
Implicit vs. Explicit Resource Allocation in SMT Processors

Francisco J. Cazorla1, Peter M.W. Knijnenburg2, Rizos Sakellariou3,
Enrique Fernandez4, Alex Ramirez1, Mateo Valero1

1DAC, UPC, Spain, {fcazorla, aramirez, mateo}@ac.upc.es
2LIACS, Leiden University, the Netherlands, peterk@liacs.nl

3University of Manchester, UK, rizos@cs.man.ac.uk
4University of Las Palmas Gran Canaria, Spain, efernandez@dis.ulpgc.es

Abstract

In a Simultaneous Multithreaded (SMT) architecture,
the front end of a superscalar is adapted in order to be able
to fetch from several threads while the back end is shared
among the threads.

In this paper, we describe different resource sharing
models in SMTprocessors.We show that explicit resource
allocation can improve SMT performance. In addition, it
enables SMTs to solve other QoS requirements, not real-
izable before.

1. Introduction

Current processors take advantage of Instruction
Level Parallelism (ILP) to execute several instructions
from a single stream in parallel. However, there is
only a limited amount of parallelism available in each
thread, mainly due to data and control dependences.
Therefore, many hardware resources are used to ex-
ploit this limited amount of ILP, significantly degrad-
ing the performance/cost ratio of these processors. A
solution to overcome this problem is to share hardware
resources among different threads.

There exist different approaches to resource shar-
ing, ranging from multiprocessors to high performance
SMTs. In the former case, mostly only the higher lev-
els of the cache hierarchy are shared. Examples of
such processors include the Power4 [1]. In Simulta-
neous Multithreaded (SMT) architectures, first intro-
duced in [10][22][23], several threads are running to-
gether, sharing resources at the micro-architectural
level. This allows an SMT to increase throughput with
a moderate area overhead over a superscalar proces-
sor [2][12][17]. In an SMT, the front end of a super-
scalar is adapted in order to be able to fetch from sev-
eral threads while the back end is shared among the

threads. A fetch policy, e.g., icount [21], decides how in-
structions are fetched from the threads, thereby implic-
itly determining the way internal processor resources,
like rename registers or IQ entries, are allocated to the
threads. The common characteristic of many existing
fetch policies is that they attempt to increase through-
put and/or fairness [16] by stalling or flushing threads
experiencing L2 misses [3][7][15][20], or reduce the ef-
fects of misspeculation by stalling on hard-to-predict
branches [13]. Current trends in processor architec-
ture show that many future microprocessors will have
some form of SMT. Examples of SMTs include the Pen-
tium4 [17] and the Power5 [12], and embedded proces-
sors like the META [14].

However, in current SMT organizations, threads not
only share resources but compete for them. This com-
petition can hurt performance since threads may be
allocated resources that they cannot actually use for
a long time, while other threads that could use these
resources are starved for them. As an example, con-
sider that a thread experiences an L2 cache miss. This
miss may take hundreds of cycles to resolve. During
this time, the missing load instruction and all instruc-
tions dependent on this load cannot make any progress.
Nevertheless, they occupy IQ entries and hold physi-
cal registers. In current SMT organizations, during the
time that the missing load is serviced, the offending
thread can bring more instructions into the pipeline.
Hence, the offending thread occupies more and more
resources that cannot be used by other threads, de-
grading the situation fast. It is clear that this situation
degrades SMT performance.

The reason that this can happen is that in current
SMT organizations, there is no explicit resource allo-
cation. It is the instruction fetch policy that decides
from which threads instructions are brought into the
processor. In this sense, the fetch policy acts like a

Proceedings of the EUROMICRO Systems on Digital System Design (DSD’04) 
0-7695-2203-3/04 $ 20.00 IEEE 



hardware scheduler that works independently from the
software scheduler inside the Operating System. This
means that the OS level scheduler can have negative in-
terference with the hardware scheduler inside the pro-
cessor. Once instructions are inside, they are assigned
resources blindly. The example above shows that this
does not always lead to the best results. Thus, it is
clear that in order to exploit the available resources
in an SMT processor maximally, implicit resource allo-
cation by means of the instruction fetch policy is not
adequate and that a more explicit resource allocation
scheme is required.

