
Hardware-Based Implementation of the Common Approximate Substring
Algorithm

Kenneth B. Kent† Sharon Van Schaick† Jacqueline E. Rice‡ Patricia A. Evans†
ken@unb.ca j5mym@unb.ca j.rice@uleth.ca pevans@unb.ca

Faculty of Computer Science† Dept. of Mathematics & Computer Science‡

University of New Brunswick University of Lethbridge

Fredericton, NB, Canada Lethbridge, AB, Canada

Abstract

An implementation of an algorithm for string matching,
commonly used in DNA string analysis, using configurable
technology is proposed. The design of the circuit allows for
pipelining to provide a performance increase. The proposal
is unique in that we suggest a design that is specific to cer-
tain parameters of the problem, but may be reused for any
particular instance of the problem that matches these pa-
rameters. The use of a Field Programmable Gate Array
allows the implementation to be instance specific, thus en-
suring maximal usage of the hardware. Analysis and pre-
liminary results based on a prototype implementation are
presented.

1 Introduction

A recent solution to such difficult problems as DNA
matching, Boolean satisfaction, and image compression [1,
2, 3, 4] has been to make use of hardware in performing the
most computationally-intensive portions of the algorithm.
The problem is that design and fabrication of computer
chips is generally very expensive. However, the use of Field
Programmable Gate Array (FPGA) technology provides an
alternative option that is far more feasible. By combining
software and configurable hardware it is possible to retain
the flexibility required to apply the algorithm to many dif-
ferent parameters, as well as gain the acceleration from im-
plementing a portion of the algorithm on the FPGA. In this
work we propose a parameter-specific implementation in
which a finite-state-machine (FSM) is implemented on a
FPGA, allowing for very fast comparisons between the pat-
tern being sought and the sequences being searched. By
parameter-specific we refer to the fact that the hardware
design must be regenerated if either of the two fixed pa-
rameters required for the search are changed. These pa-
rameters are the length of the sequence being sought and the
number of errors permitted in determining a match. This

differs from instance-specific solutions in that our proposed
solution may be applied to any number of problem in-
stances, as long as the given parameters remain fixed [9].
This work also addresses the issue of maximizing the usage
of the FPGA, and presents a number of options and related
issues for this aspect of the design.

1.1 Common Approximate Substring Matching

The problem to be solved is that of finding a similar pat-
tern of symbols within all of a given series of sequences,
allowing a certain amount of error (see Figure 1) [10, 11].
The purpose behind this is that the discovery of sequence
homology to a known protein or family of proteins often
provides the first clues about the function of a newly se-
quenced gene [5]. Discovering homologous sequences and
families frequently starts with searching for common motifs
[5, 7]. Since the introduction of a fast method for comparing
biological sequences, DNA and protein sequence compari-
son have become routine steps in biochemical characteriza-
tion [6]. This computation is critical for sequence analyses
and tends to be very time consuming.

Simplified Example

TGACTCGACC

TACTGCCTCG

CTGGCTAATA

ATTCCTGACT

Figure 1: An example of common approximate
substrings of length 5 with an error of 1.

In the motif search the goal is to find similar sequences
of symbols of a given length m within the database of DNA
sequences. The number of errors that are allowed is fixed to
a value of d. An error is encountered when a single symbol
within the sequence being searched does not match the se-
quence being sought. In this work we limit the allowable

errors to simple replacements of a particular symbol within
another; shifts or gaps within the sequence are not consid-
ered.

Finding these common approximate substrings is a two-
phase process [10]. First, substrings from each sequence
that are within distance 2d from an initial reference se-
quence are located. If a substring is not within 2d of this
reference substring it could not possibly be part of a solu-
tion set including this reference. This produces a reduced
search space where a solution may exist. Second, these
similar substrings are compared as a block, aligning the
positions of the substrings into columns, and searched for a
string that is within distance d of each similar substring (see
Figure 2). The common approximate substring cannot exist
without the corresponding substrings in each sequence be-
ing within 2d errors of each other [7]; for many uses of
common approximate substrings, such as finding motifs and
regions of high similarity, locating these similar substrings
is often sufficient as they are statistically significant [8].

Figure 2: Narrowing down the original search
space.

In this paper we outline the FPGA implementation for
both phases of this algorithm. Substrings of the first se-
quence are compared to substrings from each of the other
sequences, with desired distance k = 2d (where d is the
number of errors allowed for the common approximate sub-
string). When a match to each sequence is found, the entire
matching set of substrings will be recorded as a set of simi-
lar regions, and can be analyzed in parallel to search the
space they span for a common substring within distance d.

