
Università di Pisa

Dipartimento di Informatica

Technical Report: TR-06-05

DRedSOP: Synthesis of a new class of
regular functions

Anna Bernasconi,
Department of Computer Science

University of Pisa
56100 Pisa, Italy
annab@di.unipi.it

Valentina Ciriani,
Department of Information Technologies

University of Milano
26013 Crema (CR), Italy

ciriani@dti.unimi.it

May 29, 2006
ADDRESS: via F. Buonarroti 2, 56127 Pisa, Italy. TEL: +39 050 2212700 FAX: +39 050 2212726





DRedSOP: Synthesis of a new class of regular functions

Anna Bernasconi,
Department of Computer Science

University of Pisa
56100 Pisa, Italy
annab@di.unipi.it

Valentina Ciriani,
Department of Information Technologies

University of Milano
26013 Crema (CR), Italy

ciriani@dti.unimi.it

May 29, 2006

Abstract

In this paper we characterize and study a new class of regular Boolean functions called D-reducible.
A D-reducible function, depending on all its n input variables, can be studied and synthesized in a space
of dimension strictly smaller than n. A D-reducible function can be efficiently decomposed, giving rise
to a new logic form, that we have called DRedSOP. This form is shown here to be generally smaller than
the corresponding minimum SOP form. Experimental evidence shows that such functions are rather
common and D-reducibility can be tested very quickly.

1 Introduction

Synthesis of Boolean functions is a classical problem in Computer Science. We study this problem here for
functions exhibiting a particular type of regularity (D-reducibility) that, as we will see, is sufficiently common
to make the case interesting.

Informally, D-reducible (or Dimention-reducible) functions are functions whose points are contained in a
space A strictly smaller than the whole Boolean cube {0, 1}n.

The D-reducibility of a function f can be exploited in the minimization process: the idea is to minimize
the projection fA of f onto A, instead of f . This approach thus requires two steps: (i) deriving the space
A and the projection fA; (ii) minimizing fA in a given logic frameworks. In this paper we focus on the
standard SOP (Sum of Products) minimization, and we prove how our approach to the synthesis of D-
reducible functions often turns out to be convenient. Moreover the algorithm deriving the minimum space
containing f has time complexity polynomial in the representation of f (i.e., the initial SOP form of f .)

Note that D-reducible functions depend in general on all their n input variables, however we are able to
study them in a space of dimension strictly smaller than n.

As this study will need non trivial formal tools, we start here by giving an intuitive presentation of
D-reducibility. Consider the function f = {0010, 0100, 0110, 1011, 1101} in the Karnaugh map on the left
side of Figure 1. The function f is D-reducible, i.e., we can project it into a space of dimension three (the
space marked with circles in the Karnaugh map).

We can therefore study the new function fA that depends only on three variables, represented in the
Karnaugh map on the right side of the figure. Notice that f and fA have the same number of points, but
these are now compacted in a smaller space. If we synthesize f and fA in the classical SOP framework we
obtain f = x1x3x4 +x1x2x4 +x1x2x3x4 +x1x2x3x4 , and fA = x2x3 +x1x2 +x2x3 . (Note that f depends on
all the variables x1, . . . x4.) The new and more compact form for f is then f = (x1⊕x4)(x2x3+x1x2+x2x3) .
The EXOR (x1 ⊕ x4) represents the new Boolean space where we study fA. Figure 2 shows the resulting
network for the function f .

The key idea of this paper is that if we project the points of a function in smaller Boolean space we have
the chance of reducing the hamming distance between its points in order to merge them in bigger cubes in
the final SOP form. For example, consider the point 1101 in the Karnaugh map on the left side of Figure 1,
its corresponding product x1x2x3x4 is prime since no other point can be merged with 1101. If we project

1



1
x1 x2

00

01

11

10

1

1 0

0

1

1

x3 

1

0

x1 x2

x3 x4

00

01

11

10

00 01 11 10

0 0

0

0 0

0 0

0 1

01

1 0

1

1

0

0

Figure 1: Karnaugh maps of a D-reducible function f and its corresponding projection fA.

4

PLA for fA

f

x

x

x
x

1
x 2

3

1

Figure 2: Network for the D-reducible function f of Figure 1, represented by (x1 ⊕ x4)(x2x3 + x1x2 + x2x3).

the function in the new space (x1 ⊕ x4) its corresponding point 110 can be merged with 010 giving rise to
the prime product x2x3. Observe that simple projections with single literals as xi · f do not change the
hamming distance between points, while projections with EXORs do.

In this paper we describe a simple test that establishes whether a function is D-reducible and computes
the smallest space that contains it. We than propose a new three level logic form (DRedSOP) for f , which
is an AND of some EXOR factors (or literals) representing the projection space A, and the SOP expression
for fA. Figure 2 shows a DRedSOP network.

