
Abstract
This paper proposes a formal verification methodology

which smoothly integrates with component-based system-
level design, using a divide and conquer approach. The
methodology assumes that the system consists of several
reusable components, each of them already verified by their
designers and which are considered correct under the
assumption that the environment satisfies certain properties
assumed by the component. What remains to be verified is
the glue logic inserted between the components. Each such
glue logic is verified one at a time using model checking
techniques.

Experiments, performed on a real-life example (mobile
telephone), demonstrating the efficiency and intuitivity of the
methodology, are moreover thoroughly presented. Three dif-
ferent properties have been verified on one part of the system.

1. Introduction

It is a well-known fact that we increasingly often inter-
act with electronic devices in our everyday lives. Such elec-
tronic devices are, for instance, cell phones, PDAs and
portable music devices such as Mp3-players. Moreover,
other, traditionally mechanical, devices are becoming more
and more computerised. Examples of such devices are cars
or washing machines. Several such devices are in addition
highly safety critical, such as aeroplanes or medical equip-
ment. In fact, in 1999, 99% of all microprocessors were
used in the type of systems mentioned above (embedded
systems). Only the remaining 1% was used in general pur-
pose computers [1]. This situation indicates the big impor-
tance of embedded systems.

Obviously, it is both very error-prone and time-consuming
to design such complex systems. At the same time there is a
strong economical incentive to decrease the time-to-market.

In order to manage the design complexity and to
decrease the development time, designers usually resort to
reusing existing components (so called IP blocks) so that
they do not have to develop certain functionality themselves
from scratch. These components are either developed in-
house by the same company or acquired from specialised IP
vendors [2, 3].

Formal verification tools analyse the system model, cap-
tured in a particular design representation, to find out
whether it satisfies certain properties. In this way, the verifi-
cation tool can trap many design mistakes at early stages in
the design.

Since the trend is that systems are built more and more
with reusable components, it becomes increasingly impor-
tant to develop verification methodologies which can effec-
tively cope with this situation and take advantage of it.

There are several aspects which make this task difficult.
One is the complexity of the systems, which makes simulation
based techniques very time consuming. On the other hand,for-
mal verification of such systems suffers from state explo-
sion. However, it can often be assumed that thedesign of
each individual component has been verified [4] andcan be
supposed to be correct. What remains to be verified is the
interface logic and the interaction between components.
Such an approach can handle both the complexity aspects
(by a divide and conquer strategy) and the lack of informa-
tion concerning the internals of predefined components.

Assume-guarantee reasoning [5] is a method of combin-
ing the results from the verification of individual compo-
nents to draw a conclusion about the whole system
following certain rules. This has the advantage of avoiding
the state explosion problem by not having to actually compose
the components, but each component is verified separately.

In this paper we propose a formal verification approach
which smoothly integrates with a component based system-
level design methodology for embedded systems. Once the
model corresponding to the interface logic has been pro-
duced, the correctness of the system can be formally veri-
fied. The verification is based on the interface properties of
the interconnected components and on abstract models of
their functionality. Our approach represents a contribution
towards increasing both design and verification efficiency in
the context of a methodology based on component reuse.
This paper mainly demonstrates this methodology on a real-
life example (mobile telephone) by verifying three different
properties. Each step of the methodology which has to be
taken is carefully presented.

2. Methodology Overview

In this paper, we consider systems which are built using
predesigned components (IP blocks). Figure 1 illustrates
such a system. Each component, in the figures throughout
this paper, is depicted as a box with circles on its edge. The
circles represent the ports of the component, which it uses
for communication with other components.

Theglue logicinserted between communicating compo-
nents is depicted in Figure 1 as clouds. For example, the
interfaces of two or more components connecting to each

A Formal Verification Methodology for IP-based Designs

Daniel Karlsson, Petru Eles, Zebo Peng
IDA, Linköpings universitet

{danka, petel, zebpe}@ida.liu.se

other may use different incompatible communication proto-
cols. Thus, they cannot communicate directly with each
other. For that reason, it is necessary to insert an adaptation
mechanism between the components in order to bridge this
gap. This adaptation mechanism would then be the glue logic.

