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Abstract 

 
This paper suggests tools that provide significant 

improvements in the design and verification of FPGA-
based digital circuits. These tools include reusable 
specifications of hardware components (modules) that 
have been proposed for two types of CAD environments; 
Xilinx ISE 5.x and Celoxica DK1. The components can be 
employed to implement both application-specific blocks 
from the selected area (mainly from the scope of 
combinatorial computations) and a number of interfaces 
that are very useful for interaction and data exchange 
with devices attached to a FPGA, such as LCD and touch 
panels, bus controllers, etc. The designed modules can be 
easily integrated into any application-specific digital 
system and used for visualizing the results, fast data 
transfer, debugging of internal sub-circuits, etc. They 
were constructed in such a way that their functionality 
can be either fixed or modifiable (both statically and 
dynamically). The latter capability was provided with the 
aid of re-loadable RAM-based blocks. To illustrate the 
capabilities of the tools suggested, four design examples 
are discussed. Additional materials for this paper are 
available in the form of a number of tutorials and projects 
for FPGAs that can be accessed through the Internet.  
 
 
1. Introduction 
 

Today field programmable logic devices in general 
and FPGAs in particular are considered to be an 
alternative to ASICs, and they have already been very 
successfully used in a large number of practical 
applications, such as co-processors for general-purpose 
computers, problem-oriented digital systems, embedded 
controllers, and so on. A number of prototyping boards 
that provide support for various experiments with FPGA-
based circuits have been fabricated. These permit digital 
systems to be implemented in FPGA and to interact with 
both onboard microchips and devices (such as static 

RAM, micro controllers, etc.) connected through 
expansion headers. This significantly simplifies the 
design of new FPGA-based applications and allows the 
development lead time to be shortened. Very often we can 
take full advantage range of the hardware capabilities of 
the prototyping boards if the relevant libraries are 
provided. In particular these libraries support interfacing 
FPGAs with external devices.  

The paper discusses one approach to the organization 
of such libraries and suggests a number of reusable 
descriptions for HDL (VHDL) and system-level 
specification (Handel-C) design flows. This is especially 
interesting for experiments and comparisons that allow 
the most appropriate approach for the design of a 
particular system to be properly selected. The RC100 
prototyping board with FPGA XC2S200 (Spartan-II 
family of Xilinx), the Celoxica DK1 environment [1] and 
the Alpha Data ADM-XPL PCI board [2] containing 
FPGA XC2VP7 from the Virtex-II Pro family were 
considered as primary tools for projects based on Handel-
C. The development system TE-XC2Se with FPGA 
XC2S300E (the Xilinx Spartan-IIE family) from Trenz 
electronic [3] and Xilinx ISE 5.2 were chosen for the 
VHDL-based design flow. The hardware modules 
discussed allow the FPGA mentioned above (as well as 
other FPGAs for which the CAD systems can be 
employed) to be linked with a number of external devices. 
These modules can be considered to be components of a 
library that permits the development of FPGA-based 
systems communicating with computers, external memory 
and peripheral devices. They provide many very useful 
facilities, such as support for various interfaces; 
interaction with touch panels, graphical and textual LCDs; 
communications with a mouse, a keyboard, and VGA 
monitors; data exchange between prototyping boards; 
links with segment displays, pushbuttons, dipswitches, 
LEDs, and many others. The suggested tools enable 
designers to concentrate their efforts on the particular 
problem that has to be solved and to involve the 
components mentioned above just to provide such helpful 
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facilities as data exchange, the visualization of final and 
intermediate results, debugging capabilities as well as 
supporting experiments, comparisons, etc. 

This paper is organized in five sections. Section 1 is 
this introduction. Section 2 presents a general description 
of the proposed design tools. Section 3 is dedicated to 
reusable interface modules that can be employed for 
interactions between FPGAs and external devices. Section 
4 discusses some examples of practical design and 
illustrates the applicability and effectiveness of reusable 
components. The conclusion is in section 5. 
 
2. General characteristics of the design tools 
 

In general the reusable circuits suggested can be 
divided into two groups. The first group provides for 
interaction with various external devices that support data 
input and output. Some of such devices are indicated in 
fig. 1 (see the left bottom and the right bottom rectangles). 
The second group is composed of application-specific 
circuits.  