2 Hardware Design

The completed hardware design uses the Common Ap-
proximate Substring algorithm that was described in Section
1. The hardware retrieves sequences of length l from an
external input memory, performs the Common Approximate
Substring algorithm and stores resulting substrings in the
external memory. The following subsections describe the
system in detail.

2.1 A Black-Box View

The typical data-path of the sequence and its substrings
is shown in Figure 3 as the solid arrows. In Stage 1, a sub-
string of length m is taken from the sequence. This substring
is initially compared with a reference substring to check that
it is within 2d errors of that reference. The substring is then
passed to Stage 2 and a new sequence is fetched for Stage 1.
In Stage 2, the m-length substring is compared against all
substrings in a comparison memory to determine all sub-
strings that are within d errors of this substring. The com-
parison memory was previously seeded with all m-length
substrings that are within d errors of the reference substring.

Figure 3: Black box system view.

The design is pipelined such that both the comparison in
Stage 1 and the comparison in Stage 2 can occur at the same
time on different substrings. While Stage 2 is working on a
previously passed substring, reducing the potential solution
space, Stage 1 is working on a new substring from a new
sequence.

Input

Memory

(sequences)

Output

Memory

(substrings)

Sequences

Substrings

Common Approximate Substring Implementation

Stage 1:
fetch and initial
comparison (2d

errors)

Stage 2:
final comparison

(d errors) and
output result

Original Search Space

 Narrowed Search Space

 reference
 2d

Final Result
Set ‘S’

d

If the substring, in Stage 2, is found to not be within d er-
rors of any existing substrings, then a back-track request is
placed to Stage 1 (represented by the broken arrow in Fig-
ure 3). Otherwise, it is passed to an external output memory
which will contain the solution substrings. Contained with
each substring is the location of the parent sequence it was
fetched from in the input memory and the substring’s loca-
tion within its parent sequence.

2.2 Design Modules

The chip design contains four modules, each with its
own purpose and functionality. The four modules are: the
Interface, the Seeker, the Seeker Result Queue and the Veri-
fier. We fully designed and implemented the Interface,
Seeker and Verifier ourselves; the Seeker Result Queue is
implemented using an IP core.

2.2.1 Interface

This module interfaces with the external input memory
and the Seeker. The Interface retrieves sequences from the
external memory and passes them along to the Seeker. If
word alignment is required (the external memory is not as
wide as a sequence) the Interface continues fetching from
memory until it has fetched the entire sequence. If the last
line fetched from memory contains the end of one sequence
and the beginning of the next sequence, then the Interface
only keeps the characters it needs for the sequence and
stores the starting location of the next sequence in a place-
ment buffer. It will then pass the completed sequence on to
the Seeker.

The Interface also handles back-track requests. A back-
track request occurs when a substring is passed through the
system to the Verifier that has more than d errors (see sec-
tion 2.2.5 for more detail). The Interface responds to this
request by retrieving the incorrect substring’s parent se-
quence and passing it along to the Seeker again.

2.2.2 Seeker

The very first sequence that the Seeker receives from the
Interface is used as a reference sequence. From this se-
quence, the Seeker takes an m-length substring of characters
and holds this as the reference substring. This reference
substring is also passed along to the other modules of the
system as the first member of the solution set. When the
Seeker receives future sequences from the Interface they are
manipulated as follows:

1. an m-length substring is taken from the sequence

2. this substring is compared to the reference sub-
string

3. if there are less than 2d errors between them, the
substring is passed to the Seeker Result Queue

4. if this is not the case, a new m-length substring is
taken from the sequence by shifting left by one
character

This process repeats from step 2 until all possible m-
length substrings have been taken from the sequence. If the
Seeker proceeds to perform the comparison on all possible
substrings from the sequence and none are within 2d errors
of the reference, a new reference is fetched and the whole
process begins again. A new reference is obtained by taking
a new substring from the very first sequence and holding it
as the reference substring.

2.2.3 Seeker Result Queue

The Seeker Result Queue exists only for the purpose of
being a temporary resting place for substrings between
modules. The Seeker module passes substrings that pass the
first comparison test to this module. The Seeker tags each
substring with the address of its parent in the input memory
and the substring’s location within its parent. These sub-
strings wait here to be retrieved by the Verifier module.

2.2.4 Verifier

The second comparison test that the design performs is
completed by the Verifier. The Verifier module interfaces
with the Seeker Result Queue, the external output memory
and the comparison memory to perform the test. The com-
parison begins when the Verifier retrieves a new input sub-
string from the Seeker Result Queue.