2.1 Objective and Assumptions

The objective of the proposed methodology is to verify
the glue logic so that it satisfies the requirements imposed
by the connected components.

The methodology is based on the following assumptions:
• The components themselves are already verified.
• The components have some requirements on their environ-

ment associated to them, expressed in a formal notation.
The first assumption states that the components themselves
are already verified by their providers, so they are consid-
ered to be correct. What remains to be verified is the glue
logic and the interaction between the components through
the glue logic.

According to the second assumption, the components
impose certain requirements on their environment. These
requirements have to be satisfied in order for the component
to function correctly. The requirements are expressed by
formulas in a formal temporal logic, in terms of the ports in
a specific interface. It is important to note that these formu-
las do not describe the behaviour of the component itself,
but they describe how the component requires the rest of the
system (its surrounding) to behave in order to work cor-
rectly. In this work, we use (timed) Computation Tree
Logic, (T)CTL [5] for expressing these requirements. How-
ever, other similar logics may be used as well.

(eq. 1) provides an example of a CTL formula being a
constraint associated to a component. This example, also
shown in Figure 2, is taken from a design using a connec-
tion-based protocol for communication. It consists of a
component wanting to send a message to another compo-

nent at regular time intervals. The sending component is not
aware of the connection-based protocol and consequently
all its messages must pass through a third component called
Protocol Adapter. The protocol adapter implements the cho-
sen protocol and was supplied and verified by a provider.

However, the protocol adapter needs an explicit com-
mand to connect to the receiving component, and messages
to be sent must be preceded by a particular send command.
Such commands are received through port . The adapter
moreover provides the glue logic with information about the
connection status through port . Receiving messages
arrive through port . It is the task of the glue logic to
supply the adapter with the appropriate commands and to
take care of the messages produced by it.

(eq. 1) is associated to the protocol adapter stating thatit
is forbidden to send any message unless first connected.

(eq. 1)

A set of such formulas is, as mentioned previously, asso-
ciated to each interface of every component.

2.2 Performing the Verification

The glue logic inserted between two components is to be
verified so that it satisfies the requirements imposed by the
connected components. Figure 3 illustrates the basic proce-
dure. Model checking is used as the underlying verification
technique. The model of the glue logic together with models
corresponding to the interface behaviour of the intercon-
nected components (calledstubs) are given to the model
checker together with the (T)CTL formulas describing the
properties to be verified.

A stub is a model which behaves exactly in the same
way as the component with respect to the interface consist-
ing of ports connected to the glue logic under verification.

As a result of the verification, the model checker replies
whether the properties are satisfied in the model or not. If
they are not, the model checker provides a diagnostic trace
in order to tell the designer what caused the properties to be
unsatisfied.

Component 1 Component 2

Component 3

Component 4 Component 5 Component 6

Ports

Glue Logic

Figure 1. Targeted system topology

msgout

Sender in

out

status

send

rec

Protocol
Adapter

Glue

Logic

Figure 2. A concrete example of a situation where
the methodology can be applied

in

status
out

AG status disconnected init∨=()
A status connected= R in¬ send _,〈 〉=[]

→(
)

Component 4 Component 5
Glue

Logic

Stub Stub

S
urrounding

TCTL formulas

Model checker

TCTL formulas

Satisfied

Unsatisfied
Diagnostic trace

Figure 3. Overview of the proposed methodology






Surrounding

As shown in Figure 3, the part of the system not
included in the verification of the particular glue logic is
called thesurrounding of the glue logic.

3. The design representation: PRES+

In the discussion throughout this paper, as well as in the
toolset we have implemented, the glue logic, the stubs and
the components are assumed to be modelled in a design rep-
resentation calledPetri-net based Representation for
Embedded Systems(PRES+) [6]. It is a Petri-net based rep-
resentation with the extensions listed below. Figure 4 shows
an example of a PRES+ model.