 

Static inputs Static outputs

Dynamic inputs Dynamic outputs

Storage StorageFPGA

Support for standard
interfaces, touch panels,
keyboards, pushbuttons,

DIP switchers, etc.

Support for standard
interfaces, touch panels,
monitors, LCDs, LEDs
segment displays, etc.

Application-specific
library components

Tested
circuit

Support for
application-

specific
components

 
Fig. 1. General use of the library components    

 
The circuits can be employed as either components of 

more complicated devices implemented in an FPGA or as 
auxiliary blocks that simplify debugging, testing, and 
experiments with FPGA-based digital systems. In the 
second case they can be connected to another device (see 
the block “tested circuit” in fig. 1) in order to provide 
interfaces with a variety peripheral equipment for 
supplying input data (see the rectangle “static inputs” in 
fig. 1) to the tested circuit and displaying output data (see 
the rectangle “static outputs” in fig. 1) generated by the 
circuit. Fig. 1 shows that input data can be packaged in 
order to build a control sequence (see the rectangle 
“dynamic inputs” in fig. 1), which represents a test bench. 
Outputs from the circuit that are generated in response to 
the control sequence (see the rectangle “dynamic outputs” 
in fig. 1) can be saved in storage for future examination 
and analysis.  

Fig.2 demonstrates two potential applications of the 
library components. The first example (see fig. 2,a) 
enables an application-specific circuit to communicate 

with a touch panel, such as EA KIT 240-7 that is 
fabricated by Electronic Assembly [4]. The second 
example illustrates how an LCD (such as LCD module 
4x20 EA DIP204-4 [4]) can be controlled and various 
kinds of data can be sent to this LCD. 
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Fig. 2. Library components, which provide data 
exchange with a touch panel (a) and an LCD (b) 
 
There are 4 reusable blocks in fig. 2,a. The first is an 

interface unit that provides data exchange in accordance 
with a given protocol. The RS232 serial interface is used 
for the example here. When interaction with a different 
type of external device is required, the interface unit can 
be replaced with another block from the library that 
supports the necessary data exchange. Two data banks for 
input and output are considered to be buffers to store the 
receiving/sending data. The control sequences generator 
permits a high-level interface to be provided. It supports a 
number of high-level instructions available for the LCD 
with touch panel, such as drawing graphical shapes, 
constructing menus, loading bitmaps, scaling, etc. (see [4] 
for details). Tutorial 7 from [5] gives many useful 
examples that are illustrated by ISE 5.2 projects for 
FPGAs, which demonstrate how to interact with the 
device EA KIT 240-7 [4].    

Note that software tools available for the product [4] 
allow a variety of control sequences to be tested using a 
general-purpose programming language (such as C/C++). 
In this case interaction with an LCD can be examined 
through the PC serial port and then a set of LCD 
instructions can be generated from a C/C++ program and 
saved in RAM blocks belonging to the control sequences 
generator (see fig. 2,a).   

There are 3 reusable blocks in fig. 2,b. The first is an 
interface unit. The second block builds control sequences 

 



for the LCD, such as those used for scrolling, changing 
fonts, inverting text, etc. (see [4] for details). The last 
block carries out any required formatting of the text, i.e. it 
specifies different types of data that should be displayed. 
For example, it will select positions on the LCD for 
displaying fixed strings and variable data that is received 
from the application-specific circuit. Tutorial 9 that is 
available in the public domain of [5] gives a number of 
useful examples, which are augmented by ISE 5.2 
projects for FPGAs that demonstrate how to interact with 
the device [4] and the LCD panel available on the board 
[3].  