In this paper, we describe different resource shar-
ing approaches in SMT processors. We show that if ex-
plicit resource allocation is used, the performance of
SMT processors may improve. In particular, we show
two different mechanisms that use explicit resource al-
location, namely, a mechanism that dynamically dis-
tributes resources over threads in order to maximize
throughput and fairness, and predictable performance
for a thread in a workload, formulated as a notion of
Quality of Service for SMT processors.

This paper is structured as follows. Section 2 dis-
cusses briefly our experimental setup. Section 3 dis-
cusses a resource allocation policy to improve through-
put and fairness. Section 4 discusses how to obtain pre-
dictable performance for a designated thread by means
of resource allocation.These last two sections also in-
clude discussions of related work and comparisons of
these papers with ours. We draw some conclusions in
Section 5.

2. Experimental Setup

We use a standard 4-context SMT configuration.
There are 6 integer, 3 FP, and 4 load/store functional
units and 32-entry integer, load/store, and FP IQs.
There are 320 physical registers shared by all threads.
Each thread has its own 256-entry reorder buffer. We
use separate 64K, 2-way data and instruction caches
and a unified 512KB 8-way L2 cache. The latency from
L2 to L1 is 10 cycles, and from memory to L2 100 cy-
cles. We use an improved version of the SMTSIM sim-
ulator [21]. We run 300 million most representative in-
structions for each benchmark. We consider workloads
of 2, 3, and 4 threads that are of two different types:
threads that exhibit a high number of L2 misses of
over 1% of the dynamic load instructions, called Mem-
oryBounded (MEM) threads. These threads have a low
full speed. Secondly, threads that exhibit good mem-
ory behavior and have a high full speed, called ILP
threads. We consider workloads in which all threads

are ILP, all threads are MEM, or where there is a MIX
of these types of threads.

3. Increasing Throughput and Fairness

In this section, we explain a mechanism that uses
explicit resource allocation to improve throughput and
fairness in SMT processors. By fairness we mean that
the slowdown a thread experiences due to the fact that
it is executed in a workload on an SMT, is the same
for each thread in that workload [16].

3.1. Related Work

Current SMT processor proposals use either static
resource allocation or fully flexible resource distribu-
tion. The static sharing model [9][17][18] evenly splits
critical resources (registers and instruction queues)
among all threads, ensuring that no single thread mo-
nopolizes a critical resource, causing other threads to
wait for resources. However, this method lacks flex-
ibility and can cause many resources to remain idle
when one thread has no need for them, while the other
threads could benefit from additional resources.

An alternative to static partitioning of resources is
to have a common pool of resources that is shared
among all threads. In this environment, the fetch pol-
icy determines how resources are shared, as it decides
which threads enter the processor and which are left
out.

Round Robin [21] is the most basic form of fetch
and simply fetches instructions from all threads alter-
natively, disregarding the resource use of each thread.

Icount [21] prioritizes threads with few instructions
in the pre-issue stages and presents good results for
threads with high ILP. However, an SMT has difficul-
ties with threads with high L2 miss rate. When this sit-
uation happens, icount does not realize that a thread
can be blocked and does not make progress for many
cycles. As a result, shared resources can be monop-
olized for a long time. This situation is more acute
for fetch mechanisms that fetch instructions from up
to two threads each cycle. If we use high performance
fetch mechanisms like [8], that provides as high perfor-
mance as previous ones, this situation is reduced.

Stall [20] is built on top of icount to avoid the prob-
lems caused by threads with a high cache miss rate. It
detects that a thread has a pending L2 miss and pre-
vents the thread from fetching further instructions to
avoid resource abuse. However, L2 miss detection al-
ready may be too late to prevent a thread from occu-
pying most of the available resources. Furthermore, it is
possible that the resources allocated to a thread are not

Proceedings of the EUROMICRO Systems on Digital System Design (DSD’04) 
0-7695-2203-3/04 $ 20.00 IEEE 



required by any other thread, and so the thread could
very well continue fetching instead of stalling, produc-
ing resource under-use.

