
Design Tools and Reusable Libraries for FPGA-Based Digital Circuits

Valery Sklyarov, Iouliia Skliarova, Pedro Almeida, Manuel Almeida
skl@ieeta.pt, iouliia@det.ua.pt

Department of Electronics and Telecommunications
University of Aveiro

3810-193 Aveiro, Portugal

Abstract

This paper suggests tools that provide significant

improvements in the design and verification of FPGA-
based digital circuits. These tools include reusable
specifications of hardware components (modules) that
have been proposed for two types of CAD environments;
Xilinx ISE 5.x and Celoxica DK1. The components can be
employed to implement both application-specific blocks
from the selected area (mainly from the scope of
combinatorial computations) and a number of interfaces
that are very useful for interaction and data exchange
with devices attached to a FPGA, such as LCD and touch
panels, bus controllers, etc. The designed modules can be
easily integrated into any application-specific digital
system and used for visualizing the results, fast data
transfer, debugging of internal sub-circuits, etc. They
were constructed in such a way that their functionality
can be either fixed or modifiable (both statically and
dynamically). The latter capability was provided with the
aid of re-loadable RAM-based blocks. To illustrate the
capabilities of the tools suggested, four design examples
are discussed. Additional materials for this paper are
available in the form of a number of tutorials and projects
for FPGAs that can be accessed through the Internet.

1. Introduction

Today field programmable logic devices in general
and FPGAs in particular are considered to be an
alternative to ASICs, and they have already been very
successfully used in a large number of practical
applications, such as co-processors for general-purpose
computers, problem-oriented digital systems, embedded
controllers, and so on. A number of prototyping boards
that provide support for various experiments with FPGA-
based circuits have been fabricated. These permit digital
systems to be implemented in FPGA and to interact with
both onboard microchips and devices (such as static

RAM, micro controllers, etc.) connected through
expansion headers. This significantly simplifies the
design of new FPGA-based applications and allows the
development lead time to be shortened. Very often we can
take full advantage range of the hardware capabilities of
the prototyping boards if the relevant libraries are
provided. In particular these libraries support interfacing
FPGAs with external devices.

The paper discusses one approach to the organization
of such libraries and suggests a number of reusable
descriptions for HDL (VHDL) and system-level
specification (Handel-C) design flows. This is especially
interesting for experiments and comparisons that allow
the most appropriate approach for the design of a
particular system to be properly selected. The RC100
prototyping board with FPGA XC2S200 (Spartan-II
family of Xilinx), the Celoxica DK1 environment [1] and
the Alpha Data ADM-XPL PCI board [2] containing
FPGA XC2VP7 from the Virtex-II Pro family were
considered as primary tools for projects based on Handel-
C. The development system TE-XC2Se with FPGA
XC2S300E (the Xilinx Spartan-IIE family) from Trenz
electronic [3] and Xilinx ISE 5.2 were chosen for the
VHDL-based design flow. The hardware modules
discussed allow the FPGA mentioned above (as well as
other FPGAs for which the CAD systems can be
employed) to be linked with a number of external devices.
These modules can be considered to be components of a
library that permits the development of FPGA-based
systems communicating with computers, external memory
and peripheral devices. They provide many very useful
facilities, such as support for various interfaces;
interaction with touch panels, graphical and textual LCDs;
communications with a mouse, a keyboard, and VGA
monitors; data exchange between prototyping boards;
links with segment displays, pushbuttons, dipswitches,
LEDs, and many others. The suggested tools enable
designers to concentrate their efforts on the particular
problem that has to be solved and to involve the
components mentioned above just to provide such helpful

mailto:skl@ieeta.pt

facilities as data exchange, the visualization of final and
intermediate results, debugging capabilities as well as
supporting experiments, comparisons, etc.

This paper is organized in five sections. Section 1 is
this introduction. Section 2 presents a general description
of the proposed design tools. Section 3 is dedicated to
reusable interface modules that can be employed for
interactions between FPGAs and external devices. Section
4 discusses some examples of practical design and
illustrates the applicability and effectiveness of reusable
components. The conclusion is in section 5.