If this is the first substring the Verifier has fetched then it
begins the process of seeding the comparison memory. It
takes this substring and performs all possible permutations
that create m-length substrings within d errors of the refer-
ence substring. These substrings are all stored in the com-
parison memory along with a tag.

The tag is added for the process of eliminating substrings
that would not be part of the solution set. Subsequent input
substrings passed to the Verifier are compared to all sub-
strings in the comparison memory. When an input substring
is being compared to substrings in the comparison memory
and is found to not be within d errors of a comparison sub-
string, that comparison substring is tagged. If the input sub-
string proceeds to tag all substrings that were not previously
tagged then a back-track request is placed. The Verifier
sends the appropriate signal to the Interface and resets all
substrings that were recently tagged. Otherwise, the input
substring is placed in the external output memory as a
member of the solution set.

2.2.5 Back-Track Requests

As the substring is passed through the system it carries
with it (in a locator sequence) the location of its parent se-
quence in the input memory and the substring’s location
within its parent sequence. When the Verifier encounters a
situation where it needs to send a back-track request, it only
needs to send this locator sequence to the Interface.

The Interface takes this information and retrieves the ap-
propriate starting sequence from the input memory. The
Interface then passes this sequence along to the Seeker as if
it were any other sequence it fetches. The difference in this
case is the Interface also sends part of the locator with the
sequence. It sends the location of the substring within the
parent sequence. With this information the Seeker skips
forward in the sequence to the point indicated by the locator
and begins processing the sequence from this point.

3 Hardware Implementation

The final design is implemented targeting a Stratix
EP1S40F780 device on the Altera Nios Development board
containing 1 Mbyte SRAM (16-bit wide), 16 Mbytes
SDRAM (32-bit wide) and 8 Mbytes Flash on-board memo-
ries [12]. The implementation is completed and simulated
using the Altera Quartus II Development tools. Figure 4 is a

detailed schematic of the system as implemented using the
aforementioned development environment. For simplicity,
the external memory used to store the sequences to process
and store results is omitted. This memory is connected to
the Interface component in the schematic using standard
memory interface read/write, address, and data signals. Cur-
rently, the operating frequency of the design is 65.44 MHz
and utilizes 14% of the available logical element (LE) re-
sources within the FPGA.

4 Circuit Operation

The implementation processes sequences at a rate of
one character comparison per clock tick. This one compari-
son being completed consists of a comparison performed by
the Seeker and one by the Verifier at the exact same time.
The parallelism of the system allows this to occur. At the
same time a substring is being checked against the reference
substring in the Seeker, another earlier substring is being
checked against the output memory in the Verifier.

Simple test cases were used to retrieve results and verify
the design. These test cases were composed of 8 sequences
with 8 characters in each sequence. The test parameters
involved finding a length-5 substring in each sequence that
had at most 2 errors between it and any other length-5 sub-
string in the solution. These test cases are defined in Table

Figure 4. Block Diagram/Schematic of the hardware implementation in the Altera Quartus II tools.

1. Test Case A consists of 8 sequences which have a solu-
tion (the solution is the highlighted substrings). Test Case B
has no solution and is an example of a worst-case scenario
for testing the system.

Test Case A Test Case B

ACTGTTTT

AGTTTAGC

GCATTTTT

AAAGGTTT

GGCGTATT

TGGATTTT

GTGCTCTT

CCTGTGAT

ACTGTTTT

TATGTTTA

GCATTTTT

AAAGGTTT

GGCGTATT

TGGATTTT

GTGCTCTT

CCTGATAG

Table 1: Simple test cases for the implementation.

The worst-case scenario is defined by a test case where
every m-length substring from each sequence is passed
through the Seeker and the Verifier and only the last sub-
string results in the system determining there is no solution.
This occurs when the only possible solution substring in
each sequence is at the end of the sequence (top 7 high-
lighted substrings in Test Case B, Table 1) and that sub-
string in the last sequence is not within d errors of the rest
of the solution (last highlighted substring in Test Case B,
Table 1).

Examining Test Case A in detail, the Interface begins the
processing of the sequences by loading the first sequence
(GGGGTTTT) into a buffer. The Interface then passes this
sequence, along with its address in memory, to the Seeker
and retrieves the next sequence to be passed along.

The Seeker recognizes this sequence as the first sequence
by determining that its memory address is 0 and places it in
a reference buffer. The Seeker then retrieves a 5 character
substring from the beginning of the sequence (GTTTT) to
be the first reference substring. Sequences are processed
from the right to the left so the beginning of the sequence is
the rightmost character. This substring is sent to the Seeker
Result Queue along with its address and its location in the
sequence (currently both 0). The location of the substring
within the sequence is called its position.