Our experimental results show that about 70% of the functions in the classical Espresso benchmark
suite have at least one output that is D-reducible: although D-reducible functions form a subset of all possible
Boolean functions, a great amount of standard functions of practical interest falls in this class. In general we
can represent any function as A · f where A is a Boolean subspace of {0, 1}n. If f is D-reducible the space
A is strictly contained in {0, 1}n, otherwise f is the function 1 · f where 1 represents the entire Boolean
space {0, 1}n (i.e., A = {0, 1}n.) We can view this synthesis method as a special Boolean factorization where
instead to literal terms we have EXORs. Factorization of literal terms is a widely studied field in multi-level
logic [3, 17]. Finally note that D-reducibility and autosymmetry (described in [1]) are different regularities,
since autosimmetric functions can be studied in a new space whose variables are EXOR combinations of the
original ones, and D-reducible functions are studied in a projection space producing an expression where the
EXOR gates are in AND with a SOP form. However, D-reducible functions have an interesting connection
with autosymmetric functions through their Walsh transform.

The paper is organizes as follows. In the first section we review some basic definition and properties of
affine spaces. In Section 3 we formally define D-reducible functions. In section 4 we propose a synthesis
algorithm for DRedSOP forms. Finally, in Section 5 we describe our experimental results.

2 Preliminaries

In this section we briefly review some basic notions on affine spaces that are useful in the sequel (for a more
detailed introduction on affine spaces see [4, 5]).

We work in a Boolean space {0, 1}n described by n variables x1, x2, . . . , xn, where each point is represented
by a binary vector of n components. Hereafter, we shall use the terms vector and point with the same meaning.

In the space {0, 1}n, an EXOR factor is an EXOR (or modulo 2 sum), denoted by ⊕, of variables, one of

2



which possibly complemented (an EXOR with just one literal corresponds to the literal itself). Let us now
extend the symbol ⊕ to denote the elementwise EXOR between two vectors. Then α⊕β is the vector obtained
from β complementing in it the elements corresponding to the 1’s of α. For example 1011⊕ 0111 = 1100.

We recall that, a vector subspace V of the vector space ({0, 1}n,⊕) is a subset of {0, 1}n containing the
zero vector 0 = 00 . . . 0, such that for each v1 and v2 in V we have that v1 ⊕ v2 is in V . Note that a vector
subspace of a vector space is a vector space itself.

Example 1 The set V = {000, 001, 010, 011} is a vector subspace of ({0, 1}3,⊕). In fact, 0 = 000 is in V ,
and 001⊕ 010 = 011 ∈ V , 001⊕ 011 = 010 ∈ V , 010⊕ 011 = 001 ∈ V , 001⊕ 000 = 001 ∈ V , etc.

Each vector subspace V of ({0, 1}n,⊕) contains 2k vectors, where k is a positive integer. We say that V
has dimension k or is k-dimensional (shortly dim(V ) = k). The subspace of Example 1 has 22 points, and
its dimension is 2.

A k-dimensional vector space V is generated by a basis B containing k vectors. Each vector v in a basis
B is linearly independent of all the other vectors in B, i.e., v is not generated by any EXOR combination
of the other vectors in B. A vector space, in general, has not a unique basis. In fact, a set of k linearly
independent vectors in a vector space V of dimension k always forms a basis of V . For example the vector
space V = {000, 001, 010, 011} has three different bases, namely {010, 011}, {001, 010}, and {001, 011}.

Given a vector subspace V of ({0, 1}n,⊕), and a point α in {0, 1}n, we build an affine space performing
the EXOR between α and each point of V . Formally we pose:

Definition 1 Let V be a vector subspace of ({0, 1}n,⊕), and let α ∈ {0, 1}n be a Boolean point. The set
A = α⊕ V = {α⊕ v | v ∈ V } is an affine space over V with translation point α.

Example 2 Consider the vector space V = {000, 010, 011, 001} and the vector α = 100 ∈ {0, 1}3. The set
A = α ⊕ V = 100 ⊕ V = {100, 110, 111, 101} is an affine space over V . Note that we can choose α as any
vector of A. In this example A = 100⊕ V = 110⊕ V = 111⊕ V = 101⊕ V .

An interesting property of affine spaces is that (α⊕ V ≡ V ) ⇔ α ∈ V . For example, let V be the vector
space {000, 010, 011, 001}, then A = 010 ⊕ V = {000, 010, 011, 001} = V , because 010 ∈ V . Clearly, a
vector space is an affine space.

If A is an affine space, there exists a unique vector space V such that for all α in A, A = α ⊕ V . Such
space can be computed as V = α ⊕ A, where α is any point of A. Moreover, if A and A′ are affine spaces
over the same vector space V , then A and A′ either coincide or are disjoint.