Fig.3 demonstrates two application-specific library 
components. Many digital systems require the execution 
of various operations over Boolean and ternary matrices 
(see, for example, [6]). Such systems deal with two-
dimensional arrays with elements having either two (0 
and 1) or three (0, 1, and don’t care) values. As a rule, 
access has to be provided to individual row/columns of 
the matrices and this requires dual-address storage. 
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Fig. 3. Application-specific library components: dual- 

address storage (a) and a selection unit that skips 
unnecessary rows/columns (b)  

 
Fig. 3,a depicts the respective reusable block, which 

includes RAM-based memory, mask registers that permit 
some rows and columns to be excluded from the matrix to 
select a minor, and columns/rows registers that provide 
dual-address access. Fig. 3,b demonstrates the 
functionality of a reusable circuit that selectively 
generates the necessary RAM addresses. The latter allows 
the rows/columns that are not required for the minor that 
is being extracted during the current step to be skipped. 
Let us assume that a matrix is composed of 8 rows 
1,2,…,8 and 7 columns A,B,…,G (see fig. 3,a). We want 
to remove all the rows that have “0” in column A and all 
the columns that have just don’t care values (“-“). Fig. 3,a 
shows the contents of the mask registers for this case. 
Suppose that all the rows that are indicated by ones in the 
row mask register have to be skipped. Fig. 3,b 
demonstrates how the relevant reusable block implements 
this requirement. 

The mentioned above and the other designed library 
components can be employed for both practical design 
and educational purposes. For example, a number of 
tutorials that explain how to work with various tools 
available for FPGAs and how to use these tools to design 
different types of FPGA-based circuits are available in 
[5]. They are organized in such a way that any circuit 
being tested is considered to be the core of some working 
environment and the remainder of the working 
environment provides for interaction of the circuit with 
the external world. Fig. 4 demonstrates the basic idea of 
the tutorial 5 [5], which explains how various 
synthesizable constructions of VHDL for ISE 5.2 can be 
used. The tutorial lists these constructions alphabetically 
(such as A – aggregates, A – architecture, etc. up to W - 
while) and describes examples that can be tested in ISE 
5.2 with the aid of the circuit in fig. 4 in such a way that 
input data can be entered from peripheral devices and the 
result can be visualized on peripheral devices. Interfaces 
and communications with these devices are provided 
through the designed library components.  
 

VHDL
block

The circuit
that supplies

input data

The circuit
that visualizes

the result

Input
devices

FPGA

Output
devices

 
 

Fig. 4. Using the designed reusable components for 
testing different VHDL constructions 

 
A similar technique was used for the other tutorials 

available in [5]. Note that the majority of the modules are 
based on distributed and dedicated FPGA RAM-blocks 
that can be programmed either before or during run-time. 
This permits both static and dynamic changes to module’s 
functionality. 

At the beginning of this section, we mentioned that two 
groups of library components have been suggested (see 
fig. 1-3). Components from the first group were described 
in VHDL and tested within ISE 5.2. They can be reused 
as either fragments of VHDL code that are inserted in the 
design (much like we invoke Xilinx ISE synthesis 
templates) or library modules that are attached to the 
design. Components from the second group provide 
support for handling Boolean and ternary matrices. They 
were implemented in VHDL and in Handel-C in such a 
way that the respective code can be copied to any other 
project. The Celoxica DK1 design suite [1] was used for 
synthesis from Handel-C. The results are presented in 
EDIF format. Further processing of the EDIF files was 
carried out in the ISE 5.2 environment. The circuits were 

 



tested for the Xilinx Spartan-II/Spartan-IIE/Virtex-II Pro 
families of FPGAs that are available on the prototyping 
boards [1-3]. Details of many projects using these 
components can be found in [5] and they augment the 
material presented in this paper. 
 
3. Interface modules 
 

The designed interface modules support serial (type 1) 
and parallel (type 2) modes. For each type two different 
circuits have been constructed that provide fixed and 
modifiable functionality of the modules respectively.  

Modules with fixed functionality were mainly 
described using behavioral VHDL (ISE 5.2) and state 
transition diagrams constructed using Xilinx StateCAD 
software. Modules with modifiable functionality were 
built on the basis of RAM/ROM blocks, parameterizable 
structural VHDL code with generic and generate 
statements and reprogrammable finite state machines 
(RFSM) [7,8]. Fig. 5 shows a simple example 
demonstrating the capabilities of a reprogrammable 
circuit that receives data from an RS232 serial interface 
(similar circuits were used for communicating with a 
mouse and a keyboard).  