The Verifier retrieves this reference substring from the
Seeker Result Queue. As this is the first substring to be
passed to the Verifier it begins the process of seeding the
comparison memory. The Verifier proceeds to find all pos-
sible m-length strings of characters (in the character set)
with a difference of d errors from the reference substring.
These strings are stored in the comparison memory. An
example of the beginning of the comparison memory is

show in Table 2. The Verifier then passes the reference sub-
string along to the external output memory.

When the Seeker receives the signal from the Interface
that the second sequence (AGTTTAGC) is ready it retrieves
it and stores it in a buffer. The Seeker takes a 5 character
substring from the front of the sequence (TTAGC) and
compares it, one character at a time, to the reference sub-
string (GTTTT). This comparison determines there are 4
errors between these substrings which is equal to the 2d (or
4) errors allowed. This substring is passed on to the Seeker
Result Queue with the address 1 and position 0.

Comparison
Memory for A

GTTTT GATTA

GTTTA GCTTA

GTTAA GGTTA

GTTCA TTTTA

GTTGA ATTTA

GTATA CTTTA

GTCTA GTTAT

GTGTA ...

Table 2: Sample comparison memory for test
case A.

The Verifier then fetches this second input substring
(TTAGC) from the Seeker Result Queue and begins its
comparison process. The Verifier fetches one substring
stored in the comparison memory (GTTTT) and compares
it, one character at a time, to the input substring (TTAGC).
If the comparison substring fetched is tagged the Verifier
ignores it and fetches the next comparison substring. In this
case this is the first substring to be compared to the com-
parison substrings so none are tagged. This comparison
determines there are 4 errors between these substrings. At
this point, the Verifier tags the comparison substring with
the input substring’s address (1). The Verifier then proceeds
to repeat these steps for all substrings in the comparison
memory. If the input substring happens to tag all of the
comparison substrings (meaning TTAGC is not within d
errors of any of the comparison substrings), then a back-
track request is sent to the Interface and the Verifier untags
all comparison substrings tagged by the input substring.

The Verifier sends a signal to the Interface that a back-
track must occur and it sends the address (1) and position
(0) of the problem substring. The Interface stores the ad-
dress of the sequence it is currently working on as the Inter-
face has been fetching sequences for the Seeker the whole
time the Verifier has been working. It then fetches the se-

quence that contains the problem substring from memory
address 1. It passes this sequence along to the Seeker with
the address 1 and position 1. The Interface then continues
working as normal, by fetching the sequence from the
memory address it stored.

The Seeker treats the sequence passed to it as it would
any other sequence; except that it sees the position is not a
0. When the position is not a 0 it must select 5 characters
for the new substring starting at the specified position
(which is 1), not the front of the sequence. The substring
that is fetched (TTTAG) is compared to the reference sub-
string (GTTTT) as any other substring would.

The process of retrieving a substring from a sequence,
comparing it to a reference, comparing it to all substrings in
the comparison memory and back-tracking if necessary re-
peats. The process only stops when one of the following
occurs: every sequence has one substring in the external
output memory, or the system has exhaustively searched all
possible substrings in one of the sequences and not found a
common substring within the allowed d errors of each other
comparison substring and the reference (GTTTT).

When the second case does occur the Seeker takes a new
substring from the reference sequence in the reference
buffer that is one character over from the previous substring
(GGTTT). This becomes the new reference and the Seeker
sends a signal to all other components that the reference has
changed. At this point all of the other components reset to
their initial states and the process begins again.

5 Analysis & Results

As character comparisons are the dominant cost to the
system, we define our results on this basis. Let numsubs be
the number of m-length substrings possible in a sequence,
numseqs be the number of sequences, and seqlen be the length
of a sequence. The number of m-length substrings possible
in a sequence, numsubs is:

numsubs = seqlen – m + 1.

This number is also the same as the number of possible ref-
erence substrings in the reference sequence, numrefs.

The maximum number of single character comparisons
possible in both the Seeker and Verifier is:

numcomp = numsubs * numseqs * numrefs * m

Let the implementation clock rate be clkrate and clktick be
the number of clock ticks per comparison. Currently, clktick
is 1 in this implementation with a 4 character set. Assuming
that the input sequences are created as such that no possible
solution exists, the time the system takes to complete this
scenario test case would be:

rate

tickcomp

clk

clknum
time

*
=

As an example, the test case defined in Test Case B
above would result in 560 character comparisons being
completed in total.