2. General characteristics of the design tools

In general the reusable circuits suggested can be
divided into two groups. The first group provides for
interaction with various external devices that support data
input and output. Some of such devices are indicated in
fig. 1 (see the left bottom and the right bottom rectangles).
The second group is composed of application-specific
circuits.

Static inputs Static outputs

Dynamic inputs Dynamic outputs

Storage StorageFPGA

Support for standard
interfaces, touch panels,
keyboards, pushbuttons,

DIP switchers, etc.

Support for standard
interfaces, touch panels,
monitors, LCDs, LEDs
segment displays, etc.

Application-specific
library components

Tested
circuit

Support for
application-

specific
components

Fig. 1. General use of the library components

The circuits can be employed as either components of

more complicated devices implemented in an FPGA or as
auxiliary blocks that simplify debugging, testing, and
experiments with FPGA-based digital systems. In the
second case they can be connected to another device (see
the block “tested circuit” in fig. 1) in order to provide
interfaces with a variety peripheral equipment for
supplying input data (see the rectangle “static inputs” in
fig. 1) to the tested circuit and displaying output data (see
the rectangle “static outputs” in fig. 1) generated by the
circuit. Fig. 1 shows that input data can be packaged in
order to build a control sequence (see the rectangle
“dynamic inputs” in fig. 1), which represents a test bench.
Outputs from the circuit that are generated in response to
the control sequence (see the rectangle “dynamic outputs”
in fig. 1) can be saved in storage for future examination
and analysis.

Fig.2 demonstrates two potential applications of the
library components. The first example (see fig. 2,a)
enables an application-specific circuit to communicate

with a touch panel, such as EA KIT 240-7 that is
fabricated by Electronic Assembly [4]. The second
example illustrates how an LCD (such as LCD module
4x20 EA DIP204-4 [4]) can be controlled and various
kinds of data can be sent to this LCD.

Control and operating unit

1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60

LCD with
touch panel

Level adjustment

Interface unit RS232

Output
data bank

Input
data bank

Control
sequences
generator

Application-
specific
circuit

FPGA
a) b)

20 characters

4 lines

LCD controller/driver

Interface unit

Control
sequences
generator

Application-
specific
circuit

FPGA

Formatting

Fig. 2. Library components, which provide data
exchange with a touch panel (a) and an LCD (b)

There are 4 reusable blocks in fig. 2,a. The first is an

interface unit that provides data exchange in accordance
with a given protocol. The RS232 serial interface is used
for the example here. When interaction with a different
type of external device is required, the interface unit can
be replaced with another block from the library that
supports the necessary data exchange. Two data banks for
input and output are considered to be buffers to store the
receiving/sending data. The control sequences generator
permits a high-level interface to be provided. It supports a
number of high-level instructions available for the LCD
with touch panel, such as drawing graphical shapes,
constructing menus, loading bitmaps, scaling, etc. (see [4]
for details). Tutorial 7 from [5] gives many useful
examples that are illustrated by ISE 5.2 projects for
FPGAs, which demonstrate how to interact with the
device EA KIT 240-7 [4].

Note that software tools available for the product [4]
allow a variety of control sequences to be tested using a
general-purpose programming language (such as C/C++).
In this case interaction with an LCD can be examined
through the PC serial port and then a set of LCD
instructions can be generated from a C/C++ program and
saved in RAM blocks belonging to the control sequences
generator (see fig. 2,a).

There are 3 reusable blocks in fig. 2,b. The first is an
interface unit. The second block builds control sequences

for the LCD, such as those used for scrolling, changing
fonts, inverting text, etc. (see [4] for details). The last
block carries out any required formatting of the text, i.e. it
specifies different types of data that should be displayed.
For example, it will select positions on the LCD for
displaying fixed strings and variable data that is received
from the application-specific circuit. Tutorial 9 that is
available in the public domain of [5] gives a number of
useful examples, which are augmented by ISE 5.2
projects for FPGAs that demonstrate how to interact with
the device [4] and the LCD panel available on the board
[3].

Fig.3 demonstrates two application-specific library
components. Many digital systems require the execution
of various operations over Boolean and ternary matrices
(see, for example, [6]). Such systems deal with two-
dimensional arrays with elements having either two (0
and 1) or three (0, 1, and don’t care) values. As a rule,
access has to be provided to individual row/columns of
the matrices and this requires dual-address storage.