The circuit contains a RAM-based RFSM, a data 
register, and a baud rate circuit. The number of stop bits 
(1 or 2) for Wait state (see node 1), the number n of data 
bits (see node 2) and a presence or an absence of a parity 
bit (see node 3) can all be set by varying RFSM 
functionality. Trivial changes in the algorithm enable 
handshaking to be implemented through the use of request 
to send (RTS) and clear to send (CTS) bits. The 
functionality of the RFSM can be modified by reloading 
the RAM blocks that are used as basic components of the 
RFSM combinational circuit. Methods [7] were applied 
for such purposes. The circuit “Baud rate” takes an input 
from a clock generator and sets up the required output 
frequency that can be changed by modifying a division 
coefficient that is read from RAM. 

The considered method, which provides for 
modification of a circuit, has some advantages compared 
to traditional devices, such as a UART. Firstly, this 
method can be used for any similar circuit that supports 
either a standard or a customized (application-specific) 
interface. Secondly, it only implements the functionality 
that is required for a particular application. This permits 
the necessary hardware resources to be reduced. And 
finally, the mechanisms considered that provide for 
modification of the circuit's functionality are very well 
suited for recent architectures of FPGAs that contain a 
large number of built-in memory blocks supporting the 
dual-port access that is needed for reprogrammability.  

A serial port was used for data exchange with the PC 
and for an interaction with some peripheral devices, such 
as that shown in fig. 2.  
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Fig. 5. Using a reprogrammable circuit for 

implementing serial interface 
 
Fig. 6 shows a simple example demonstrating the 

capabilities of a reprogrammable circuit that controls a 
textual LCD panel (see also fig. 2,b). The RFSM enables 
the circuit to be customized for any LCD with a different 
number of lines and/or characters per line, specific control 
sequences, etc. Depending on the application, any mode 
can be used, such as write to LCD, read from LCD, and 
write/read to/from LCD. This is achieved either through 
direct data transfer from FPGA circuit to bi-directional 
LCD bus or with the aid of an intermediate dual-port 
RAM that buffers the data. In the last case the first RAM 
port (see fig. 6) is used for interaction with an application-
specific circuit implemented in FPGA. The second port 
provides communication with an LCD through a bi-
directional data bus. The RFSM can control this bus and 
permits various preliminary saved in RAM control 
sequences for the LCD to be specified. For example, we 
can provide for shifting data on the LCD panel, scrolling 
lines, etc. Note that the same circuit, depicted in fig. 6, 
can be used for interactions with the LCD panel available 
on the TE-XC2Se board [3] as well as with any other 
externally connected LCD panel. Tutorial 9 from [5] 
includes some ISE 5.2 projects for LCDs. 

A similar technique was used for the design of other 
interface circuits. They provide data exchange between 
FPGAs and a variety of external devices. For example, 
two prototyping boards [1,3] were connected through 
expansion headers. For such purposes a special parallel 
interface has been implemented. This permits resources 
available on the boards and peripheral equipment that 
might be connected to the boards to be combined [1,3]. 
As a results more complicated devices can be constructed. 
Besides, this is the easiest way to test projects that were 
created using tools such as Handel-C system-level 
specification language [1] and CAD software (such as ISE 
5.2) that supports a traditional HDL-based design flow.  

 



A parameterizable VHDL code for a RFSM can be 
found in [8]. Tutorial 8 available from [5] includes ISE 
5.2 projects for a RFSM that were tested with simple 
datapath.   
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Fig. 6. Using a reprogrammable circuit to implement a 

parallel interface with an LCD 
 

4. Design examples 
 
This section describes four projects for the DK1 and 

ISE 5.2 environments that demonstrate how the reusable 
components considered above can be involved in the 
design. The first three projects were developed in Handel-
C and they demonstrate an arithmetical circuit (RC100 
prototyping board [1]) and two combinatorial processors 
(RC100 prototyping board [1] and ADM-XPL PCI board 
[2]). The fourth project for ISE 5.2 allows a recursive 
sorting procedure to be performed (TE-XC2Se 
prototyping board of Trenz electronic [3]). All these 
projects are available in [5]. 

 
4.1. Design of an arithmetical circuit in Handel-C 

The circuit implements four arithmetical operations (+: 
addition, -: subtraction, x: multiplication, and /: division) 
and interacts with a VGA monitor and a mouse connected 
to the FPGA. The functionality was tested in a Spartan-II 
XC2S200 FPGA (the RC100 board).  