The complexity of the execution increases as potential
solutions exist in the input strings. Consider that each po-
tential solution results in the seeding of the Verifier memory
with all possible solutions that can exist. Once seeded, each
potentially matching substring is checked against all of
these strings to remove potential solutions. To consider the
complexity of this, the size of the memory required to con-
tain the potential solutions generated from the reference
string is:

∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −−
−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+=

d

i

i
size

im
c

m
cmem

2
2

)2(
)1(

1
)1(1

where c is the number of characters (i.e. A, C, T, G = 4).
This can result in an increased runtime; however the input
data typically does not generate a lot of potential solutions.
We are currently in the process of executing several bench-
mark tests with the circuit design to provide specific test
performance results.

6 Future Work

Future work to be completed on this project involves im-
proving the parallelization of the hardware design. As was
seen from the results we obtained not all of the available
resources on the FPGA chip are being utilized. By creating
multiple copies of the Seeker, Seeker Result Queue and
Verifier modules we would be able to begin each Seeker
with a different reference substring from the initial sequence
or place a different sequence for comparison to the same
reference in each Seeker. Doing either would use some of
the remaining unused resources on the FPGA to further
increase performance.

As well as parallelization the design could be made more
flexible with the further use of parameterization. This would
give the user the ability to define the parameters of the
problem and the hardware could conform to the user speci-
fication. The user would be able to specify the length, l, of
the input sequences, the length of the substring, m, to be
taken and the number of errors, d, allowed between sub-
strings. From these parameters a circuit design could be
generated to solve the appropriate size problem.

7 Acknowledgments

We would like to acknowledge Thomas Hall, MCS Stu-
dent, Faculty of Computer Science, University of New
Brunswick for his contribution to the initial design of the
system. We would also like to acknowledge funding re-
ceived from various sources for this work. An NSERC
USRA was granted to the second author along with NB
Seed funding. NSERC funding as well as CMC hardware,
software and funding were granted to the first author.

8 References

[1] Lee, H. and Ercal, F. RMESH Algorithms for Parallel String
Matching. Proceedings of the 3rd International Symposium
on Parallel Architectures, Algorithms and Networks (I-
SPAN'97), pp. 223-226, 1997.

[2] Yamaguchi, Y., Miyajima, Y., Maruyama, T. and Konagaya,
A. High Speed Homology Using Run-Time Reconfiguration.
Proceedings of FPL 2002, LNCS 2438, Springer-Verlag, pp.
281-291, 2002.

[3] Zhong, P. M., Martonosi, M., Ashar, P. and Malik, S. Using
Configurable Computing to Accelerate Boolean Satisfiabil-
ity. IEEE Transactions on Computer-Aided Design, volume
18, number 6 (June) 1999.

[4] Simpson, A., Hunter, J., Wylie, M., Hu, Y., and Mann, D.
Demonstrating Real-Time JPEG Image Compression-
Decompression Using Standard Component IP Cores on a
Programmable Logic Based Platform for DSP and Image
Processing. Proceedings of FPL 2001, LNCS 2147,
Springer-Verlag, pp. 441-450, 2001.

[5] Altschul, S. F., Gish, W., Miller, W., Meyers, E. W. and
Lipman, D. J. Basic Local Alignment Search Tool. Journal of
Molecular Biology, volume 215, number 3, pp. 403-410, Oc-
tober 1990.

[6] Pearson, W. R. Flexible Sequence Similarity Searching With
the FASTA3 Program Package. Methods in Molecular Biol-
ogy, volume 142, pp. 185-219, 2000.

[7] Pevzner, P. and Sze, S.-H. Combinatorial Approaches to
Finding Subtle Signals in DNA Sequences. Proceedings of
the Eighth International Conference on Intelligent Systems
for Molecular Biology (ISMB 2000), pp. 269-278, 2000.

[8] Bailey, T. L. and Gribskov, M. Methods and Statistics for
Combining Motif Match Scores. Journal of Computational
Biology, volume 5, pp. 211-221, 1998.

[9] Kent, Kenneth B., and Serra, Micaela. Using FPGAs to Solve
the Hamiltonian Cycle Problem. International Symposium on
Circuits and Systems (ISCAS 2003), vol. III, pp. 228 – 231,
May 2003.

[10] Smith, Andrew D. Common Approximate Substrings. PhD
thesis, Faculty of Computer Science, University of New
Brunswick, October 2003.

[11] Evans, Patricia A., Smith, Andrew D., and Wareham, Harold
T. On the Complexity of Finding Common Approximate Sub-
strings. Theoretical Computer Science, 306(I-2); pp. 407-
430, 2003.

[12] NIOS Development Board Reference Manual, Stratix Profes-
sional Edition. http://www.altera.com.cn/literature/ man-
ual/mnl_nios2_board_stratixII_2s60.pdf, September 2004,
v1-1, accessed Feb 20, 2005.