Flush [20] is an extension of stall that tries to cor-
rect the case in which an L2 miss is detected too late by
deallocating all the resources of the offending thread,
making them available to the other executing threads.
However, it is still possible that the missing thread is
being punished without reason, as the deallocated re-
sources may not be used (or fully used) by the other
threads. Furthermore, by flushing all instructions from
the missing thread, a vast amount of extra fetch and
power is required to redo the work for that thread.

Flush++ [3] based on the idea that stall performs
better than flush for workloads that do not put a
high pressure on resources, that is, workloads with few
threads that have high L2 miss rate. Conversely, flush
performs better when a workload has threads that of-
ten miss in the L2 cache, and hence the pressure on the
resources is high. Flush++ combines flush and stall : it
uses cache behavior of threads to switch among flush
and stall in order to provide better performance.

Data Gating [7] is a policy that attempts to reduce
the effects of loads missing in the L1 data cache by
stalling threads on each L1 data miss. However, not all
L1 misses cause an L2 miss. We have measured that for
memory bounded threads less than 50% of L1 misses
cause an L2 miss. Thus, to stall a thread every time it
experiences an L1 miss may be too severe.

Predictive Data Gating [7] and DC-PRED [15] work
like stall , that is, they prevent a thread from fetching
instructions as soon as a cache miss is predicted. By
using a miss predictor, they avoid detecting the cache
miss too late, but they introduce yet another level of
speculation in the processor and may still be saving
resources that no other thread will use. Furthermore,
cache misses prove to be very hard to predict accu-
rately [24], reducing the advantage of these techniques.

DWarn [4] adapts its behavior to the number of
running threads. If there are few running threads, it
stalls delinquent threads with L1 misses. When the
number of threads increases, it reduces resource under-
utilization by only reducing the fetch priority of delin-
quent threads, instead of stalling or flushing them.

3.2. Explicit Resource Allocation

Current fetch policies do not exercise direct con-
trol over how resources are distributed among threads.
They use only indirect indicators of potential resource
abuse by a given thread, for example, after L2 cache
misses. Because no direct control over resources is exer-
cised, it is still possible that a thread allocates most of

0

2

4

6

8

10

12

14

16

18

20

ILP MIX MEM

sm
ar

tR
A

 h
m

ea
n 

im
pr

ov
em

en
t (

%
) DG

ICOUNT
FLUSH

Figure 1. Hmean improvement of smartRA over
various I-fetch policies

the processor resources, causing other threads to stall.
Also, to make things worse, it is a common situation
that the thread which was allocated most of the re-
sources will not release them for a long period of time.
There are fetch policies in the literature [7][15][20] that
try to detect this situation in order to prevent it by
stalling the thread before it is too late, or even to cor-
rect the situation by squashing the offending thread to
make its resources available to other threads, with vary-
ing degrees of success. The main problem of these poli-
cies is that in their attempt to prevent resource mo-
nopolization they may introduce resource under-use,
because they are preventing a thread from using a set
of resources that no other thread requires.

In [5], we show that the performance of an SMT pro-
cessor can significantly be improved if a direct control
on resource allocation is exercised. At any given time,
threads must be forced to use a limited amount of re-
sources. Otherwise, they could monopolize shared re-
sources. In order to control the amount of resources
given to each thread, we introduce the concept of re-
source allocation policy. A resource allocation policy
controls the fetch slots, as instruction fetch policies do,
but in addition it exercises a direct control over all
shared resources. This direct control allows a better
use of resources, reducing resource under-utilization.
The main idea behind a smart resource allocation pol-
icy is that each program has very different resource de-
mands. Even more, a given program has different re-
source demands during its execution. We show that the
better we identify these demands and adapt resource
allocation to them, the higher the performance of the
SMT processor gets [5].