A B C D E F G
1 1 - - 1 - - -
2 1 - - 0 - 1 -
3 1 - - 1 - - 0
4 1 - - - - 0 -
5 0 - 0 - 1 - -
6 0 - 0 - 0 - -
7 0 - 1 1 1 - 1
8 0 - 1 - 0 0 -

column address

row
address

column mask
0 1 0 0 0 0 0

row
mask

0
0
0
0
1
1
1
1

a)

row
mask
regiser

0
1

1

0
1

0

1 clock
cycle

0

0

0

0

0

0

1

1

1

1

1

1

skip

skip

skip

b)

Fig. 3. Application-specific library components: dual-

address storage (a) and a selection unit that skips
unnecessary rows/columns (b)

Fig. 3,a depicts the respective reusable block, which

includes RAM-based memory, mask registers that permit
some rows and columns to be excluded from the matrix to
select a minor, and columns/rows registers that provide
dual-address access. Fig. 3,b demonstrates the
functionality of a reusable circuit that selectively
generates the necessary RAM addresses. The latter allows
the rows/columns that are not required for the minor that
is being extracted during the current step to be skipped.
Let us assume that a matrix is composed of 8 rows
1,2,…,8 and 7 columns A,B,…,G (see fig. 3,a). We want
to remove all the rows that have “0” in column A and all
the columns that have just don’t care values (“-“). Fig. 3,a
shows the contents of the mask registers for this case.
Suppose that all the rows that are indicated by ones in the
row mask register have to be skipped. Fig. 3,b
demonstrates how the relevant reusable block implements
this requirement.

The mentioned above and the other designed library
components can be employed for both practical design
and educational purposes. For example, a number of
tutorials that explain how to work with various tools
available for FPGAs and how to use these tools to design
different types of FPGA-based circuits are available in
[5]. They are organized in such a way that any circuit
being tested is considered to be the core of some working
environment and the remainder of the working
environment provides for interaction of the circuit with
the external world. Fig. 4 demonstrates the basic idea of
the tutorial 5 [5], which explains how various
synthesizable constructions of VHDL for ISE 5.2 can be
used. The tutorial lists these constructions alphabetically
(such as A – aggregates, A – architecture, etc. up to W -
while) and describes examples that can be tested in ISE
5.2 with the aid of the circuit in fig. 4 in such a way that
input data can be entered from peripheral devices and the
result can be visualized on peripheral devices. Interfaces
and communications with these devices are provided
through the designed library components.

VHDL
block

The circuit
that supplies

input data

The circuit
that visualizes

the result

Input
devices

FPGA

Output
devices

Fig. 4. Using the designed reusable components for
testing different VHDL constructions

A similar technique was used for the other tutorials

available in [5]. Note that the majority of the modules are
based on distributed and dedicated FPGA RAM-blocks
that can be programmed either before or during run-time.
This permits both static and dynamic changes to module’s
functionality.

At the beginning of this section, we mentioned that two
groups of library components have been suggested (see
fig. 1-3). Components from the first group were described
in VHDL and tested within ISE 5.2. They can be reused
as either fragments of VHDL code that are inserted in the
design (much like we invoke Xilinx ISE synthesis
templates) or library modules that are attached to the
design. Components from the second group provide
support for handling Boolean and ternary matrices. They
were implemented in VHDL and in Handel-C in such a
way that the respective code can be copied to any other
project. The Celoxica DK1 design suite [1] was used for
synthesis from Handel-C. The results are presented in
EDIF format. Further processing of the EDIF files was
carried out in the ISE 5.2 environment. The circuits were

tested for the Xilinx Spartan-II/Spartan-IIE/Virtex-II Pro
families of FPGAs that are available on the prototyping
boards [1-3]. Details of many projects using these
components can be found in [5] and they augment the
material presented in this paper.

3. Interface modules

The designed interface modules support serial (type 1)
and parallel (type 2) modes. For each type two different
circuits have been constructed that provide fixed and
modifiable functionality of the modules respectively.

