is loaded onto an available FPFA, or a run-
ning task is pre-empted, the FPFA is dynamically reconfig-

ured for the new task. Because multiple independent tasks
run on a torus of FPFAs simultaneously and due to the dy-
namic allocation of said tasks, routing can not be imple-
mented in the application code; it must be fixed for the ar-
chitecture. Hence, reconfigurable architectures call for a
generic routing algorithm, fit for streaming algorithms and
independent1 of allocation at run-time.

The current research project in the field of reconfigurable
computing at the University of Twente is Chameleon [1].
Chameleon is a System-On-a-Chip (SOC) [4], which, in its
final implementation, is to include a StrongARM processor,
an FPGA and somewhere around two hundred FPFAs. Typ-
ical target applications include HiperLAN [5] and Turbo en-
and decoding [6]. Chameleon will be used as a test case for
the routing strategy suggested in this paper.

A Chameleon application consists of different func-
tions. In the Chameleon architecture these functions will
be mapped on tiles resulting in a dataflow from tile to tile.
When several applications are running on the architecture
they could get in each other’s way. If the allocation of the
functions is done at random, this will lead to inefficiencies
and deadlocks. To prevent these deadlocks, a routing al-
gorithm has to be designed so that all functions can send
data when they have to. This routing algorithm must pro-
vide functions with transparent means of communication,
i.e. independent functions remain unaware of each other.

2. Theory: Pre-emptive Wormhole Routing on
a Torus

2.1. The Basics in Two Dimensions

As one of the possible communication topologies a two-
dimensional torus with unidirectional channels (Fig. 1) is

1As far as correctness is concerned. Optimization might still require
the allocation algorithm to be dependent of the routing algorithm.

Proceedings of the Euromicro Symposium on Digital System Design (DSD’03)
0-7695-2003-0/03 $17.00 © 2003 IEEE

Tile Tile Tile

Tile

Tile TileTile

Tile Tile

Figure 1. Two-dimensional torus

suggested. The unidirectional constraint is required for, but
doesn’t suffice to guarantee, dead-lock free routing. The
channels depicted here can be implemented as buses. It will
become evident later on, that a means of control in the op-
posite direction is required to provide blocking support.

2.2. Wormhole routing

Wormhole routing is actually not a routing, but a switch-
ing technique. The following citation from [7, p. 5] de-
scribes the basic principle quite clearly:

“Wormhole routing uses a cut-through approach to switch-
ing. A packet is divided into a number of flits (flow con-
trol digits) for transmission. The header flit (or flits) gov-
erns the route. As the header advances along the speci-
fied route, the remaining flits follow in a pipeline fashion.
If the header flit encounters a channel already in use, it
is blocked until the channel becomes available. Rather
than buffering the remaining flits by removing them from
the network channels, as in virtual cut-through, the flow
within the network blocks the trailing flits and they remain
in flit buffers along the established route.”

2.3. Routing algorithm

A minimal, deterministic routing algorithm for meshes
known as XY-routing [7] is adapted to work deadlock free on
a two-dimensional torus2. In the XY-routing algorithm a flit

2This will be expanded to a trivial amount of dimensions later on.

stream is pumped to the right, until it reaches the destination
column. Next, it is pumped upwards to the destination row.

Using this algorithm, the stream can make - at most - one
turn: from a horizontal direction, to a vertical direction. In
more general terms, the stream switches its traveling dimen-
sion only once, i.e. on a two-dimensional torus. Intuitively,
we can expand this model to n dimensions, where a stream
may only switch from dimension i to dimension i+1 when
the proper ith coordinate is reached, making - at most - n−1
turns. Since we have unidirectional channels, this method
guarantees a shortest-path traversal.