Fairness results using the Harmonic Mean as a met-
ric, shown in Figure 1, show that our smart Resource
Allocation (smartRA) mechanism improves all other

Proceedings of the EUROMICRO Systems on Digital System Design (DSD’04) 
0-7695-2203-3/04 $ 20.00 IEEE 



0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

gzip full
speed

gzip +  
eon

gzip +   
art

gzip + gcc
wupwise

gzip +  
twolf  mcf

gzip + gap
apsi crafty

gzip + mcf
equake
swim

1-context 2-contexts 3-contexts 4-contexts

g
zi

p
 IP

C

ICOUNT
FLUSH

Figure 2. IPC of gzip for different contexts and
different fetch policies

policies for all workload types. This indicates that
smartRA is more fair than the other policies. This is
caused by the fact that previously proposed policies fa-
vor ILP threads at the cost of degrading MEM threads.
SmartRA proceeds the other way around by helping
threads in slow phases as they do not harm the per-
formance of threads in ILP phases. As a result, smar-
tRA improves flush by 7.3%, DG by 13.5% and icount
by 7.8%, on average in fairness.

From the fetch policies, flush achieves the best re-
sults. On average, smartRA improves flush by 2% in
throughput and 7% in fairness. In addition to this,
smartRA has another advantage over flush: it does
not require to squash instructions in the pipeline. The
amount of instructions that needs be refetched by flush
is significant: up to 87% for the workloads considered
in our work [5].

4. Predictable Performance

Approaches currently employed for resource shar-
ing in SMTs may disagree with targets set by the OS.
This is a consequence of the additional level of schedul-
ing decisions, introduced by resource sharing inside the
SMT, which has been largely examined independently
of the more traditional OS level co-scheduling phase,
that is, the construction of the workload.

A problem with all the fetch policies with implicit
resource allocation is that it is unpredictable what the
performance of a certain thread in a workload actu-
ally is. Figure 2 shows the IPC of the gzip bench-
mark when it is run alone (full speed) and when it is
run with other threads using two different fetch poli-
cies, icount [21] and flush [20]. As we can see, its IPC
varies much, depending on the fetch policy as well as
characteristics of the other threads running in the con-

text. For instance, in a 3 thread context, its IPC can
be higher than in a 2 thread context. This is caused by
the fact that management of resources (IQ entries, reg-
isters, FUs) is not explicit. Currently, there is no fetch
policy that can enforce that resources are allocated to a
particular thread in such a way that this thread would
perform similarly regardless its context.

4.1. Related work

To the best of our knowledge, only few papers have
identified the need for a closer interaction between
SMT co-scheduling and resource sharing algorithms.
However, these papers are concerned with job priori-
tization which is a different problem than the one ad-
dressed in the present paper which is concerned with
guaranteeing that particular jobs achieve a required
throughput. In [11], the authors focus on the explo-
ration of co-scheduling using representative resource
sharing policies. It is recognized that in SMTs there
is a problem of predicting the performance of a job, for
instance to guarantee a certain performance require-
ment. It is suggested that, when necessary, this prob-
lem is bypassed by statically assigning a fixed number
of resources. Besides the fact that such a static alloca-
tion may be under-utilizing the system, it is not clear
what the appropriate static allocation would be if we
had to achieve a certain percentage of the maximum
speed. In Figure 3(a), we show the IPC of the gzip
benchmark when it is statically assigned a percentage
of the hardware resources. We see that, for the same
partition of resources, gzip achieves different IPC val-
ues, with a variation of up to 36% depending on the
workload.