Modules with fixed functionality were mainly
described using behavioral VHDL (ISE 5.2) and state
transition diagrams constructed using Xilinx StateCAD
software. Modules with modifiable functionality were
built on the basis of RAM/ROM blocks, parameterizable
structural VHDL code with generic and generate
statements and reprogrammable finite state machines
(RFSM) [7,8]. Fig. 5 shows a simple example
demonstrating the capabilities of a reprogrammable
circuit that receives data from an RS232 serial interface
(similar circuits were used for communicating with a
mouse and a keyboard).

The circuit contains a RAM-based RFSM, a data
register, and a baud rate circuit. The number of stop bits
(1 or 2) for Wait state (see node 1), the number n of data
bits (see node 2) and a presence or an absence of a parity
bit (see node 3) can all be set by varying RFSM
functionality. Trivial changes in the algorithm enable
handshaking to be implemented through the use of request
to send (RTS) and clear to send (CTS) bits. The
functionality of the RFSM can be modified by reloading
the RAM blocks that are used as basic components of the
RFSM combinational circuit. Methods [7] were applied
for such purposes. The circuit “Baud rate” takes an input
from a clock generator and sets up the required output
frequency that can be changed by modifying a division
coefficient that is read from RAM.

The considered method, which provides for
modification of a circuit, has some advantages compared
to traditional devices, such as a UART. Firstly, this
method can be used for any similar circuit that supports
either a standard or a customized (application-specific)
interface. Secondly, it only implements the functionality
that is required for a particular application. This permits
the necessary hardware resources to be reduced. And
finally, the mechanisms considered that provide for
modification of the circuit's functionality are very well
suited for recent architectures of FPGAs that contain a
large number of built-in memory blocks supporting the
dual-port access that is needed for reprogrammability.

A serial port was used for data exchange with the PC
and for an interaction with some peripheral devices, such
as that shown in fig. 2.

Wait

Recording n
sequential
bits (where
n can be

programmed)

Recording a
parity bit and

testing

start bit
1

0

stop bit
0

1Error

1

2

3

Baud
rate

clock

RAM-based reprogrammable FSM

D
at

a
re

gi
st

erRecording
sequential

data

Ready to read

Data

Clear

Support for handshaking
(if required)

RAM
(customizes

baud rate
and FSM
behavior)

RTS

CTS

stop
bit

1 or 2yes
/non bits

start
bit

123

Fig. 5. Using a reprogrammable circuit for

implementing serial interface

Fig. 6 shows a simple example demonstrating the

capabilities of a reprogrammable circuit that controls a
textual LCD panel (see also fig. 2,b). The RFSM enables
the circuit to be customized for any LCD with a different
number of lines and/or characters per line, specific control
sequences, etc. Depending on the application, any mode
can be used, such as write to LCD, read from LCD, and
write/read to/from LCD. This is achieved either through
direct data transfer from FPGA circuit to bi-directional
LCD bus or with the aid of an intermediate dual-port
RAM that buffers the data. In the last case the first RAM
port (see fig. 6) is used for interaction with an application-
specific circuit implemented in FPGA. The second port
provides communication with an LCD through a bi-
directional data bus. The RFSM can control this bus and
permits various preliminary saved in RAM control
sequences for the LCD to be specified. For example, we
can provide for shifting data on the LCD panel, scrolling
lines, etc. Note that the same circuit, depicted in fig. 6,
can be used for interactions with the LCD panel available
on the TE-XC2Se board [3] as well as with any other
externally connected LCD panel. Tutorial 9 from [5]
includes some ISE 5.2 projects for LCDs.

A similar technique was used for the design of other
interface circuits. They provide data exchange between
FPGAs and a variety of external devices. For example,
two prototyping boards [1,3] were connected through
expansion headers. For such purposes a special parallel
interface has been implemented. This permits resources
available on the boards and peripheral equipment that
might be connected to the boards to be combined [1,3].
As a results more complicated devices can be constructed.
Besides, this is the easiest way to test projects that were
created using tools such as Handel-C system-level
specification language [1] and CAD software (such as ISE
5.2) that supports a traditional HDL-based design flow.

A parameterizable VHDL code for a RFSM can be
found in [8]. Tutorial 8 available from [5] includes ISE
5.2 projects for a RFSM that were tested with simple
datapath.