Example 3 Consider the affine space A = {0010, 0011, 0100, 0101}. Our aim is to find the unique vector
space V such that A = α ⊕ V . Choosing α = 0010 ∈ A, we have: V = α ⊕ A = 0010 ⊕ A = {0000, 0001,
0110, 0111}. It is easy to verify that choosing a different vector in A as translation point we achieve the
same result, i.e., V = 0010⊕A = 0011⊕A = 0100⊕A = 0101⊕A.

Let A = α⊕V be an affine space. The dimension of A is the dimension of the vector space V . Since the
translation point α can be chosen as any vector of A, and the vector space V can be represented by any of
its bases, we must define a unique representation of A. To this end we introduce some notation. A set of k
points in {0, 1}n (e.g., an affine or vector space) can be arranged in a k × n matrix whose rows correspond
to the points, and whose columns correspond to the variables x1, x2, . . . , xn (see for example Figure 3).

A matrix of points in {0, 1}n is in binary order if its rows (points) are sorted as increasing binary numbers.
For example the two matrices in Figure 3 are in binary order.

Definition 2 Let A be an affine space over a vector space V . The canonical translation point αA is the
minimum point of A in binary order.

For example, 00001 is the translation point of the affine space A in Figure 3.

Definition 3 Let V be a vector space whose matrix is sorted in binary order, with the rows indexed from 0
to 2k − 1. And let A = α⊕ V be an affine space over V . The set of points of V with indices 20, 21, . . . , 2k−1

will be called the canonical basis BA of V (or, equivalently, of A).

3



0  0  0  0  1
0  0  1  0  0
0  1  0  1  1
0  1  1  1  0
1  0  0  1  1  
1  0  1  1  0
1  1  0  0  1
1  1  1  0  0

0  0  0  0  0
0  0  1  0  1
0  1  0  1  0
0  1  1  1  1
1  0  0  1  0
1  0  1  1  1
1  1  0  0  0
1  1  1  0  1

= a

= v

= v

2

3

= v1

  A V

x1 x2 x3 x4 x5 x1 x2 x3 x4 x5

Figure 3: An affine space A = a⊕ V and the corresponding vector space V . The points v1, v2, v3 form the canonical
basis for V , and a = αA is the canonical translation point of A (note that V = a⊕A).

For example, the vectors {00101, 01010, 10010} in rows 1, 2, 4 form the canonical basis of the affine space in
Figure 3.

As proved in [4], the canonical basis BA is indeed a basis of V in the algebraic sense, i.e., the points of
BA are linearly independent.

Definition 4 The canonical representation (αA, BA) of an affine space is given by its canonical translation
point together with its canonical basis.

For example, the canonical representation of the affine space A in Figure 3 is αA = 00001 and BA =
{00101, 01010, 10010}.

We can note that the canonical basis corresponds to the basis derived by a matrix in reduced row echelon
form [5]. The reduced row echelon form of a matrix is unique. Thus the canonical representation uniquely
specifies an affine space (see [4] for more details).

We partition now the Boolean variables of an affine space in two sets as follows.

Definition 5 Let A = αA ⊕ V be an affine space with canonical basis v1, . . . , vk. For each vi, let x be the
variable corresponding to the first 1-component from left of vi. The variable x is called canonical variable.
The variables that are not canonical for any vector in the canonical basis are called non-canonical.

For example in Figure 3, the canonical variables are x3 for vector v1 = 00101, x2 for vector v2 = 01010, and
x1 for vector v3 = 10010. The non-canonical variables are the remaining variables x4 and x5.

Observe that the canonical variables are the truly independent variables in the space A, in the sense that
they can assume all possible combinations of 0-1 values. On the contrary, on A the non-canonical variables
are not independent because they can be defined as linear combinations (i.e., EXORs) of the canonical ones.

This fact is clearly expressed by the characteristic function of an affine space, represented by an algebraic
expression involving AND and EXOR operators. In fact, as shown in [4], an affine space can be represented
by a simple expression (called pseudoproduct) consisting in an AND of EXORs or literals. For example
x2x1(x3 ⊕ x4 ⊕ x5)(x3 ⊕ x7) is a pseudoproduct.

The characteristic function of an affine space can be expressed in various ways as a pseudoproducts.
Among these forms, a canonical (CEX) expression given in [14] is of particular relevance. In the following
definition we explain how to derive the CEX expression of a given affine space A (the direct connection
between the canonical basis of an affine space and its CEX expression is detailed in [4]).