1. Each token has a value and a timestamp associated to it.
2. Each transition has a function and a time delay interval

associated to it. When a transition fires, the value of the
new token is computed by the function, using the values
of the tokens which enabled the transitionas arguments.
The timestamp is increased byan arbitrary value from the
time delay interval. In Figure 4,thefunctions are marked
on the outgoing edges from the transitions.

3. The PRES+ net is forced to be safe, i.e. one place can at
most accommodate one token. A token in an output place
of a transition disables the transition.

4. The transitions may have guards. A transition can only be
enabled if the value of its guard is true (transitions and).
It should be pointed out that this design representation is

not required by the methodology itself, but the algorithms
mentioned here have been developed considering PRES+ as
the formal representation. However, if another design repre-
sentation is found more suitable for a particular design, sim-
ilar algorithms based on the same ideas can be developed
for that design representation.

4. Formal Verification with Stubs

In this section, we will concentrate on two possible sce-
narios and their slightly different approaches. Either the
stubs are given by the component provider or they have to
be generated by the designer.

4.1 Stubs are given by the provider

Remember that a stub is a model which behaves exactly
in the same way as a certain component with respect to a
particular interface. Furthermore, since a component gener-
ally has several interfaces, it also has several stubs, one for
each interface.

An interface is defined as a set of ports. Hence, inter-
faces can be partially ordered with respect to the subset
relation. As a consequence, stubs can also be partially
ordered by the same relation, due to the fact that they are
defined with respect to a particular interface. In the bottom of
the hierarchy, so calledempty stubs1 can be found. Such
stubs either produce or consume (depending on whether the
stub will be attached to an out-port or an in-port) events
(tokens) containing any message (value) at any point in time,
i.e. they behave completely randomly. On the other extreme,
in the top of the hierarchy the top-level stub is found. It
behaves exactly in the same way as the full component,
since it is defined with respect to all ports of the component.

When verifying a particular glue logic using stubs given
by the component provider, the designer has to select appro-
priate stubs from this hierarchy. Theoretical results [7] have
shown that if a property, belonging to the sublogic ACTL2,
is satisfied using stubs near the bottom of the hierarchy (low
level), it is guaranteed that the property is also satisfied using
any higher level stub, including the full component.

Experiments have shown [8] that using low-level stubs
generally leads to considerably shorter verification times.
However, using low-level stubs makes it more likely thatthe
property is unsatisfied than if high-level stubs were used.

Based on these facts, an iterative approach is suggested.
Low-level stubs should initially be used in the verification.
If the property is unsatisfied, a stub situated at a higher level
in the hierarchy is used instead in the next verification
round. The diagnostic trace obtained from the previous ver-
ification indicates which stubs violated the property and
thus should be changed. This procedure iterates until either
the property is verified to true, or the diagnostic trace indi-
cated that the fault is situated in the glue logic (in which
case a design error was found). It should be noted that the
designer is always guided by the diagnostic trace.

Besides leading to shorter verification times, this meth-
odology also provides a means to perform the verification
even if the most appropriate stubs are not available.

4.2 Stubs are generated

In the second scenario when no stubs are given by the
component providers, they must be generated by the
designer. An algorithm which automatically generates
stubs, given the model of a component and an interface, has
been developed [8].

The automatically generated stubs do not correspond to
the definition in Section 2.2 in the following sense: They are
able to produce the same events as the corresponding com-

x x
x

y

xy

x x

[x>2y]

[x<=3]in-port

out-ports

x-5

x+5

x
x

x

Figure 4. A simple PRES+ net

t1 t2

t3

t4

t5p1

p2

p3

p4

p5

p6

p7

[2, 5]

[3, 4]

[3, 4]

[3, 7]

[2, 5]

t4 t5

1 The name comes from the fact that they somehow correspond to the emp-
ty interface, which does not contain any ports at all.

2 ACTL is a sublogic of CTL, which only allows universal path quantifiers
and negation only in front of atomic propositions. All CTL formulas in
this paper are ACTL.

ponents with respect to the particular interface, but they, in
addition, produce more events not produced by thecorre-
sponding component. Such stubs are calledpessimistic.