In [19], several OS level job schedulers are proposed
to enforce priorities. The SOS policy runs jobs alone
on the machine to determine their full speed, runs sev-
eral job mixes in order to determine the best mix that
exhibits symbiosis, and finally runs jobs alone in or-
der to meet priorities. This approach may under-utilize
the machine resources since jobs need to be run alone
several frames. Next, they propose an extension to the
icount fetch policy by including handicap numbers that
reflect the priorities of jobs. This approach suffers from
the same shortcomings as the standard icount policy,
namely, that resource management is implicitly done
by the fetch policy. Therefore, although they are able
to prioritize threads, running times of jobs are still hard
to predict, rendering this approach unsuited for real-
time constraints. For example, in Figure 3(b) we show
the IPC of gzip for different handicaps and workloads.
We observe that running gzip with the same handicap
value leads to different IPC values, with a variation of

Proceedings of the EUROMICRO Systems on Digital System Design (DSD’04) 
0-7695-2203-3/04 $ 20.00 IEEE 



0

1

2

3

4

5

25% 50% 75%
Amount of resources reserved for gzip

gz
ip

 IP
C

gzip + twolf gzip + bzip2

36%

12%
5%

0

1

2

3

4

5

8 16 32
handicap value

gz
ip

 IP
C

gzip + twolf gzip + bzip2

60%
30%33%

Figure 3. IPC of gzip for different: (a) static resource divisions; (b) handicap values

Hardware scheduler

SMT

Pool of jobs
to execute

Workload

OS job
scheduler

Execution time
information

(a) Current approach

Execution time
information

Information about
success in fulfilling

OS directives

Pool of jobs
to execute

Resource conscious
OS job scheduler

SMT (with hardware support for
the OS directives)

Workload Directives about
how to execute jobs

Resource conscious

(with hardware support for
OS directives)

(b) Proposed approach

Figure 4. Two views of OS/SMT collaboration

up to 60% depending on the workload. Hence, these
policies achieve some type of prioritization of threads.
However, they are still far from the QoS requirement
of this section, namely, guaranteeing a certain through-
put for particular jobs in the workload.

4.2. Our approach

As opposed to traditional monolithic approaches
where the OS has no control over the resource shar-
ing of an SMT architecture (see Figure 4(a)), our ap-
proach is based on a resource sharing policy that is con-
tinuously adapted as it needs to take into account OS
requirements (see Figure 4(b)).

To tackle this challenge, we propose a generic ap-
proach to resource sharing for SMTs formulated as a

QoS problem. This approach is inspired by QoS in net-
works in which processes are given guarantees about
bandwidth, throughput, or other services. Analogously,
in an SMT resources can be reserved for threads in or-
der to guarantee a required performance. Our view is
that this can be achieved by having the SMT proces-
sor provide ‘levers’ through which the OS can fine tune
the internal operation of the processor as needed. Such
levers can include prioritizing instruction fetch for par-
ticular threads, reserving parts of the resources like IQ
entries, etc.

In order to measure the effectiveness of a solution
to a QoS problem, we propose to use the notion of
QoS space. We observe that on an SMT processor, each
thread, when running as part of a workload, reaches a
certain percentage of the speed it would achieve when

Proceedings of the EUROMICRO Systems on Digital System Design (DSD’04) 
0-7695-2203-3/04 $ 20.00 IEEE 



0

20

40

60

80

100

0 20 40 60 80 100

twolf relative IPC

eo
n 

re
la

tiv
e 

IP
C

dg

flush

icount

maximum 
throughput

IPC = 3.8

Maximum throughput 
line. Slope = -0.32

fairness line

Maximum  throughput 
with fairness

Reachable area

IPC = 1.2

Figure 5. QoS space for three fetch policies and
important QoS points and areas

running alone on the machine. Hence, for a given work-
load consisting of N applications and a given instruc-
tion fetch policy, these percentages give rise to a point
in an N -dimensional space, called the QoS space. For
example, Figure 5 shows the QoS space for two threads,
eon and twolf, as could be obtained for the Pen-
tium4 [17] or the Power5 [12]. In this figure, both x-
and y-axis span from 0 to 100%. We have used three
fetch policies: icount [21], flush [20], and data gating
(dg) [7] in our baseline configuration. Theoretically, if
a policy leads to the point (x, y), then it is possible to
reach any point in the rectangle (0, 0), (x, y) by judi-
ciously inserting empty fetch cycles. Hence, this shaded
area is called the reachable part of the space for the
given fetch policies. Figure 5 also shows a more gen-
eral picture in which the dashed curve indicates points
that intuitively could be reached using some fetch and
resource allocation policy. Obviously, by assigning all
fetch slots and resources to one thread, we reach 100%
of its full speed. Conversely, it is impossible to reach
100% of the speed of each application at the same time
since they have to share resources.