Definition 6 Let A = αA ⊕ V be an affine space. The CEX(A) expression of A is given by a product of
EXOR factors such that:

1. there is an EXOR factor for any non-canonical variable;
2. the only variables that appear in the EXOR factor corresponding to the non-canonical variable x are

the canonical variables (if any) connected with x in the canonical basis BA;

4



3. all the canonical variables are not complemented; a non-canonical variable is complemented in its
EXOR factor iff its corresponding component in αA is 0.

Example 4 Let A = αA ⊕ V be an affine space with canopnical basis BA = {001010, 010110, 100000} and
translation pointαA = 000100. The first vector in BA shows that the canonical variable x3 is in the EXOR
factor corresponding to the non-canonical variable x5. Vector 010110 shows that the canonical variable x2 is
in the EXOR factors corresponding to the non-canonical variables x4 and x5. Vector 100000 shows that the
canonical variable x1 does not appear in any EXOR factor. By point 1 of Definition 6, we have three EXOR
factors (one for each non-canonical variable): 1) x2 ⊕ x4, corresponding to the non-canonical variable x4

and containing the canonical variable x2; 2) x2 ⊕ x3 ⊕ x5, corresponding to the non-canonical variable x5

and containing the canonical variables x2 and x3, and 3) x6, corresponding to the non-canonical variable x6

and not containing any canonical variable. Note that, by point 3 of Definition 6, the vector αA = 000100
shows that the non-canonical variable x4 is not complemented while x5 and x6 are complemented. Therefore
the CEX expression is (x2 ⊕ x4)(x2 ⊕ x3 ⊕ x5)x6.

3 D-reducible functions

In this section we define the class of D-reducible Boolean functions, and analyze their properties. Informally,
D-reducible functions are functions whose points are contained in an affine space strictly smaller than the
whole Boolean cube {0, 1}n.

Definition 7 The Boolean function f : {0, 1}n → {0, 1} is D-reducible if f ⊆ A, where A ⊂ {0, 1}n is an
affine space of dimension strictly smaller than n.

Definition 8 Let f be a D-reducible function. The smallest affine space containing f is called its associated
affine space.

Proposition 1 The smallest affine space containing a Boolean function f is unique.

Proof. Let us suppose that f ⊆ A1 and f ⊆ A2. We first observe that A1 and A2 must be affine spaces over
the same vector space (this can be verified by some algebraic manipulation). Thus the thesis easily follows
since two affine spaces over the same vector space either coincide or are disjoint, and in our case A1∩A2 6= ∅.

Note that A can be a vector space. The reason why we consider affine spaces, instead of vector spaces, is
that the smallest affine space containing a function f can have dimension a unit smaller than the dimension
of the smallest vector space containing f . For instance, the smallest vector space containing the parity
function is {0, 1}n, while the smallest affine space is the set of binary vectors corresponding to the parity
itself, i.e., the set of vectors with odd hamming weight, which has dimension n− 1.

Proposition 2 Let f be a D-reducible function and A its associated affine space. Then f = χA · fA, where
χA is the characteristic function of A and fA is the projection of f on A, i.e., fA ⊆ {0, 1}dim A is the
characteristic function of the set f ∩A.

Proof. For any Boolean function f and any subset A ⊆ {0, 1}n, we can decompose f as f = χA ·fA+χA ·fA ,
where fA and fA are the projections of f on A and A, respectively: fA = χf∩A, fA = χf∩A. Let f be D-
reducible, and let A be its associated affine space. Since f ⊆ A, fA is the constant zero function, and the
thesis immediately follows.

Corollary 1 Let f be a D-reducible function, and A its associated affine space. The function fA depends
on the d = dim A (< n) canonical variables of the affine space V .

Since A is an affine space, we finally have

Proposition 3 The function χA can be expressed as a pseudoproduct.

5



Example 5 Consider the function f = {0010, 0100, 0110, 1011, 1101} whose Karnaugh map is shown on the
left side of Figure 1. f is D-reducible, and its associated affine space is described by the CEX expression
(x1 ⊕ x4). If we project f on the Boolean space of dimension 3, represented in the Karnaugh map on the
left side of Figure 1 with circles, we obtain the function fA = {001, 010, 011, 101, 110}, represented in the
Karnaugh map on the right side of the figure, which depends only on the canonical variables of A, i.e., x1, x2,
and x3.

3.1 Relations with degenerate and autosymmetric functions

It is important to observe that D-reducible functions depend in general on all their input variables, i.e.,
they are not degenerate; and degenerate functions are not in general D-reducible. For instance, the function
f(x1, x2, x3) = x2 ∨ x3 is degenerate, but not D-reducible; while the function f(x1, . . . , xn) = x1 ⊕ x2

⊕ . . .⊕ xn is D-reducible since it is contained in the n− 1 dimensional space of vectors with even hamming
weight, and it is not degenerate.

We now briefly discuss the relationship between the class of D-reducible functions, and the class of
autosymmetric functions.