Due to similar theoretical results as discussed in Section
4.1, if a particular ACTL property is satisfied using pessi-
mistic stubs, it is guaranteed that the property is also satis-
fied with the full component.

Consequently, it is sufficient to verify the system using
pessimistic stubs. However, if the property was not satisfied
with the pessimistic stubs, it is necessary to reducetheir pes-
simism, i.e. reduce the number of events produced bythe stub
which cannot be produced by the full component [8].

During the verification process, the pessimism in the
stubs is iteratively reduced until either the property is satis-
fied or the fault is found to be situated in the glue logic
(design fault). It should be noted that this entire process,
both pessimism reduction as well as identifying the stub to
reduce pessimism on, is guided by the diagnostic trace from
the previous verification round.

Sometimes, it might be the case that the information
captured by the models of the components or stubs is not
sufficient in order to perform the verification. These are
cases in which the correct functionality of the involved
components depends on certain assumptions relative to
those inputs which are connected to the surrounding and,
thus, have been ignored in the verification process so far.

An algorithm which generates a model which is able to
produce all possible events consistent with a particular
ACTL formula, has been developed [8]. A model consistent
with the properties on the interfaces connecting to the sur-
rounding, is thus created using this algorithm and attached
to the model under verification as indicated in Figure 5.
Also in this situation, the diagnostic trace guides the
designer to which properties need to be included in the
model of the surrounding. The verification process itera-
tively adds properties to the surrounding until either the
property is satisfied or the diagnostic trace indicated a fault
in the glue logic.

5. An Illustrative Case Study

The presented verification methodology gives a power-
ful means to verify large systems using a divide and con-
quer approach. We have implemented an environment
which allows all the activities implied by the methodology

to be performed automatically. The only action which needs
interaction with the human designer is the examination of
the diagnostic trace. The diagnostic trace guides the
designer in deciding what action to be taken next.

This section provides an example in order to demon-
strate how a system can be verified using the methodology.

5.1 The Mobile Telephone System

The application used as an example is a mobile tele-
phone. Figure 6 shows an overview picture of the model and
how the components forming the model are connected. It
consists of seven components communicating via an
AMBA bus.

1. Microphone. The microphone sends voice data to the
transmitter.

2. Buttons. When dialling, the buttons component sends
information about which buttons were pressed to the con-
troller.

3. Speaker. The speaker receives voice signals from the
receiver and converts it to sound.

4. Display. The display shows on a small screen informa-
tion sent to it by the controller.

5. Receiver. The receiver receives data from the base-sta-
tion of the mobile telephone network and passes it on to
the designated component.

6. Transmitter. The transmitter receives data from other
components in the telephone and passes it on to the base-
station.

7. Controller. The controller coordinates the tasks of the
other components.

As mentioned previously, these components are supposed to
communicate over an AMBA bus. However, since the
AMBA bus imposes a certain protocol and the components
are not designed for that protocol, glue logics adapting the
components to this protocol are inserted. These glue logics
are formally verified in subsequent sections.

A few of the components which are directly involved in
the example are explained in more detail in the following
sections.

S
tu

b Glue

Logic

Figure 5. Including the assumptions on the
surrounding into the verification process

S
ur

ro
un

di
ng

A
ss

um
pt

io
n

P
et

ri-
ne

t

C
om

po
ne

nt

ControllerTransmitterReceiver

Arbiter

Microphone Buttons Speaker Display

AMBA bus

(master) (slave) (master/slave)

(master) (master) (slave) (slave)

Figure 6. Overview model of the example system,
a mobile telephone

5.1.1 Buttons and Display.The peripheral components,
such as Buttons and Display, which are used to interact with
the end user, are modelled in a simplistic way as shown in
Figure 7.