RAM that keeps
data for LCD
initialization

RFSM

Dual-port RAM, which
keeps ASCII codes of
characters that have

to be displayed

Input data
Port 1

Bus control

Start, Finish, Control,
Number of commands

Start, Finish, Control,
Number of characters

Read/Write, Enable, Chip Select, Instruction/Data, etc.

Port 2Output data
(if required)

Fig. 6. Using a reprogrammable circuit to implement a

parallel interface with an LCD

4. Design examples

This section describes four projects for the DK1 and

ISE 5.2 environments that demonstrate how the reusable
components considered above can be involved in the
design. The first three projects were developed in Handel-
C and they demonstrate an arithmetical circuit (RC100
prototyping board [1]) and two combinatorial processors
(RC100 prototyping board [1] and ADM-XPL PCI board
[2]). The fourth project for ISE 5.2 allows a recursive
sorting procedure to be performed (TE-XC2Se
prototyping board of Trenz electronic [3]). All these
projects are available in [5].

4.1. Design of an arithmetical circuit in Handel-C

The circuit implements four arithmetical operations (+:
addition, -: subtraction, x: multiplication, and /: division)
and interacts with a VGA monitor and a mouse connected
to the FPGA. The functionality was tested in a Spartan-II
XC2S200 FPGA (the RC100 board).

The Handel-C specification contains the following
blocks (see fig. 7):

The Initialization block permits initial values to be
assigned to the variables that are used. After that the 7
blocks shown as rectangular nodes in fig. 7 will be
executed in parallel. This is supported by a Handel-C par
statement.

The Data processing block calculates the result of the
selected arithmetical operation.

The Preparing data to display block interacts with the
block Defining color for each pixel and supplies two
operands, an operator, and the result.

The Moving screen windows block permits a dialog box
to be moved using the mouse drag and drop option. Thus,
interaction with a mouse driver has to be provided. The
dialog box displays the operands, the arithmetic operator,
and the result of the operation. Fig. 8 illustrates how the
operands (234 and 132), the operator (x - multiplication),
and the result (30888) will appear on the monitor screen.
The dialog box containing this information can be moved
to any position within the working area of the screen.

Initialization

Data
processing

Preparing data
to display

Moving screen
windows

Drawing screen
windows

Changing the
operation

Defining color
for each pixel

Writing mouse
coordinates to

segment
displays7

bl
oc

ks
 ru

nn
in

g
in

 p
ar

al
le

l

Fig. 7. Parallel blocks of Handel-C specification

The Drawing screen windows block communicates

with the block Defining color for each pixel to provide for
data visualization, i.e. to display the dialog box (see fig.
8).

VGA monitor

mouse
coordinates

mouse RC100 prototyping
board of Celoxica [1]

234 × 132 = 30888

Fig. 8. Experiments with the arithmetical circuit
designed from a specification in Handel-C

The Changing the operation block enables the desired

operation (+, -, x, /) to be selected. This is done by
moving the mouse cursor over a sign position on the

screen and selecting an operation by clicking the left
mouse button. The button permits operations to be
switched in a cyclical sequence: 1) +; 2) –; 3) x; 4) /.
Thus, again it is necessary to interact with the mouse
driver.

The Defining color for each pixel block constructs a 24-
bit RGB vector for each pixel, which is composed of three
8 bit fields for each color (R – red, G – green and B –
blue) and establishes links with the VGA monitor driver.

The Writing mouse coordinates to segment displays
block communicates with the mouse and segment display
drivers and displays the horizontal and vertical positions
of the mouse (see fig. 8, where the segment displays show
the less significant digits 6A of the mouse coordinates in
hexadecimal notation, where the value 6 gives a
horizontal and A - a vertical coordinate). For the
considered example Celoxica mouse and VGA monitor
drivers [1] were used. However the circuit can also
interact with the described above reusable components to
provide interfaces with other peripheral devices.

This is a very simple example but it would become
much more complicated if the drivers that establish the
interfaces for data input and output were not available.

4.2. Design of a combinatorial processor for a

stand-alone board
The second project is to discover a minimal column

cover of an arbitrary Boolean matrix, i.e. to find a
minimal number of columns that have at least one value
“1” in each row of the given matrix. The project
implements the algorithm [9] and the hardware
architecture described in [6].