The Handel-C specification contains the following 
blocks (see fig. 7):  

The Initialization block permits initial values to be 
assigned to the variables that are used. After that the 7 
blocks shown as rectangular nodes in fig. 7 will be 
executed in parallel. This is supported by a Handel-C par 
statement. 

The Data processing block calculates the result of the 
selected arithmetical operation.  

The Preparing data to display block interacts with the 
block Defining color for each pixel and supplies two 
operands, an operator, and the result.  

The Moving screen windows block permits a dialog box 
to be moved using the mouse drag and drop option. Thus, 
interaction with a mouse driver has to be provided. The 
dialog box displays the operands, the arithmetic operator, 
and the result of the operation. Fig. 8 illustrates how the 
operands (234 and 132), the operator (x - multiplication), 
and the result (30888) will appear on the monitor screen. 
The dialog box containing this information can be moved 
to any position within the working area of the screen.  
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Fig. 7. Parallel blocks of Handel-C specification 

   
The Drawing screen windows block communicates 

with the block Defining color for each pixel to provide for 
data visualization, i.e. to display the dialog box (see fig. 
8).  

VGA monitor

mouse
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mouse RC100 prototyping
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Fig. 8. Experiments with the arithmetical circuit 
designed from a specification in Handel-C 

 
The Changing the operation block enables the desired 

operation (+, -, x, /) to be selected. This is done by 
moving the mouse cursor over a sign position on the 

 



screen and selecting an operation by clicking the left 
mouse button. The button permits operations to be 
switched in a cyclical sequence: 1) +; 2) –; 3) x; 4) /. 
Thus, again it is necessary to interact with the mouse 
driver. 

The Defining color for each pixel block constructs a 24-
bit RGB vector for each pixel, which is composed of three 
8 bit fields for each color (R – red, G – green and B – 
blue) and establishes links with the VGA monitor driver. 

The Writing mouse coordinates to segment displays 
block communicates with the mouse and segment display 
drivers and displays the horizontal and vertical positions 
of the mouse (see fig. 8, where the segment displays show 
the less significant digits 6A of the mouse coordinates in 
hexadecimal notation, where the value 6 gives a 
horizontal and A - a vertical coordinate). For the 
considered example Celoxica mouse and VGA monitor 
drivers [1] were used. However the circuit can also 
interact with the described above reusable components to 
provide interfaces with other peripheral devices.  

This is a very simple example but it would become 
much more complicated if the drivers that establish the 
interfaces for data input and output were not available.  

 
  
4.2. Design of a combinatorial processor for a 

stand-alone board  
The second project is to discover a minimal column 

cover of an arbitrary Boolean matrix, i.e. to find a 
minimal number of columns that have at least one value 
“1” in each row of the given matrix. The project 
implements the algorithm [9] and the hardware 
architecture described in [6]. 

The basic operations of the algorithm involve the 
application of so-called reduction and selection rules. The 
reduction rules enable an initial matrix and intermediate 
matrices (that appear on each iteration through the 
algorithm) to be simplified. For the covering problem the 
following reduction rules were applied: 1) if for i≠j rowi 
& rowj = rowj then rowi is removed from the matrix; 2) if 
for i≠j columni & columnj = columni then columni is 
removed from the matrix; 3) if any column contains just 
“0” values it is removed from the matrix; 4) if there is a 
row that does not have any “1” value then covering 
cannot be found; 5) if a row has just one “1” value then 
the respective column must be included into the covering; 
6) if all rows have more than one “1” value then the first 
row from the top of the matrix that contains a minimum 
number of ones is selected. For this row it is necessary to 
examine all possible branches and the number of such 
branches is equal to the number of ”1” values in the row. 