Autosymmetric functions, introduced in [14] and studied in [1], exhibit a regular structure that can be
exploited by synthesis algorithms. We recall here their definition.

Definition 9 A Boolean function f in {0, 1}n is closed under α, with α ∈ {0, 1}n, if for each w ∈ {0, 1}n,
w ⊕ α ∈ f if and only if w ∈ f .

Each function is obviously closed under the zero vector 0. As proved in [14], if a function f is closed under
two different vectors α1, α2 ∈ {0, 1}n, it is also closed under α1⊕α2. Therefore the set Lf of all the vectors
β such that f is closed under β is a vector subspace of {0, 1}n. Lf is called the linear space of f , and k is
its dimension.

Definition 10 A Boolean function f is k-autosymmetric, or equivalently f has autosymmetry degree k,
0 ≤ k ≤ n, if its linear space Lf has dimension k.

The intersection between the set of autosymmetric and D-reducible functions is not empty; for instance
the parity function is both autosymmetric and D-reducible. However there exist D-reducible functions that
are not autosymmetric, and autosymmetric functions that are not D-reducible. For instance, the function
f(x1, x2, x3) = x1x2x3 is D-reducible but non autosymmetric, and the function f(x1, x2, x3) = (x1⊕x2)∨x3

is autosymmetric but not D-reducible.
However, D-reducible functions have an interesting connection with autosymmetric functions, which can

be understood by looking at their Walsh transform. The connection is expressed by the following theorems,
whose proofs are omitted here for brevity.

Theorem 1 Let f be a D-reducible function, and let A be its associated affine space. The function defined
by the absolute value of the Walsh transform of f , |f̂ |, is a k-autosymmetric function, with k = n− dim A,
and its linear space is L|f̂ | = V ⊥

A , where VA denotes the vector space corresponding to A.

Theorem 2 Let f be a k-autosymmetric function. Then the characteristic function χf̂ of the support of its
Walsh transform f̂ is a D-reducible function, whose associated affine space is L⊥

f .

4 Synthesis of D-reducible functions

In this section we show how the property of D-reducibility can be exploited to perform the synthesis of a
Boolean function. Remember that a D-reducible function f can be written as f = χA · fA, where χA is the
characteristic function of A and fA is the projection of f on A (see Proposition 2). Intuitively, the idea is
that of reducing the minimization of f to the minimization of fA, which depends on less variables.

We start by showing how to efficiently test whether a function is D-reducible, and derive its associated
affine space.

6



4.1 D-reducibility Test

Given a Boolean function f : {0, 1}n → {0, 1}, we can perform the D-reducibility test by applying a classical
linear algebra tool: the Gauss elimination.

Let m = |f |. If we execute the Gauss elimination on the m× n matrix whose rows are the points of the
function, we get a basis for the smallest vector space containing f .

As already noted we are interested in getting the smallest affine space containing f , since its dimension
can be smaller. To this aim, we first note that if the zero vector is a point of f , than A is a vector space
(indeed, whenever an affine space contains the zero vector, then it is actually a vector space). Otherwise, f
can be contained in an affine space that is not a vector space.

We derive A performing the following steps:

1. We pick any point of f , say v, and compute the set v ⊕ f . If the zero vector belongs to f , we choose
v = 0.

2. We compute the smallest vector space VA containing v ⊕ f by Gauss elimination.

3. We finally derive A ⊃ f from VA as A = v ⊕ VA, where v is the same vector chosen in the first step.

Note that, whenever f do not contain the zero vector, we can choose any point v ∈ f in the first step without
changing the result, i.e. the affine space A. This is a consequence of Proposition 1.

The time complexity of this D-reducibility test is polynomial in n and |f |. More precisely the compu-
tational cost of the Gauss elimination is O(n|f |2). Since |f | is often exponential in the number of variables
n, the complexity of the test can be exponential in n. In Section 4.4 we discuss a more efficient test that
computes the associated affine space of a function f in time polynomial in the original SOP representation
of f , and not in the number of its minterms.

4.2 Variable reduction

Recall that a D-reducible function f can be written as f = χA · fA, where fA depends only on dim A
variables (see Corollary 1). Moreover χA, the characteristic function of the affine space A covering f , is
a pseudoproduct with (n − dim A) EXOR factors, each containing a different non-canonical variable. The
dim A variables on which fA depends are exactly the canonical variables of A. Indeed the non-canonical
variables depend, through the EXOR factors of χA, on the canonical ones.