The basic operations of the algorithm involve the
application of so-called reduction and selection rules. The
reduction rules enable an initial matrix and intermediate
matrices (that appear on each iteration through the
algorithm) to be simplified. For the covering problem the
following reduction rules were applied: 1) if for i≠j rowi
& rowj = rowj then rowi is removed from the matrix; 2) if
for i≠j columni & columnj = columni then columni is
removed from the matrix; 3) if any column contains just
“0” values it is removed from the matrix; 4) if there is a
row that does not have any “1” value then covering
cannot be found; 5) if a row has just one “1” value then
the respective column must be included into the covering;
6) if all rows have more than one “1” value then the first
row from the top of the matrix that contains a minimum
number of ones is selected. For this row it is necessary to
examine all possible branches and the number of such
branches is equal to the number of ”1” values in the row.

Analysis of different combinatorial search algorithms
has shown that the following four types of application-
specific blocks are required: storage for matrices, a stack
memory, a functional unit for operations over discrete

vectors (i.e. rows/columns of matrices), and a control
circuit. Fig. 9 shows how different hardware resources
were used and lists the basic architectural blocks of the
processor that were described in Handel-C. All these
blocks are parameterizable and the respective Handel-C
code can be reused for similar applications.

RC100 board of Celoxica

PC

results
static
RAM

FPGA
Spartan II
XC2S200

Storage for matricesStorage for stacks

drivers of Celoxica

Variables
that model

general-
purpose
registers

Stack of masks
for rows

Stack of masks
for columns

Stack of results

Stack of branch
masks

Managing of the matrix

Computations over vectors Stacks were implemented
in external static RAM

Fig. 9. Reusable application-specific blocks for the

combinatorial processor

The algorithm requires the execution of operations over

individual rows and columns of the matrix. Thus dual-
address access to the matrix (see section 2 and fig. 3)
permits these operations to be accelerated significantly. In
order to minimize the required hardware resources just
one matrix is kept in memory. Extracting any minor is
achieved by masking some rows and columns. Thus the
techniques considered in section 2 (see fig. 3) become
very helpful because it significantly accelerates traversal
and examination of rows/columns that are not masked.
There are two blocks of static RAM available on the
RC100 board (256K x 36 bit each). Storage for matrices
was allocated in the first block and the second block was
used as a memory for a VGA monitor connected to the
board (see fig. 9). Different stacks required for the chosen
architecture [6] of the processor were also implemented in
static RAM (in the first block). The control circuit is
hidden in Handel-C code because this language uses pre-
defined specific synchronization mechanisms [1].
Reusable VHDL code for such circuit is considered in [5]
(see tutorial 10). Computations over vectors are carried
out through logical operations available in Handel-C. An
initial matrix can be loaded either from the PC through
the parallel port or from a keyboard. The results are
displayed on a VGA monitor.

An instance of the covering problem is presented in fig.
10. A graph in fig. 10 explains the sequence of steps that

have to be carried out. The rows are indicated by digits 1-
10 and the columns by letters A-I. If any element is
removed, it is crossed by a horizontal line. Circles show
an initial matrix U and how the matrix columns have been
selected step by step. Rectangles indicate the branch
points. This task may require the examination of more
than two alternatives for any branch point. For this reason
a stack of branch masks has to be implemented (see fig.
9). This enables the branches of the decision tree that
have already been examined to be avoided. Stop points
appear when the number of columns in the covering
obtained at the current step is equal to any previously
discovered covering. In this case it cannot be improved
upon and we can terminate traversing this branch.