In this example, we assume that the telephone has
eleven buttons: the numbers 0 to 9 plus the button ”enter”.
When the end user wants to dial a number, he enters the
number, presses the button ”enter”, after which the tele-
phone tries to satisfy the request. From the point of view of
the component Buttons, the buttons can be pressed in any
order at any time. This is modelled by a transition with time
delay interval and the function ”random value from
the set ”. The Buttons component has no idea
about the semantics of each button being pressed. It is the
task of the controller to determine what should happen
when a particular button is pressed.

The situation is similar but reverse for Display. Display
receives commands about what to show on its screen. In
Petri-net terms, this means that tokens in its port are con-
sumed as they appear. The time delay interval depends on
how fast the information is processed by the component. In
this example, it is assumed that the information is immedi-
ately taken care of, i.e. the time delay interval is .

5.1.2 Controller.The controller component keeps track of
what is happening in the system and acts accordingly.
Figure 8 shows a model of the component.

Places and are marked when
the controller is able or is not able to process button data
respectively. The data is simply discarded if it is not imme-
diately accepted. Transitions to take care of this
functionality. The transitions have guards so that different
actions can be taken depending on which button was
pressed. This model only makes a difference between if a
number was pressed, , or if ”enter” was pressed,

. When dialling a number, signals (tokens) are
also sent in order to update the display. Having pressed
”enter” the telephone number is sent to the transmitter.

Places and record whether a phone call
is taking place or not. Transition therefore updates
these places when a phone call is to be made. Transition
takes care of incoming phone calls and and handle
the end of a call.

5.1.3 AMBA Bus.All components communicate through
an AMBA bus [11]. The AMBA bus consists of two parts,
Arbiter and Bus. Figure 9 and Figure 10 introduce the
PRES+ models of these two parts. The components commu-
nicating over the bus are furthermore divided into two cate-

gories, master and slave. Figure 6 indicates to which
category each component in the example belongs. Compo-
nents sending messages are masters and components receiv-
ing messages are slaves.

Any master wanting to send data on the bus must first
request access to it from the arbiter by emitting the signal
HREQBUS. The arbiter will eventually grant access
(HGRANT) to any master requesting it, and at the same
time, avoid starvation. Once a master is granted access, it
may send one bunch of data every clock cycle (time unit, in
terms of PRES+). All bunches do not necessarily have to
address the same slave. When sending the last bunch, the
master notifies this by emitting the signal HTRANS.

However, if a slave is not ready to receive, it is able to
put the transaction on hold, or in AMBA bus termssplit,
(HRESP) until it eventually becomes ready (HREADY).
During the time period when it is not yet ready to receive,
the arbiter might give the access to the bus to another
requesting master. When the slave declares itself ready to
receive the split data, the master on hold is automatically
granted access to the bus again.

The AMBA bus actually consists of two buses, one
address bus and one data bus. When a master sends a bunch
of data on the bus, it sends the address of the receiving slave
on the address bus and the data on the data bus.

Figure 9 shows a part of the model of the arbiter corre-
sponding to one particular master. The part in the figure is

0..∞[]
rnd 0..9 enter,{ }

bt1

(a) Buttons

0..0[]
dt1

(b) Display
Figure 7. Models of Buttons and Display

0..∞[]
0..9 enter,{ }

0..0[]

accbutton noaccbutton

ct1 ct4

b 0..9{ }∈
b enter=

calling nocall
ct5

ct7
ct8 ct9

Figure 8. Model of the Controller component

button display ring

transmit hang_up receive

0..0[]
b

b

cp1

noaccbutton

accbutton

cp2

b 0..9{ }∈[]
b

b enter=[]

b

b 0..9{ }∈[]

b

b

b enter=[]

cp3

nocall

calling

0..0[]

0..0[]

1..1[]

1..1[]

1..1[]
1..1[]

1..1[]

1..1[]

1..1[]

ct10

ct1

ct2

ct3

ct4

ct5

ct6

ct7

ct8
ct9

0..0[]0..0[]

cp4 cp5

ct11 ct12

copied once for each master. Places represent
which master currently holds the token in a round-robin
schedule. The master holding the token has the opportunity
to get access to the bus. If a request has not arrived from that
particular master, the token moves to the place correspond-
ing to the next master, . Place is marked when a
slave has split the transaction of that master. is
marked otherwise.