4.3 Synthesis

We propose to synthesize a D-reducible function f = χA · fA as follows. We represent χA using its CEX,
getting an EXOR-AND network. We can then synthesize fA in any logical framework (SOP [2, 6], three-
level-logic networks [7, 8, 9, 10, 11, 15, 16], etc.). The synthesis of fA could be easier than the synthesis
of f , since fA depends on dim A < n variables. Moreover the size of the network for fA should be smaller
than the size of the corresponding network of f . Indeed f and fA have the same number of points, but fA

is defined in a smaller space and its points are less sparse.
For example consider the function f = {0010, 0100, 0110, 1011, 1101}, whose Karnaugh map is shown on

the left side of Figure 1. f is D-reducible, and its associated affine space is described by the CEX expression
(x1 ⊕ x4). We can project f on the Boolean space of dimension 3, represented in the Karnaugh map on the
left side of Figure 1 with circles. We can therefore study the function fA, represented in the Karnaugh map
on the right side of the figure. fA depends only on the canonical variables of A, i.e., x1, x2, and x3.

Notice that we have the same number of points, but these are now compacted in a smaller space, i.e., the
points of the function are more adiacent and we have more chance to merge them into cubes. Suppose we want
to synthesize f and fA in the classical SOP framework. We have f = x1x3x4+x1x2x4+x1x2x3x4+x1x2x3x4 ,
and fA = x2x3 + x1x2 + x2x3 . The new form for f is then f = (x1 ⊕ x4)(x2x3 + x1x2 + x2x3) . Figure 2
shows the resulting network for the function f .

7



4.4 Test from PLAs

The test algorithm described in Section 4.1 considers functions represented by their minterms. Generally
Boolean functions are represented by SOP expressions containing cubes and not only minterms (e.g., PLAs).
In this section we explain how to perform the D-reducibility test starting from a SOP of a function, without
generating all its minterms. The complexity of this new version of the test becomes O(nP 2), where P is the
number of products in the given SOP for f . Observe that in practical cases, we have often P << |f |.

We describe the idea starting with an example. Let f = {000000, 001000, 010001, 010011, 011001,
011011} be represented with the SOP: x1x2x4x5x6 + x1x2x4x6. The product x1x2x4x6 is represented in a
PLA by the row 01-0-1. For each don’t care in the product, we can generate a vector composed by all zeros
but a 1 in the position corresponding to the don’t care. For instance, in our example we generate the vectors
001000 and 000010. These vectors would be surely generated during the Gauss elimination step. In fact we
have: 001000 = 010001⊕ 011001 and 000010 = 010001⊕ 010011. The matrix to be processed by the Gauss
elimination algorithm will then contain: the original vector with 0 instead of the don’t cares (010001) and
the new generated vectors (001000 and 000010).

Notice that a product is a particular pseudoproduct and represents an affine space A = α ⊕ VA of 2d

points, where d is the number of don’t cares. Moreover the basis of VA is a subset of the standard basis of
{0, 1}n, i.e., e1 = 100 . . . 00, e2 = 010 . . . 00, . . ., en = 000 . . . 01. Therefore our idea is to represent a product
only with d + 1 vectors instead of 2d minterms. These d + 1 vectors are the basis of VA, together with α.
Moreover, we add a vector of the basis of VA if and only if it has not been already used for representing
another product. In conclusion the P products in the given SOP of f are transformed into at most P + n
vectors in input to the Gauss elimination algorithm.

In the former example, the first product can be represented by 000000 and 001000, and the second by
010001, 001000 and 000010. Thus, the input to the Gauss elimination step is given by the set of vectors:
{000000, 001000, 010001, 000010}. Note that the vector e3 = 001000 has been written only once.

4.5 Incompletely Specified D-reducible Functions

Let us now briefly discuss how to extend the notion of D-reducibility to functions with don’t care points
(denoted by ∗.)

The extension to incompletely specified functions is important because synthesis techniques usually ben-
efit from the presence of don’t cares; and the synthesis of D-reducible functions would analogously be greatly
improved by projecting onto A also the don’t care set.

Our current approach to the synthesis of D-reducible functions is rather restrictive, as it projects onto
the affine space A only the one-set of a D-reducible function.

In order to keep the dimension of A as small as possible, we still define A as the smallest affine space
covering only the one-set of a function.

Definition 11 An incompletely specified function f : {0, 1}n → {0, 1, ∗} is D-reducible if its one-set can be
covered by an affine space of dimension strictly smaller than n.

Once A has been derived, we project onto A non only the ones of f , but also its don’t care set. The points
of the don’t care set that are not covered by A are set to 0.