In its nature the XY-routing algorithm is not deadlock
free, not even when only considering one dimension. Dead-
locks occur when flit stream ϕ is blocked by flit stream ψ,
while ψ is destined for one of the processors already pump-
ing flit stream ϕ. An example to clarify (Fig. 2):

Tile 1 Tile 2 Tile 3 Tile 4

Figure 2. Deadlock situation

Consider a one-dimensional unidirectional torus (i.e. a
unidirectional ring) with four tiles. Now, suppose the fol-
lowing conditions hold:

• Tile 1 wants to send a flit stream to tile 4

• Tile 3 wants to send a flit stream to tile 2

• Tiles 1 and 3 start transmission simultaneously

The stream from tile 1 will not be able to proceed past tile
2 and the stream from tile 3 won’t go any further then tile 4
because tiles 3 and 1 respectively are unavailable for stream
transmission from their neighbours. Hence, deadlock oc-
curs. The cause of the problem lies with the loop in the
architecture. To physically eliminate the loop (i.e. to use a
mesh) is not an option, since the tiles are connected by uni-
directional channels. The solution to this problem is the use
of virtual channels [8], whereby a virtual spiral is created
(Fig. 3).

Tile 1 Tile 2 Tile 3 Tile 4

1

2

1 1

2 2

Figure 3. Virtual channels on a one-
dimensional torus

Proceedings of the Euromicro Symposium on Digital System Design (DSD’03)
0-7695-2003-0/03 $17.00 © 2003 IEEE

2.3.1. Virtual Channels

Multiple virtual channels are emulated on the single physi-
cal channel between two tiles. On a one-dimensional torus
two virtual channels need to be introduced (labeled 1 and 2).
When initiated, a flit stream will always be pumped through
channel 1 and only when it crosses the ‘edge’ of the torus
(i.e. when it started at a tile, other than 0 and it arrives at
the receiving end of tile 0) will it shift to channel 2.

Extension of the strategy to n dimensions requires the
introduction of new virtual channels. Another example to
illustrate:

Figure 4. Two-dimensional torus

Consider a two-dimensional torus with two virtual chan-
nels in both directions (Fig. 4). When stream ϕ, being
pumped on channel 1, turns to the second dimension, it will
also be assigned to channel 1. Now stream ψ, being pumped
on channel 2, catches up with ϕ and turns at the same tile. It
can’t be assigned to channel 1, since it is already occupied.
If it would be assigned to channel 2, a stream starting at a
higher tile that traverses the torus’ edge would be blocked
by ψ and might, itself, block ψ, hence causing a deadlock.
The problem can be solved by adding a third channel in the
second dimension only (Fig. 5).

The example above can be generalized for an n-
dimensional torus. When a stream ϕ turns from dimension
i−1 to dimension i, it preserves its channel. Since a stream
ψ traversing the edge of dimension i must be able to pass
stream ϕ, there must always be a channel with a higher la-
bel than the channel through which ϕ is being pumped. Say
dimension i − 1 had j channels, i must have at least j + 1.
The proof is by induction.

The proof of the deadlock-free property will be formal-
ized here:

Lemma 2.1 No cycles in the dependency graph ⇔
deadlock-free

Transmission path block

Indicates source and

destination of stream

a. b. c. d.

a. Non-blocked transmission 3 channels

b. Temporarily blocked transmission 2 channels

c. Temporarily blocked transmission 3 channels

d. Locked up transmission 2 channels

Figure 5. Third channel prevents deadlock

Theorem 2.2 On an n-dimensional torus, where in every
dimension nodes can only route in one direction, n+1 chan-
nels are required to guarantee deadlock-free routing.

Proof By induction in 3 steps:

1. In a conventional 1-dimensional torus, the dependancy
graph contains a cycle. An extra channel is added,
while stated that this second channel may only be used
when a stream goes over the edge. The cycle is then
eliminated and the network is deadlock-free according
to lemma 2.1. So, for a 1-dimensional torus, 2 chan-
nels are sufficient for the network to be deadlock-free.

2. Assume that n channels are required to eliminate all
cycles in the dependancy graph for dimension 1 to n−
1.

3. When using n channels, cycles in the dependency
graph can only be introduced in dimension n and
higher dimensions. In dimension n there are n chan-
nels available. By adding another channel to this di-
mension, it can be made free of cycles as well. So
for an n-dimensional torus, using the stated routing al-
gorithm, n + 1 channels are enough to eliminate cy-
cles in the dependancy graph, and thus guaranteeing
deadlock-free routing.