The bus itself just distributes tokens sent to it to all com-
ponents connected to it. Figure 10 shows a model of the Bus
component. All transitions have time delay interval
and transition function identity. Consequently, it distributes
exactly the same token to the rest of the components in zero
time.

Port HRESP is directly connected to the arbiter through
the port with the same name.

5.1.4 Glue Logics.As has been shown, the components do
not contain any functionality to communicate with and over
the bus. For this reason, it is necessary to adapt the components
and insert a glue logic between the component and the bus.

This design principally contains two types of glue logic,
one for handling the master functionality and one for han-
dling the slave functionality for each type of component
respectively. Consequently, the glue logics which are situ-
ated between the bus and a slave component (see Figure 6)
is a slave functionality glue logic, whereas the glue logics
situated between the bus and a master component is a mas-
ter functionality glue logic.

5.2 Verification of the Model

We illustrate the verification of three properties:

1. The controller only receives legal values for button.

2. When a slave has split a transaction, it will be ready again
in the future.

3. When a master has been granted access to the bus, it must
eventually close the transaction.

These properties were verified using the UPPAAL
model checking environment [9]. In order to be able to ver-
ify PRES+ models using this tool, the PRES+ models are
first translated into the modelling language used by
UPPAAL, namely Timed Automata [10]. Such a translation
is discussed in [6].

5.2.1 Property 1.The first property to be verified states
that the controller must only receive legal values for button.
The components included in the verification of this property
were the controller, arbiter, bus and the slave functionality
glue logic, as illustrated in Figure 11. Table 1 presents the
result of the different stages in the verification process.

The property was first verified using empty stubs on all
components, except the bus for which a stub was generated.
The property was not satisfied using this environment since
any data could arrive on the HDATA port of the bus, as indi-
cated by the diagnostic trace. It took about 1 second to
obtain this result.

Since the property was not satisfied the diagnostic trace
must be examined. According to the diagnostic trace, the

Figure 9. Model of the Arbiter component

HREQBUS HGRANT HTRANS

H
R

E
S

P
H

R
E

A
D

Y

1..1[]

1..1[]

1..1[]

0..0[]0..0[]

2..2[]

2..2[]

at1

at2

at3

at4

at5

at6

at7

ap1

ap2

nomask

mask

master1

master2

masterx

at6 mask
nomask

HADDR HDATA HRESP HADDR HDATA HRESP

H
R

E
S

P

m1 m1 m1 m2 m2 m2

HADDR HDATA HRESP HRESP
s1 s1 ins1 outs1

HADDR HDATA HRESP HRESP
s2 s2 ins2 outs2

ut1 ut2

ut3

um1t1

um1t2 um2t1 um2t2

us1t1

us2t2

uaddr udata

uresp

Figure 10. Model of the Bus component

0..0[]

AG button button 0..9 enter,{ }∈→()

AG HRESP AF HREADY→()

AG HGRANT AF HTRANS→()

Controller

Arbiter AMBA bus

(master/slave)

Figure 11. The part of the system used to verify
property 1 and property 2

bus produced a value on port which is not
allowed. In order to do the verification, it was necessary to
make an assumption about the surrounding. In this case, it
has to be assumed that only data in the set can
occur in port . The property is formally given in
(eq. 2).

(eq. 2)

A Petri-net model for this formula was created together
with a new version of the bus stub, now also including port

, and attached to the interface shaded in Figure
11. Using this new stub, the property was satisfied using
approximately 2 minutes verification time.

The positive verification result was obtained by making
an assumption about the surrounding. In order to finally
conclude the positive result, the correctness of the assump-
tion in (eq. 2) must first be established.

The components involved in verifying the assumption
itself were the buttons, arbiter, bus and master functionality
glue logic, as illustrated in Figure 12. A top-level stub for
buttons and empty stubs for the other components was
enough for obtaining a result within 7.58 seconds.