In Figure 5 we see that the representation of the
QoS space also provides an easy way to visualize other
metrics used in the literature. Points of equal weighted
speedup, as defined in [19], lie on the same line that
is perpendicular to the bottom-left top-right diagonal.
Points of equal throughput lie on a single line whose
slope is determined by the ratio of the maximum IPCs
of each thread (in this case, −1.2/3.8 = −0.32). Such
a point with maximum throughput is also indicated
in the figure. Finally, points near the bottom-left top-
right diagonal indicate fairness, in the sense that each
thread achieves the same proportion of its maximum
IPC. In either case, maximum values lie on those lines
that have a maximum distance from the origin.

Each point or area (set of points) in the reachable

subspace entails a number of properties of the execu-
tion of the applications: maximum throughput; fair-
ness; real-time constraints; power requirements; a guar-
antee, say 70%, of the maximum IPC for a given thread;
any combination of the above, etc. In other words, each
point or area in the space represents a solution to a QoS
requirement. It is the responsibility of the OS to select
a workload and set a QoS requirement and it is the re-
sponsibility of the processor to provide ways to enable
the OS to enforce such requirements. The processor
should dynamically adjust the resource allocation and
attempt to converge to a point or area in the QoS space
that corresponds to a QoS requirement. Note that the
notion of QoS space may be applicable to other quan-
tities, not only percentage of IPC.

To implement such levers, we consider the SMT
as having a collection of sharable resources and add
mechanisms to control how these resources are actu-
ally shared. These mechanisms include prioritizing in-
struction fetch for particular threads, reserving parts
of the resources like instruction or load/store queue
entries, prioritizing issue, etc. The OS, knowing the
needs of applications, can exploit these levers to nav-
igate through the QoS space. This solution should be
parameterized and maximize the reachable part of the
space so that it is generally usable and provides oppor-
tunities for fine tuning the machine for arbitrary work-
loads and QoS requirements.

In order to satisfy a wide range of varying QoS re-
quirements, it is essential to have policies that return
points that maximize the reachable part of the space.
This means that we need to find policies that can sac-
rifice some IPC from one application for a better IPC
for another. Whether this trade-off is acceptable de-
pends on the particular circumstances. What is impor-
tant is that, instead of considering maximum through-
put or fairness as the ultimate objective, we want to
provide as much flexibility as possible.

4.3. Explicit resource allocation

In [6] we move a step further than existing work and
we propose a novel approach for a dynamic interaction
between the OS and the processor which allows the for-
mer to pass specific requests onto the latter. In partic-
ular, we focus on the following challenge: given a work-
load of N applications1 and a Predictable Performance
Thread (PPT) in this workload, find a resource shar-
ing policy to accomplish with these to objectives.

1 We assume throughout the paper that the workload is smaller
than or equal to the number of hardware contexts supported
by the processor.

Proceedings of the EUROMICRO Systems on Digital System Design (DSD’04) 
0-7695-2203-3/04 $ 20.00 IEEE 



0

10

20

30

40

50

60

70

80

90

100

2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4

10% 20% 30% 40% 50% 60% 70% 80% 90%
percentage to achieve and number of threads in the workload

re
la

ti
ve

 IP
C

 o
f 

th
e 

P
P

T
II
IM
MI
MM
Target

Figure 6. Realized IPC values for the PPT. The x-axis shows the target percentage of full speed of the PPT
and size of the workloads. The four different bars represent the four different types of workload

• Ensure that PPT runs at (at least) a given target
IPC that represents X% of the IPC it would get
if it were executed alone on the machine.

• Maximize the throughput for the remaining Un-
predictable Performance Threads (UPTs) in the
workload.