U

row 8
1,2,3,4,5,6C,E,F,G

D I
8,9D I 7,8

B,H,I

A

A 7,10

The matrix
is empty

stopstop

A, D
covering

10
9
8
7
6
5
4
3
2
1

IHGFEDCBA







































=

000000011
011111110
100001000
111100001
011010011
100001010
011100011
011101011
101001100
001111011

U

Fig. 10. Execution of the considered combinatorial

search algorithm

Note that supplementary blocks (such as those that
provide visualization of the results, support for debugging
and experiments, etc.) consume lots of hardware
resources, which could otherwise be used for extending
the dimensions of the considered problem. For many
practical applications it is reasonable to separate the
primary and supplementary resources in such a way that
one FPGA is solely responsible for the problem that has
to be solved and the other for all the required auxiliary
functions. The latter could be displaying and scrolling
matrices, highlighting (or selecting by color) elements
considered in any intermediate step (such as any minor),
visualizing the contents of stacks, checking any currently
executing operation, and many others. Hardware
components that execute these operations can also be
included into the library, which on the one hand is
application-specific, but on the other hand can be reused
for a large number of practical applications that handle
discrete matrices. Thus the tools considered in sections 2,
3 can be employed directly because they provide data
exchange between primary and auxiliary blocks,
interactions with peripheral devices and support for
application-specific operations. It is important that this

functional separation enables any available tools for the
design of FPGA-based circuits to be combined. Indeed,
the primary block implemented in a separate FPGA might
be designed with the aid of a system-level specification
language (such as Handel-C) and the supplementary tools
can be developed in a hardware description language.

4.3. Design of a combinatorial processor for

PCI board
The Virtex-II Pro family FPGA XC2VP7 (ADM-XPL

PCI board of Alpha Data [2]) is much more powerful than
FPGAs of Spartan series and it permits the dimensions of
the matrices to be significantly increased. Besides, data
exchange with a PC through a PCI bus makes it possible
to increase the speed of execution of complex algorithms
that require distribution and parallel execution of different
sub-algorithms in general-purpose (such as PC) and
application-specific (such as combinatorial accelerator)
processors.

Fig. 11 depicts the basic architecture of the system that
has been implemented. Compared to the previous project
(see sub-section 4.2), the Handel-C code for the
combinatorial processor considered only changes the sizes
of the objects (variables and arrays) that are involved. A
set of C++ classes and functions provide auxiliary
operations supporting input/output data for matrices,
debugging facilities and a user-friendly graphical
interface realized through dialog boxes for working with
the combinatorial processor. These classes and functions
are very helpful because the ADM-XPL PCI board is
installed inside the PC and does not provide
communications with additional peripheral devices
(except for the RS232 serial port). Thus the C++ library is
responsible for such operations.

PC

PCI bus

C++ library, which provides
support for supplying matrices,

getting the result from FPGA and
graphical user-friendly interface

API functions of Alpha Data [2],
which interact with ADM-XPL

PCI board and execute
input/output operations

AlphaData ADM-XPL PCI board

Buffer
and

interface
unit

(Handel-C)

Combinatorial
Processor
(Handel-C)

FPGA XC2VP7 (Virtex-II Pro)

Fig. 11. Software/hardware tools for the combinatorial
processor

API functions supplied by Alpha Data [2] are used to

drive the board and to provide data exchange between the
PC and the combinatorial processor through PCI.

Two new blocks that support communications of the
FPGA with external hardware were designed in Handel-
C. The first block establishes the interface with the ADM-
XPL bus. The second block buffers the initial matrices
and stores the result to make it ready for transmission via
the PCI bus. Obviously these blocks can also be

considered as reusable components for future
applications.

Initial matrices have pre-defined dimensions and can
be either randomly generated using the C++ program with
a given percentage of zeros/ones or loaded from a file.
The latter permits experimentation using existing
benchmarks.

Reusing pre-designed fragments of Handel-C code
made it possible to develop, implement and test a quite
complicated digital system with additional software
support in less than two weeks.

Note that each reusable component can be considered
from two different points of view. Firstly it has a
particular specification such as in Handel-C or in VHDL.
Secondly it has a unique reusable structure, which, as a
rule, can be described using any relevant tool (language).
A reusable (particular) code can only be compiled
(synthesized) in environments that permit this code to be
used. On the other hand any reusable architecture
(structure) is independent of any environment. In order to
prove reusability of the considered application-specific
circuits (such as that shown in fig. 3) at a structural level,
a combinatorial accelerator for solving the Boolean
satisfiability problem has been described in VHDL,
implemented in a Virtex-EM family FPGA and tested
[12]. The results obtained show that the application-
specific blocks mentioned above are actually reusable for
a variety of digital systems that require handling of
discrete matrices.