5.2.2 Property 2.The second property states that when a
slave has split a transaction, it must become ready again in
the future.The components included in the verification of this
property were controller, arbiter, bus and the slave function-
ality glue logic, as illustrated in Figure 11. Table 2presents
the result of the different stages in the verification process.

This verification has been started with a faulty glue
logic. The fault consisted in that the slave functionality glue
logic did not emit HRESP in time (Section 5.1.3). This fault
was finally fixed after detection by changing the time delay
interval in one transition in the glue logic.

At first, the property was verified using empty stubs on
all components, except that the bus had one generated stub
corresponding to interface

. The property was
however not satisfied in this environment. The diagnostic
trace indicated that messages were sent too quickly on port
HADDR and HDATA. In other words, an infinite amount of
data was sent in the same clock cycle. In the real system,
only one bunch of data can be sent in the same clock cycle.
The problem was solved by increasing the level of the stubs
on ports HADDR and HDATA from empty to level one
stubs. These stubs were given (created manually).

The property was again verified in the updated environ-
ment, but it was still not satisfied. The diagnostic trace led
to the design error in the glue logic as described previously.
After fixing the error, the property was reverified using the
very same environment, but still with a negative verification
result.

The problem this time was a too pessimistic stub for the
bus component. This caused the fact that no signal would
ever be emitted on port HREADY. Due to the pessimism in
the generated stub, it was exchanged with a given one1.
After additional 4 minutes, the property was finally satisfied.

5.2.3 Property 3.The third property states that when a
master has been granted access to the bus, it must eventu-
ally close the transaction. The components included in the
verification of this property were the buttons, arbiter, bus
and master functionality glue logic, as illustrated in Figure
12. Table 3 presents the result of the different stages in the
verification process.

This verification was also started with a faulty glue
logic. The fault consisted in that the glue logic could not
differentiate whether a particular split request was a result
of its own attempts to send or not. The fault was fixed, after
detection during verification, by adding a structure to keep
track of the necessary information.

Table 1: Verification results of property 1

Step Environment Res Time
Initial All empty stubs,

except bus generated
false 1.32s

Add assumption on
HDATA

All empty stubs,
except bus,
assumption

true 125.33s

Verify assumption Buttons top-level
stub, other stubs
empty

true 7.58s

HDATA sx

0..9 enter,{ }
HDATA mx

AG HDATA mx HDATA mx 0..9 enter,{ }∈→()

HDATA mx

Arbiter

Buttons

AMBA bus

(master)

Figure 12. The part of the system used to verify
property 3 and the additional assumption of

property 1

1 Another way to continue the verification would have been to continue
with less pessimistic stubs generated automatically and, if needed, with
added models corresponding to assumptions on the surrounding.

Table 2: Verification results of property 2

Step Environment Res Time
Initial All empty stubs,

except {HRESPin,
HRESPout, HRESP}

false 2.47s

Use higher level stubs Initial except Level 1
stubs for HADDR,
HDATA

false 28.39s

Correct design error Initial except Level 1
stubs for HADDR,
HDATA

false 87.57s

Use higher level stubs Empty stubs for con-
troller and top-level
stub for the bus

true 246.14s

HRESPinsx HRESPoutsx HRESP, ,{ }

As with the verification of the previous properties, the first
environment used consisted of empty stubs. In this environ-
ment, Arbiter may grant access to the bus without it even
being requested. Consequently, after such an unrequested
grant, data will not be sent and in particular the transaction
will not be closed. Thus, the property is not satisfied.

To avoid this problem revealed by the diagnostic trace,
the empty stubs of the arbiter were replaced with a given
stub. After half a second’s verification time, the property
proved again unsatisfied. The diagnostic trace shows that
the reason was that a transaction can be split, but the slave
will never signal after a while that it is ready to receive data
again. It is however a requirement on the slaves to eventu-
ally signal that they are again ready after a split. Therefore,
a Petri-net corresponding to the formula

was generated and
attached to the bus on the shaded interface in Figure 12.
Note that it is not necessary to verify this assumption as it is
a requirement of the arbiter and the bus in order to work
properly. Besides, the property was already verified in the
previous section. Even with this extra assumption the prop-
erty proved unsatisfied.