In [6] we show that it is possible to solve this chal-
lenge. The basis of our mechanism rests on the obser-
vation that in order to realize X% of the overall IPC
for a given job, it is sufficient to realize X% of the max-
imum possible IPC at every instant through the execu-
tion of that job. We employ two phases, that are exe-
cuted in alternate fashion.

• During the sample phase, all shared resources are
given to the PPT and UPTs are temporarily
stopped. As a result, we obtain an estimate of the
full speed of the PPT during this phase, called the
local IPC. In order to counteract thread interfer-
ence, this phase is divided in a warmup phase of
50,000 cycles and an actual sample phase of 10,000
cycles.

• During the tune phase, our mechanism dynami-
cally varies the amount of resources given to the
PPT in order to achieve a target IPC that is given
by the local IPC computed in the last sample pe-
riod times the required percentage given by the

OS. The resources considered in this paper are re-
name registers, instruction and load/store queue
entries, and ways in the 8-way set associative L2
cache. We tune resource allocation every 15,000
cycles for a period of 1.2 million cycles.

In Figure 6 we show for target percentages rang-
ing from 10 to 90% the percentage of the full speed of
the PPT that we achieve. We have used four different
types of workload. We have considered the cases where
the PPT is a high speed ILP thread or a slow memory
bounded thread. The UPTs can also be of this nature.
We have considered workloads of 2, 3, and 4 threads.
The bars in the figure give averages over these num-
ber of threads. We see that we reach the required per-
centage exactly for target percentages of 20 to 80%.
Only for the border cases, 10% and 90%, we are some-
what off target.

In [6] we have also shown that the throughput of the
UPTs remains significant. In fact, for a number of tar-
get percentages of the PPT and a number of workloads,
throughput of the UPTs exceeds their throughput un-
der icount or flush. Even for high target percentages of
the PPT, the throughput of the UPTs is not destroyed.
This shows that in our mechanism the UPTs can use
whatever spare resource that is left by the PPT.

Proceedings of the EUROMICRO Systems on Digital System Design (DSD’04) 
0-7695-2203-3/04 $ 20.00 IEEE 



5. Conclusions

Current SMTs implicitly share resources among
threads, which means that the OS is blind to this as-
signment of resources. However, to provide QoS for
SMT processors, explicit resource allocation is re-
quired. We have presented two examples of QoS
requirements where the OS can benefit from ex-
plicit resource allocation. Our results show that
explicit resource allocation can improve the per-
formance of SMT processors and moreover enable
them to solve QoS requirements not realizable be-
fore.

Acknowledgments

This work has been supported by the Ministry
of Science and Technology of Spain under contract
TIC-2001-0995-C02-01, and grant FP-2001-2653 (Fran-
cisco J. Cazorla), the HiPEAC European Network of
Excellence, an Intel fellowship, and the EC IST pro-
gramme (contract HPRI-CT-2001-00135). The authors
would like to thank Oliverio J. Santana, Ayose Falcón,
and Fernando Latorre for their work on the simula-
tion tool.

References

[1] D.C. Bossen, J.M. Tendler, and K. Reick. Power4 sys-
temdesign forhigh reliability. IEEEMicro, 22(2):16–24,
2002.

[2] J. Burns and J-L. Gaudiot. Quantifying the SMT layout
overhead- does SMT pull its weight? In Proc. HPCA-6,
pages 109–120, 2000.

[3] F. J. Cazorla, E. Fernandez, A. Ramirez, and M. Valero.
Improvingmemory latency aware fetch policies for SMT
processors. In Proc. ISHPC-5, pages 70–85, October
2003.

[4] F. J. Cazorla, E. Fernandez, A. Ramirez, and M. Valero.
DCache Warn: an I-Fetch policy to increase SMT effi-
ciency. In Proc. IPDPS, 2004.

[5] F.J. Cazorla, E. Fernandez, A. Ramirez, and M. Valero.
Approaching a smart sharing of resources in SMT pro-
cessors. In Proc. WCED, 2004.

[6] F.J. Cazorla, P.M.W. Knijnenburg, R. Sakellariou,
E. Fernandez, A. Ramirez, and M. Valero. Predictable
performance in SMT processors. In Proc. Computing
Frontiers, 2004.