Analysis of different combinatorial search algorithms 
has shown that the following four types of application-
specific blocks are required: storage for matrices, a stack 
memory, a functional unit for operations over discrete 

vectors (i.e. rows/columns of matrices), and a control 
circuit. Fig. 9 shows how different hardware resources 
were used and lists the basic architectural blocks of the 
processor that were described in Handel-C. All these 
blocks are parameterizable and the respective Handel-C 
code can be reused for similar applications.  
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Fig. 9. Reusable application-specific blocks for the 

combinatorial processor  
 
The algorithm requires the execution of operations over 

individual rows and columns of the matrix. Thus dual-
address access to the matrix (see section 2 and fig. 3) 
permits these operations to be accelerated significantly. In 
order to minimize the required hardware resources just 
one matrix is kept in memory. Extracting any minor is 
achieved by masking some rows and columns. Thus the 
techniques considered in section 2 (see fig. 3) become 
very helpful because it significantly accelerates traversal 
and examination of rows/columns that are not masked. 
There are two blocks of static RAM available on the 
RC100 board (256K x 36 bit each). Storage for matrices 
was allocated in the first block and the second block was 
used as a memory for a VGA monitor connected to the 
board (see fig. 9). Different stacks required for the chosen 
architecture [6] of the processor were also implemented in 
static RAM (in the first block). The control circuit is 
hidden in Handel-C code because this language uses pre-
defined specific synchronization mechanisms [1]. 
Reusable VHDL code for such circuit is considered in [5] 
(see tutorial 10). Computations over vectors are carried 
out through logical operations available in Handel-C. An 
initial matrix can be loaded either from the PC through 
the parallel port or from a keyboard. The results are 
displayed on a VGA monitor. 

An instance of the covering problem is presented in fig. 
10. A graph in fig. 10 explains the sequence of steps that 

 



have to be carried out. The rows are indicated by digits 1-
10 and the columns by letters A-I. If any element is 
removed, it is crossed by a horizontal line. Circles show 
an initial matrix U and how the matrix columns have been 
selected step by step. Rectangles indicate the branch 
points. This task may require the examination of more 
than two alternatives for any branch point. For this reason 
a stack of branch masks has to be implemented (see fig. 
9). This enables the branches of the decision tree that 
have already been examined to be avoided. Stop points 
appear when the number of columns in the covering 
obtained at the current step is equal to any previously 
discovered covering. In this case it cannot be improved 
upon and we can terminate traversing this branch. 
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Fig. 10. Execution of the considered combinatorial 

search algorithm 
 

Note that supplementary blocks (such as those that 
provide visualization of the results, support for debugging 
and experiments, etc.) consume lots of hardware 
resources, which could otherwise be used for extending 
the dimensions of the considered problem. For many 
practical applications it is reasonable to separate the 
primary and supplementary resources in such a way that 
one FPGA is solely responsible for the problem that has 
to be solved and the other for all the required auxiliary 
functions. The latter could be displaying and scrolling 
matrices, highlighting (or selecting by color) elements 
considered in any intermediate step (such as any minor), 
visualizing the contents of stacks, checking any currently 
executing operation, and many others. Hardware 
components that execute these operations can also be 
included into the library, which on the one hand is 
application-specific, but on the other hand can be reused 
for a large number of practical applications that handle 
discrete matrices. Thus the tools considered in sections 2, 
3 can be employed directly because they provide data 
exchange between primary and auxiliary blocks, 
interactions with peripheral devices and support for 
application-specific operations. It is important that this 

functional separation enables any available tools for the 
design of FPGA-based circuits to be combined. Indeed, 
the primary block implemented in a separate FPGA might 
be designed with the aid of a system-level specification 
language (such as Handel-C) and the supplementary tools 
can be developed in a hardware description language.  

 
4.3. Design of a combinatorial processor for 

PCI board  
The Virtex-II Pro family FPGA XC2VP7 (ADM-XPL 

PCI board of Alpha Data [2]) is much more powerful than 
FPGAs of Spartan series and it permits the dimensions of 
the matrices to be significantly increased. Besides, data 
exchange with a PC through a PCI bus makes it possible 
to increase the speed of execution of complex algorithms 
that require distribution and parallel execution of different 
sub-algorithms in general-purpose (such as PC) and 
application-specific (such as combinatorial accelerator) 
processors. 

Fig. 11 depicts the basic architecture of the system that 
has been implemented. Compared to the previous project 
(see sub-section 4.2), the Handel-C code for the 
combinatorial processor considered only changes the sizes 
of the objects (variables and arrays) that are involved. A 
set of C++ classes and functions provide auxiliary 
operations supporting input/output data for matrices, 
debugging facilities and a user-friendly graphical 
interface realized through dialog boxes for working with 
the combinatorial processor. These classes and functions 
are very helpful because the ADM-XPL PCI board is 
installed inside the PC and does not provide 
communications with additional peripheral devices 
(except for the RS232 serial port). Thus the C++ library is 
responsible for such operations. 