4.4. Recursive sorting
The last project implements in hardware two recursive

procedures considered in [10], where they were described
in C. Similar C++ code can be found in tutorial 10
available from [5]. The first procedure receives incoming
external data (such as integers, strings, etc.) and
constructs a binary tree that simplifies many
computations, such as ordering the data, finding minimum
or maximum values, etc. The second procedure sorts data
on the basis of the binary tree. The hardware architecture
that might be used for such purposes was proposed in
[11]. Tutorial 10 in [5] extends the architecture [11] and
gives detailed explanations of the algorithms and their
hardware implementations in ISE 5.2 with a number of
ISE 5.2 examples (mainly in VHDL).

The project includes VHDL code for a hierarchical
FSM (HFSM) described in [11] that executes recursive
modular algorithms and carries out all control functions
for the two procedures considered above. This component
is obviously reusable and it is needed for solving different
tasks such as those formulated on binary trees (see, for
example, [10]), composed of relatively autonomous
modules, etc. ISE 5.2 projects that include HFSM can be
found in tutorial 10 [5]. Obviously all the debugging tools

discussed previously can be used for this project. Some of
them are invoked in the tutorial 10 [5].

5. Conclusion

The paper discusses reusable modules for the design
and debugging of FPGA-based digital circuits. They
permit the exchange of data between FPGAs and a
personal computer through various interfaces, interaction
with external memories, data visualization, etc. Two
general types of reusable components have been
described. They provide support for debugging and reflect
the specifics of some selected applications.

The library modules that have been developed can
easily be integrated into any application-specific system
that is going to be implemented on the basis of FPGA.
Four design examples demonstrating such facilities have
been described.

This work was partially supported by the grants FCT-
PRAXIS XXI/BD/21353/99 and POSI/43140/CHS/2001.

6. References

[1] Handel-C, DK1, RC100. [Online]. Available:

http://www.celoxica.com/.
[2] Alpha Data, [Online]. Available: http://www.alpha-

data.com.
[3] Spartan-IIE Development Platform, [Online]. Available:

www.trenz-electronic.de.
[4] Electronic Assembly products, [Online], Available:

http://www.lcd-module.de.
[5] http://webct.ua.pt, "2 semester", the discipline

“Computação Reconfigurável”, public domain is
indicated by the letter “i” enclosed in a circle. Login and
password for access to the protected section can also be
provided (via e-mails: skl@ieeta.pt, iouliia@det.ua.pt).

[6] V. Sklyarov and I. Skliarova, “Architecture of
Reconfigurable Processor for Implementing Search
Algorithms over Discrete Matrices”, Proceedings of
ERSA’2003, Las Vegas, USA, 2003.

[7] V. Sklyarov, “Reconfigurable models of finite state
machines and their implementation in FPGAs”, Journal
of Systems Architecture, 2002, 47, pp. 1043-1064.

[8] V. Sklyarov and I. Skliarova, “Design of Digital Circuits
on the Basis of Hardware Templates”, Proceedings of
ESA’2003, Las Vegas, USA, 2003.

[9] A.D. Zakrevski, Logical Synthesis of Cascade Networks,
Moscow: Science, 1981.

[10] B.W. Kernighan and D.M.Ritchie, The C Programming
Language, Englewood Cliffs, NJ: Prentice-Hall, 1988.

[11] V. Sklyarov, “Hierarchical Finite State Machines and
Their Use for Digital Control”, IEEE Transactions on
VLSI, Vol. 7, No 2, June, 1999, pp. 222-228.

[12] I. Skliarova and A.B. Ferrari, “A hardware/software
approach to accelerate Boolean satisfiability”, Proc. of
IEEE DDECS’2002, Brno, Czech Republic, pp. 270-277.

http://www.celoxica.com/
http://www.alpha-data.com/
http://www.alpha-data.com/
http://www.trenz-electronic.de/
http://www.lcd-module.de/
mailto:skl@ieeta.pt
mailto:iouliia@det.ua.pt

	Design Tools and Reusable Libraries for FPGA-Based Digital Circuits
	Abstract
	2. General characteristics of the design tools
	
	
	
	4. Design examples

	4.1. Design of an arithmetical circuit in Handel-C