2.3.2. Pre-emption

Multiplexing the virtual channels in time is inadvisable; in
the case of average to good allocations, only one or (on large
n networks) a few channels will be used simultaneously.

Proceedings of the Euromicro Symposium on Digital System Design (DSD’03)
0-7695-2003-0/03 $17.00 © 2003 IEEE

All time-slots for unused channels will be wasted. A good
alternative would be to use channel pre-emption.

When a stream on channel i runs into a tile that is pump-
ing a stream on channel i − 1, it will pre-empt that stream
and continue right on through. Only after it is finished, the
stream on channel i − 1 will continue. Pre-emption can oc-
cur from any direction, except from the processor on the tile
(to lower complexity).

The problem with this method, is that it introduces a new
chance of deadlock. Streams can pre-empt each other in
a circular fashion, therefor cutting eachothers data supply
lines, causing neither to finish. This deadlock (which is
significantly different from the blocking deadlock in plain
wormhole routing) can be prevented by the allocation algo-
rithm that allocates nodes to processes.

3. Practice: Pre-emption capable routers

A possible pseudo-implementation will be suggested to
illustrate the problems and solutions in the design of routers
for a two dimensional torus.

3.1. Wiring

The routing algorithm described above is used for com-
munication between tiles and for the communication on a
tile; between the router and the processor. Figure 6 shows
the wiring required on a tile. It shows the buses (marked
with a B) and control lines (marked with a C) to and from
neighbouring tiles. The buses require, at least, in this im-
plementation, a width of W + 3, where W is the word size
of the architecture. The three extra bits are used for the bus-
control. The control lines can suffice with just a single line.
This is explained in the section about the protocol later on.

TileControl
Processor

Tile

W

NorthCNorthB

NorthCNorthB

TileControlRD2

TileControlRD1

TileControlRD0

Data

TileControlC
ProcessorRD

SouthCSouthB

SouthCSouthB

WestB

WestC

WestB

WestC

EastB

EastC

EastB

EastC

W+3W+3

W+3

W+3

Figure 6. Wiring on a tile

The router and processor are connected through a bi-
directional bus, because a double bus is rather expensive.

The control signals of the bus can not be implemented bi-
directionally, therefore the router-processor bus is only W
lines wide and the required control information is imple-
mented separately as mono-directional lines.

3.2. Protocol

A flit stream consists of two header flits and a number of
data flits. The first header flit contains the target row and
column indexes, the second the total number of data flits
still to come (Fig. 7).

dn d2 d1 len col/row

header

data

Figure 7. Flit stream

The data bus, as stated earlier, is 3 bits wider than the
word size of the architecture. These are required to provide
signaling capability. The signals defined on the data bus are
shown in Tab. 1.

Signal C2 C1 C0

Rq1 0 0 1
Rq2 0 1 0
Rq3 0 1 1
Dat 1 - -

Table 1. Bus layout

Note that when all control lines are 0 nothing is coming
in. This is an important detail, because the router should
(when expecting data) not keep on decrementing its flit
counter if no data is coming in. This may occur when a
tile a few tiles down the stream is pre-empted. They will
not pass on any signals and hence no signal, means that pre-
emption is going on somewhere.

The reason that the processor-router connection is dif-
ferent from the router-router connection, is that these con-
trol signals would collide when router and processor request
each other’s send permissions at the same time, or when the
processor is pumping a stream and a pre-empting stream
targeting this processor comes in at the router. This prob-
lem can be solved by letting the router use all the normal
in-bus signal lines to the processor and giving the processor
its own control line. Note that the processor has no say in
which channel it wants to send on, so a single line suffices;
the first signal signifies a request to send and every next sig-
nal signifies there’s data on the bus. Figure 8 suggests a
possible guard to protect the bi-directional bus.