5 Experimental results

In this section we compare the size of the networks described in Section 4.3 (in short DRedSOPs) with the
size of the corresponding minimum SOPs. To this end we count the number of literals and the number of
gates (OR, AND and EXOR) of an expression. In the multi-level context the cost function is the number
of literals in each different gate (see [12, 13]). We observe that in many technologies EXOR and OR (or
AND) gates have different costs. In [13] the authors consider a 2-input EXOR gate as x ⊕ y = xy + xy.
Thus the cost of a 2-input EXOR gate is 6 (4 literals and 2 products), while the cost of the 2-input OR
and AND gates is 2. Generally, by the associative property of the EXOR operator, we can always see
a k-input EXOR gate as the composition of (k − 1) 2-input EXOR gates. (The realization is a tree of

8



Table 1: Synthesis times and network costs of DRedSOPs, and exact SOP forms

Benchmark Network Cost Synthesis time
Name n |P | µSOP µSOP′ AD+E µDRedSOP gain SOP DRedSOP

addm4 9 189 1407 1380 27 1407 0.00 0.49 0.41
adr4 8 255 415 410 13 423 -1.93 0.07 0.05
alu1 12 19 60 51 15 66 -10.00 0.23 0.34
b2 16 104 1970 1998 19 2017 -2.36 0.81 0.79
chkn 29 153 1744 1544 27 1571 9.92 0.33 0.40
co14 14 14 210 169 81 250 -19.05 0.01 0.01
f51m 8 76 402 396 17 413 -2.74 0.11 0.12
intb 15 629 5911 5259 9 5268 10.88 11.76 9.13
m181 15 430 235 202 14 216 8.06 2.17 21.40
misex2 25 29 213 89 140 239 -12.21 0.01 0.01
mlp4 8 121 869 846 14 860 1.04 0.95 0.30
mp2d 14 123 201 173 64 237 -17.91 1.00 4.97
newapla1 12 4 76 16 53 69 9.21 0.01 0.01
newtpla 15 23 199 112 36 148 25.63 0.01 0.01
sao2 10 58 495 289 55 344 30.51 0.05 0.06
t3 12 33 251 207 29 236 5.98 0.01 0.03
table3 14 175 2643 2737 28 2765 -4.62 0.24 0.23
table5 17 158 2503 2588 92 2680 -7.07 0.25 0.30
vg2 25 110 914 586 118 704 22.98 0.79 0.86
vtx1 27 110 1074 670 116 786 26.82 0.62 2.71
x6dn 39 121 818 737 11 748 8.56 0.57 0.60
x9dn 27 120 1258 704 130 834 33.70 0.69 2.23
xor5 5 16 96 1 26 27 71.88 0.01 0.01

EXOR gates. Note that an EXOR tree for a k-input EXOR can always be balanced, thus its height is
dlog2 ke.) Therefore, we can use a cost function µ where a k-input EXOR gate costs 6(k − 1), and k-input
OR/AND gates cost k. With these measures we compare DRedSOP and SOP expressions. Note that,
for SOP expressions the cost µ (that we call µSOP ) corresponds to the sum of the number of literals (L)
and different AND gates (A) in the SOP expression, i.e., µSOP = L + A. For the DRedSOP form of a
function f , the cost is µDRedSOP = µSOP ′ + AD + E, where E is the total cost of the EXOR gates, µSOP ′

is the cost of the SOP of the projected function fA, and AD is the cost of the final AND gate. In facts
AD = nE + 1, where nE is the number of EXORs, and 1 is the output of the SOP. For example for the
DRedSOP: (x1 ⊕ x2)(x1 ⊕ x3)(x1x4 + x6) we have AD = 2 + 1 and µDRedSOP = 5 + 3 + 2 ∗ 6.

Our minimization method has been tested on a range of functions taken from the Espresso benchmark
suite [18]. CPU times are reported in seconds on a Pentium III 800MHz machine with 512MB of RAM.
The Gauss elimination is computed with Mathematica 5.0.

In our experiments, we have first computed the number of functions that have at least one D-reducible
output in the benchmark suite. The number of such functions is about 70% of the total. We have then
synthesized these functions in order to evaluate whether their DRedSOP network is indeed more compact
than the classical minimum SOP form. We have minimized both SOP and DRedSOP forms using Espresso
Exact [2]. The size of the resulting networks has been compared using the cost function µ. Table 1 shows
a significant subset of our results. The cost of the PLA for the SOP form is reported in the second column
(µSOP ) of the table, while the overall cost of the DRedSOP network is in the fourth column (µDRedSOP ).

We can note that the DRedSOP is not always smaller than the minimum SOP form. This is due
to different reasons. First, the EXOR part of the network can be expensive in the CMOS technology.
Moreover, some functions benefit from the multi-output minimization; after the projection of some outputs,
it can happen that the common products are reduced in number.

We have finally compared area and delay of these functions using SIS tool, after the technology mapping.
Table 2 shows the results of a significant subset of our experiments.

However we can observe from Table 1 that a significant number of benchmark functions have a reduced
size for their DRedSOP form (the functions that have a positive value in the gain column of the table.)
Therefore we propose our algorithm as a preprocessing step before the logic synthesis process.