 
PC

PCI bus

C++ library, which provides
support for supplying matrices,

getting the result from FPGA and
graphical user-friendly interface

API functions of Alpha Data [2], 
which interact with ADM-XPL

PCI board and execute
input/output operations

AlphaData ADM-XPL PCI board

Buffer
and

interface
unit

(Handel-C)

Combinatorial
Processor
(Handel-C)

FPGA XC2VP7 (Virtex-II Pro)

Fig. 11. Software/hardware tools for the combinatorial 
processor 

 
API functions supplied by Alpha Data [2] are used to 

drive the board and to provide data exchange between the 
PC and the combinatorial processor through PCI. 

Two new blocks that support communications of the 
FPGA with external hardware were designed in Handel-
C. The first block establishes the interface with the ADM-
XPL bus. The second block buffers the initial matrices 
and stores the result to make it ready for transmission via 
the PCI bus. Obviously these blocks can also be 

 



considered as reusable components for future 
applications. 

Initial matrices have pre-defined dimensions and can 
be either randomly generated using the C++ program with 
a given percentage of zeros/ones or loaded from a file. 
The latter permits experimentation using existing 
benchmarks.    

Reusing pre-designed fragments of Handel-C code 
made it possible to develop, implement and test a quite 
complicated digital system with additional software 
support in less than two weeks. 

Note that each reusable component can be considered 
from two different points of view. Firstly it has a 
particular specification such as in Handel-C or in VHDL. 
Secondly it has a unique reusable structure, which, as a 
rule, can be described using any relevant tool (language). 
A reusable (particular) code can only be compiled 
(synthesized) in environments that permit this code to be 
used. On the other hand any reusable architecture 
(structure) is independent of any environment. In order to 
prove reusability of the considered application-specific 
circuits (such as that shown in fig. 3) at a structural level, 
a combinatorial accelerator for solving the Boolean 
satisfiability problem has been described in VHDL, 
implemented in a Virtex-EM family FPGA and tested 
[12]. The results obtained show that the application-
specific blocks mentioned above are actually reusable for 
a variety of digital systems that require handling of 
discrete matrices. 

  
4.4. Recursive sorting  
The last project implements in hardware two recursive 

procedures considered in [10], where they were described 
in C. Similar C++ code can be found in tutorial 10 
available from [5]. The first procedure receives incoming 
external data (such as integers, strings, etc.) and 
constructs a binary tree that simplifies many 
computations, such as ordering the data, finding minimum 
or maximum values, etc. The second procedure sorts data 
on the basis of the binary tree. The hardware architecture 
that might be used for such purposes was proposed in 
[11]. Tutorial 10 in [5] extends the architecture [11] and 
gives detailed explanations of the algorithms and their 
hardware implementations in ISE 5.2 with a number of 
ISE 5.2 examples (mainly in VHDL). 

The project includes VHDL code for a hierarchical 
FSM (HFSM) described in [11] that executes recursive 
modular algorithms and carries out all control functions 
for the two procedures considered above. This component 
is obviously reusable and it is needed for solving different 
tasks such as those formulated on binary trees (see, for 
example, [10]), composed of relatively autonomous 
modules, etc. ISE 5.2 projects that include HFSM can be 
found in tutorial 10 [5]. Obviously all the debugging tools 

discussed previously can be used for this project. Some of 
them are invoked in the tutorial 10 [5].  

 
5. Conclusion 
 

The paper discusses reusable modules for the design 
and debugging of FPGA-based digital circuits. They 
permit the exchange of data between FPGAs and a 
personal computer through various interfaces, interaction 
with external memories, data visualization, etc. Two 
general types of reusable components have been 
described. They provide support for debugging and reflect 
the specifics of some selected applications. 

The library modules that have been developed can 
easily be integrated into any application-specific system 
that is going to be implemented on the basis of FPGA. 
Four design examples demonstrating such facilities have 
been described.  

This work was partially supported by the grants FCT-
PRAXIS XXI/BD/21353/99 and POSI/43140/CHS/2001. 
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