Proceedings of the Euromicro Symposium on Digital System Design (DSD’03)
0-7695-2003-0/03 $17.00 © 2003 IEEE

WORD

READ

WRITE

Request/Data

G
ra

n
t/B

lo
ck/U

n
b

lock

R
eq

u
e

st/D
a

ta

Processor

Controller

Figure 8. Bus guard

3.3. Router States

Figure 9 describes how higher priority channels can pre-
empt lower priority channels. It is clearly visible that a Re-
quest for channel three is possible in any of the states that
do not already require pumping of channel three and will
pre-empt said other state in every situation, where channel
two requests will only interrupt channel one states or the
idle state. The state diagram described here is nested; for
every (non-idle) state in Fig. 9 there is a pumping process.
This class of processes is depicted in Fig. 10. The DONE
transitions are used when the lower layer state diagram (i.e.
the pumping process executed by the state) is finished.

0

1 2 3

5

6

74

Done

Done
Done

Done

Done

Done

Done

Rq3
Rq2

Rq1

Rq3

Rq2

Rq3Rq3

Figure 9. Pre-emption state diagram

The labels marking the transitions describe the input of
the router. In Fig. 9 these inputs consist of Request signals.
These signals originate from either the tiles on the west or
south, or from the processor within the tile. The signals in
the lower layer state machine consist of the incoming data
bus and the incoming control line, respectively.

Block
<B, ->

Recover
<U, d>

Hand-

shake
<G,
Rq_i>

<d,->
cnt--

Done

Pump
<-, d>

cnt==0

<d,->
cnt:=d

<d,->
cnt--

<-,U>
cnt!=0

<d,G>
cnt:=d

<d,B>
cnt-- <-,U>

cnt==0

Figure 10. Pump state diagram

Every state in the Fig. 10 also has output, which is de-
picted as labels inside the states. These labels consist of, at
first, the outgoing3 control line and after that the outgoing
data bus.

The state machine in Fig. 10 starts with the handshake
between the router and the tile or processor that sent the re-
quest whereby the router ended up in this state. Therefore,
the output of this state to the requesting node is the Grant
signal. The request itself is also forwarded directly to the
next router or processor in the path, possibly with an incre-
mented channel label, if traversing an edge.

If the receiving end of said request responds with a Grant
signal on the next clock cycle, pumping of the stream can
begin4. If not, the router is blocked. Pumping is done in the
Pump state, decrementing the flit counter for every incom-
ing data flit, until either a Block signal is received or the flit
counter reaches 0.

In the event that a Block signal is received, the router
goes into the Block state, where it sends a Block signal to
the sending router or processor, until an Unblock signal is
received. When an Unblock signal is received, there are two
possibilities: the stream either has more than one flit to go,
or it’s down to its last flit. When the stream is down to its
last flit, no further recovery is required. In case that there
is more data left, the tile (or processor) that is sending data
to the router has to be given the Unblock signal. This is be-
cause the tile (or processor) is still blocked at that moment.
The unblocking of the previous tile is done in the Recover
state. After unblocking the previous tile, we can resume
pumping.

3To the sending entity, be it neighbour or processor.
4Note that the first flit received after the request is the length of the

remainder of the stream, so the flit counter is initialized to it

Proceedings of the Euromicro Symposium on Digital System Design (DSD’03)
0-7695-2003-0/03 $17.00 © 2003 IEEE

4. Simulation

4.1. Simulation Setup

To test the routing algorithm a simplified model of a
HiperLAN/2 receiver has been used, largely due to the fact
that an almost complete implementation of this receiver has
been made for the Chameleon chip. Therefore, the amount
of clock cycles the used functions would take are known. It
was also clear that each function would fit on a single tile,
which greatly simplifies the simulation model.

The simulation abstracts away from the actual imple-
mentation of the receiver functions. The HiperLAN/2 re-
ceiver essentially consists of 6 functions. Other parts were
ignored because of their lesser relevance to inter-tile com-
munication.

This model of the HiperLAN/2 receiver was imple-
mented in the OMNeT++ [9] environment that was used
for simulating the described routing algorithm. OMNeT++
is a discrete event simulation system based on the C++ pro-
gramming language. A p by p torus of tiles was imple-
mented, where each tile contained a router (a.k.a. tile con-
troller) and a processor. During simulation packets were
sent according to how they would be in an implemented
HiperLAN/2 receiver. Each processor waited as many clock
cycles as it would have taken to calculate its results in the
receiver.