9



Table 2: Area/delay costs of DRedSOPs, and exact SOP forms

Benchmark DRedSOP SOP
Name n |P | area delay area delay

addm4 9 189 1276 42.90 1363 47.90
adr4 8 255 115 12.20 267 19.20
chkn 29 153 866 47.10 819 43.60
f51m 8 76 310 20.70 563 31.60
mp2d 14 123 313 19.70 417 26.00
newtpla 15 23 130 19.70 111 19.70
sao2 10 58 344 27.60 332 27.10
t3 12 33 191 16.90 198 21.50
vg2 25 110 395 22.40 354 18.60
vtx1 27 110 384 25.90 344 21.30
x6dn 39 121 899 34.40 1217 36.80
x9dn 27 120 439 26.90 404 23.00
xor5 5 16 16 9.10 16 9.10

%begintable[t]

6 Conclusion

In this paper we have introduced the notion of D-reducibility of a Boolean function f . This approach supplies
a new tool for efficient minimization. For a D-reducible function f , depending on n variables, a new function
fA, depending on less than n variables, can be defined and built in polynomial time. Our experiments have
confirmed the foreseen time reduction, and have also shown that a great number of functions of practical
importance are indeed D-reducible, thus validating the overall interest of our approach. Our minimization
algorithm would probably be greatly improved if formulated on BDD’s as its applicability is presently limited
by the size of the input. This promising approach is currently under investigation.

References

[1] A. Bernasconi, V. Ciriani, F. Luccio, and L. Pagli. Three-Level Logic Minimization Based on Function
Regularities. IEEE Transactions on TCAD, 22(8):1005–1016, 2003.

[2] R. Brayton, G. Hachtel, C. McMullen, and A. Sangiovanni-Vincentelli. Logic Minimization Algorithms
for VLSI Synthesis. Kluwer Ac. Pub., 1984.

[3] G. Caruso. Near Optimal Factorization of Boolean Functions. IEEE Transactions on CAD, 10(8):1072–
1078, 1991.

[4] V. Ciriani. Synthesis of SPP Three-Level Logic Networks using Affine Spaces. IEEE Transactions on
TCAD, 22(10):1310–1323, 2003.

[5] P. Cohn. Algebra Vol. 1. John Wiley & Sons, 1981.

[6] O. Coudert. Doing Two-Level Logic Minimization 100 Times Faster. In SODA, pages 112–121, 1995.

[7] D. Debnath and T. Sasao. An Optimization of AND-OR-EXOR Three-Level Networks. In Asia and
South Pacific Design Automation Conference, pages 545–550, 1997.

[8] D. Debnath and T. Sasao. Minimization of AND-OR-EXOR Three-Level Networks with AND Gate
Sharing. IEICE Trans. Information and Systems, E80-D(10):1001–1008, 1997.

[9] D. Debnath and T. Sasao. A Heuristic Algorithm to Design AND-OR-EXOR Three-Level Networks. In
Asia and South Pacific Design Automation Conference, pages 69–74, 1998.

10



[10] E. Dubrova, D. Miller, and J. Muzio. Upper Bounds on the Number of Products in AND-OR-XOR
Expansion of Logic Functions. Electronic Letters, 31(7):541–542, 1995.

[11] E. Dubrova, D. Miller, and J. Muzio. AOXMIN-MV: A Heuristic Algorithm for AND-OR-XOR Min-
imization. In 4th Int. Workshop on the Applications of the Reed Muller Expansion in circuit Design,
pages 37–54, 1999.

[12] M. Eggerstedt, N. Hendrich, and K. von der Heide. Minimization of Parity-Checked Fault-Secure
AND/EXOR Networks. In IFIP WG 10.2 Workshop on Applications of the Reed-Muller Expansion in
Circuit Design, pages 142–146, 1993.

[13] G. Hachtel and F. Somenzi. Logic Synthesis and Verification Algorithms. Kluwer Academy Publishers,
1996.

[14] F. Luccio and L. Pagli. On a New Boolean Function with Applications. IEEE Transactions on Com-
puters, 48(3):296–310, 1999.

[15] M. Perkowski. A New Representation of Strongly Unspecified Switching Functions and its Application
to Multi-Level AND/OR/EXOR Synthesis. In IFIP WG 10.5 Workshop on Applications of the Reed-
Muller Expansion, pages 143–151, 1995.

[16] T. Sasao. A Design Method for AND-OR-EXOR Three Level Networks. In Int. Workshop on Logic
Synthesis, pages 8:11–8:20, 1995.

[17] T. Sasao. Switching Theory for Logic Synthesis. Kluwer Academic Publishers, 1999.

[18] S. Yang. Logic synthesis and optimization benchmarks user guide version 3.0. User guide, Microelec-
tronic Center, 1991.

11