The diagnostic trace indicated an error in the glue logic.
It did not record whether the split requests were a result of
its own attempts to send or not. A mechanism for this was
added and the property was reverified with the same envi-
ronment. After 41 minutes a positive result was obtained.

5.3 Discussion

This section has tried to give an example on how to use the
verification methodology presented in this paper, in practice.

The successive steps through the methodology are
guided by the diagnostic trace which all the time gives feed-
back to the user what to do next. It might indicate that too
pessimistic stubs were used, that there is an error in the glue
logic, or that assumptions regarding the surrounding have to
be introduced.

6. Conclusions

This paper has presented a verification methodology

which takes advantage of the fact that designs are built
using reusable components. The methodology assumes that
these components are already verified, and concentrates on
the glue logics interconnecting the components. Every com-
ponent has a number of properties associated to it which it
requires the system to satisfy in order to work correctly.

An essential part of this methodology involves models
of the component behaviour with respect to a certain inter-
face of the component. These models are calledstubs.

Two scenarios have been presented: either the stubs are
given by the component provider, or they are generated by
the designer given the model of the component. Both sce-
narios can be efficiently exploited in the verification process
by adopting an iterative approach. Furthermore, properties
regarding the surrounding of the glue logic under verifica-
tion can also be incorporated into the process.

An example has also been presented in order to demon-
strate the feasibility of using the approach on reaalistic
designs. It was carefully demonstrated how three different
properties were verified on a mobile telephone and how the
diagnostic trace guided the designer in each step.

Most of the activities in this verification methodology
can be automatically performed and have been implemented
in a tool. The only activity which needs interaction with a
human designer, is the examination of the diagnostic trace.
The diagnostic trace constantly guides the designer in
deciding what action to take next.

7. References

[1] J. Turley, ”Embedded Processors by the Numbers”,Embed-
ded Systems Programming, vol. 12, May 1999.
[2] J. Haase, ”Design Methodology for IP Providers”,Proc.
DATE, 1999, pp. 728-732.
[3] D. Gajski, A C.-H. Wu, V. Chaiyakul et al, ”Essential Issues
for IP Reuse”,Proc. ASP-DAC, 2000, pp. 37-42.
[4] R. Seepold, N.M. Madrid, A. Vörg et al, ”A Qualification
Platform for Design Reuse”,Proc. ISQED, 2002, pp. 75-80.
[5] E.M. Clarke, O. Grumberg, D.A. Peled, ”Model Checking”,
The MIT Press, 1999.
[6] L.A. Cortés, P. Eles, Z. Peng, ”Verification of Embedded Sys-
tems using a Petri Net based Representation”, inProc. ISSS, 2000,
pp. 149-155.
[7] D. Karlsson, P. Eles, Z. Peng, ”Formal Verification in a Com-
ponent Reuse Methodology”, inProc. ISSS, 2002, pp. 156-161
[8] D. Karlsson, ”Towards Formal Verification in a Component-
based Reuse Methodology”, Licentiate Thesis No 1058, Linköping
Studies in Science and Technology, http://www.ep.liu.se/lic/
science_technology/10/58/
[9] UPPAAL homepage: http://www.uppaal.com
[10] E.M. Clarke Jr, O. Grumberg, D.A. Peled, ”Model Checking”,
MIT Press, 1999.
[11] A. Roychoudhury, T. Mitra, S.R. Karri, ”Using formal tech-
niques to Debug the AMBA System-on-Chip Bus Protocol”, in
Proc. DATE, 2003, pp. 828-833.

Table 3: Verification results of property 3

Step Environment Res Time
Initial All empty stubs false 0.14s
Use higher level stubs Initial except arbiter

stub
false 0.52s

Add property 2 as
assumption

Arbiter stub given,
button stub empty,
bus with assumption

false 2.58s

Correct design error Arbiter stub given,
button stub empty,
bus with assumption

true 2467.42s

AG HRESP AF HREADY5≤→()