The simulation was run for a number of allocation, in-
cluding best-case, worst-case and random scenarios.

4.2. Results

The initial simulation - without pre-emption - showed
that the algorithm is able to route the communication as de-
scribed in the theory. No blocking deadlocks occured and
every flit of data eventually reached its destination. Various
cases that did result in a deadlock with normal XY based
wormhole routing were fed to the simulator. All of these
simulations did result in succesful transmission of all the
streams. However, the necessity of testing remains as no
specific statistical results that could be used to determine
the efficiency of this communication scheme, are yet avail-
able. When pre-emption was introduced, a new class of
deadlocks was found. These deadlocks should be prevented
when scheduling.

5. Conclusions

By combining existing communication schemes, such as
wormhole routing and XY-routing, a new communication
mechanism is introduced that can be used for deadlock free
transmission between tiles in an n-dimensional torus ar-
chitecture. A specific implementation has been given for

the two-dimensional variant. While the algorithm is tested
against various deadlock-prone situations and proved to be
correct, more simulations still need to be run. The reason
for this is that performance figures of this model are yet to
be determined.

The implementation of the virtual channels as suggested
is flawed, in that it might re-introduce deadlocks. Time-
multiplexing isn’t an acceptable alternative because of the
cost factor.

6. Future Work

More metrics must be gathered to put a number on the
algorithm’s performancs. This paper does not compare the
algorithm (performance wise) with other algorithms cur-
rently deployed in the field. Such a comparison is vital for
feasability testing.

Research could be done in better routing techniques.
One change lies in using other techniques to prevent the
deadlocking. A way different from the way channels are
used now is channel promotion. Channels that have been
waiting longer then get a higher priority over channels that
have not been waiting that long.

An allocation algorithm that is aware of this communi-
cation algorithm is likely to be a good investment for fu-
ture implementations. This algorithm should work towards
preventing pre-emption, since it is starvation and deadlock
prone, if any realtime characteristics need to be guaranteed.

Finally, it should be researched whether the sending fre-
quency and stream sizes of an application can be known at
allocation time. This could enable realtime schedulers to be
used to streamline communication. To see whether periodic
delays to realise generated schedules could be implemented
in the routers, further research is required as well.

References

[1] http://chameleon.ctit.utwente.nl/

[2] J-Y. Mignolet, S. Vernalde, D. Verkest, R. Lauwereins:
”Enabling hardware-software multitasking on a recon-
figurable computing platform for networked portable
multimedia appliances”, ERSA2002, Las Vegas, June
2002

[3] Paul M. Heysters, Henri Bouma, Jaap Smit, Gerard
J.M. Smit and Paul J.M. Havinga: ”Reconfigurable
System Design: The Control Part”, PROGRESS2001,
Veldhoven, October 2001

[4] IBM Microelectronics Division: ”System-on-a-Chip
Design: A Time to Market Challenge”, 1999

Proceedings of the Euromicro Symposium on Digital System Design (DSD’03)
0-7695-2003-0/03 $17.00 © 2003 IEEE

[5] http://www.etsi.org/frameset/
home.htm?/technicalactiv/Hiperlan/
hiperlan2.htm/

[6] C. Berrou, A. Glavieux, and P. Thitimajshima: ”Near
Shannon limit error-correcting coding and decoding:
Turbo codes”, In IEEE Proceedings of ICC 93, pages
10641070, May 1993

[7] L. M. Ni and P. K. McKinley, ”A Survey of Wormhole
Routing Techniques in Direct Networks”, Computer,
vol. 26, no. 2, pp. 62–76, Feb. 1993

[8] Z. Liu, J. Duato, and L.-E. Thorelli: ”Grouping virtual
channels for deadlock-free adaptive wormhole rout-
ing”, in Proceedings 5th Conference of Parallel Ar-
chitectures and Languages 13 Europe,volume 694 of
Lecture Notes in Computer Science, pages 254265.
SpringerVerlag, 1993

[9] http://www.hit.bme.hu/phd/vargaa/
omnetpp.htm/

Proceedings of the Euromicro Symposium on Digital System Design (DSD’03)
0-7695-2003-0/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