[7] A. El-Moursy and D.H. Albonesi. Front-end policies for
improved issue efficiency in SMT processors. In Proc.
HPCA-9, pages 31–42, 2003.

[8] Ayose Falcon, Alex Ramirez, and Mateo Valero. A low
complexity, high-performance fetch unit for simultane-
ous multithreading processors. Proceedings of the 12th
Intl. Conference on High Performance Computer Archi-
tecture, pages 244–253, February 2004.

[9] R. Goncalves, E. Ayguade, M. Valero, and P. O. A.
Navaux. Performance evaluation of decoding and dis-
patching stages in simultaneousmultithreaded architec-
tures. In Proc. Computer Architecture and High Perfor-
mance Computing, 2001.

[10] H. Hirata, K. Kimura, S. Nagamine, Y. Mochizuki,
A.Nishimura, Y.Nakase, and T. Nishizawa. An elemen-
tary processor architecture with simultaneous instruc-
tion issuing from multiple threads. In Proc. ISCA-19,
pages 136–145, 1992.

[11] R. Jain, C.J. Hughes, and S.V. Adve. Soft real-time
scheduling on simultaneous multithreaded processors.
In Proc. RTSS-23, pages 134–145, 2002.

[12] R. Kalla, B. Sinharoy, and J. Tendler. IBM Power5
chip: A dual-core multithreaded processor. IEEE Mi-
cro, 24(2):40–47, 2004.

[13] P.M.W. Knijnenburg, A. Ramirez, J. Larriba, and
M. Valero. Branch classification for SMT fetch gating.
In MTEAC-6, pages 49–56, 2002.

[14] M. Levy. Multithreaded technologies disclosed at MPF.
Microprocessor Report, November 2003.

[15] C. Limousin, J. Sebot, A. Vartanian, and N. Drach-
Temam. Improving 3D geometry transformations on
a simultaneous multithreaded SIMD processor. In Proc.
ICS-15, pages 236–245, 2001.

[16] K. Luo, J. Gummaraju, and M. Franklin. Balancing
throughput and fairness in SMT processors. In Proc. IS-
PASS, pages 164–171, 2001.

[17] D.T.Marr,F.Binns,D.L.Hill,G.Hinton,D.A.Koufaty,
J. A. Miller, and M. Upton. Hyper-threading technol-
ogy architecture and microarchitecture. Intel Technol-
ogy Journal, 6(1), February 2002.

[18] S. E. Raasch and S. K. Reinhardt. The impact of re-
source partitioning on SMT processors. In Proc. PACT-
12, pages 15–25, 2003.

[19] A. Snavely, D.M. Tullsen, and G. Voelker. Symbiotic
job scheduling with priorities for a simultaneous multi-
threadedprocessor. InProc. ASPLOS-9, pages234–244,
2000.

[20] D. Tullsen and J. Brown. Handling long-latency loads
in a simultaneous multithreaded processor. In Proc.
MICRO-34, pages 318–327, 2001.

[21] D. Tullsen, S. Eggers, J. Emer, H. Levy, J. Lo, and
R. Stamm. Exploiting choice: Instruction fetch and is-
sue on an implementable simultaneous multithreading
processor. In Proc. ISCA-23, pages 191–202, 1996.

[22] D.M. Tullsen, S. Eggers, and H. M. Levy. Simultane-
ous multithreading: Maximizing on-chip parallelism. In
Proc. ISCA, pages 392–403, 1995.

[23] W. Yamamoto and M. Nemirovsky. Increasing super-
scalar performance through multistreaming. In Proc.
PACT-4, pages 49–58, 1995.

[24] A. Yoaz, M. Erez, R. Ronen, and S. Jourdan. Specu-
lation techniques for improving load related instruction
scheduling. In Proc. ISCA-26, May 1999.

Proceedings of the EUROMICRO Systems on Digital System Design (DSD’04) 
0-7695-2203-3/04 $ 20.00 IEEE 


	footer1: 


