
 

Abstract 
 

We compare the complexity of “ internal”  and 
“ external”  equivalence checking.  The former is meant 
for proving the  correctness of a synthesis 
transformation by which circuit N2 is obtained from 
circuit N1. The latter is meant for proving  that circuits 
N1 and N2 are functionally equivalent without making 
any explicit assumptions about the origin of N1 and N2.  
We describe logic synthesis procedures that can 
produce a circuit N2 whose equivalence with the 
original circuit N1, most likely, can not be efficiently 
proved by an external equivalence checker. On the 
other hand, there are  internal equivalence checking 
procedures that easily prove that  N1 and N2 are 
equivalent. We give experimental data showing that 
these logic synthesis procedures are  not a 
mathematical curiosity but indeed can be used as a 
powerful method of logic optimization.   
 

1. INTRODUCTION 
 

Equivalence checking (EC) has become an 
important part of design verification [7]. This success 
can be attributed to a good scalability of the state-of-
the-art equivalence checkers. In turn, this scalability is 
due to two factors. First,  logic synthesis tools usually 
do not re-encode state variables and so EC of two 
sequential circuits reduces to EC of combinational 
circuits bounded by registers and/or primary inputs and 
outputs. (For this reason, in this paper, we consider 
only EC of combinational circuits and when we refer to   
a “circuit”  we mean a “combinational circuit” .) Second,  
in many   cases circuits can be represented by small 
BDDs [4]. Then EC of  the corresponding 
combinational circuits of two designs to be compared  
can be performed efficiently. 

 

1.1 EC of large circuits 
 

The existence of  large combinational circuits 
poses a problem in EC.  Informally, we consider a 
circuit as “ large” , if its BDD cannot be built efficiently.  
Typically, this happens when a circuit has a large width 
[1]. The width of a circuit N describes the amount of 
communication between different parts of N, multiplier 
being a classical example of a “wide”  circuit.  

A lot of  research in EC has been focused on 
handling large combinational circuits. In [9], the idea 
of combining  SAT and BDD based  methods was 
explored.  The case when circuits to be checked for 
equivalence have compact BDDs under different 
variable orders was studied in [13].   The most popular 
method of handling large circuits is based on 
employing cut points [2][3]. The idea is to prove 
functional equivalence of circuits N1 and N2 
inductively. First equivalence of some subcircuits of N1 
and N2 is established.  The outputs of equivalent 
subcircuits are considered as cut points and new 
subcircuits are tested for equivalence, inputs of these 
subcircuits being  cut points.  This goes on until 
equivalence of the outputs of N1 and N2 is  proven in 
terms of some cut points. This idea was further 
developed in [10] and successfully used in many 
equivalence checkers (e.g. [5][6]).  It may happen that 
even though  N1 and N2  are equivalent, they appear to 
be inequivalent in terms of the chosen cut points.  This 
situation is usually called a false negative. The problem 
of false negatives  was addressed  in [12][14]. 

 

1.2 Internal and external EC 
 

All the methods described above are meant for 
“external”   EC. Informally, EC is external if  no 
explicit assumptions are made about the origin of 
combinational circuits N1 and N2  to be compared. We 
will say that EC is “ internal”  if it is  meant for 
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verification of a logic synthesis transformation by 
which circuit N2 is obtained from N1. So, by definition, 
internal EC “knows”  the relation between N1 and N2.   
For simple transformations, internal EC is performed 
implicitly by using some informal reasoning. Suppose, 
for example, that internal points w and w′ of a circuit 
N1 are functionally equivalent. Then one can optimize 
N1 by  removing  w′  and feeding its  fan-out nodes with 
w (instead of w′ ). No explicit procedure is run for EC  
of  N1  and N2 because in this particular case the 
equivalence of N1 and N2 is “obvious” . 

Development of new “non-trivial”  methods for 
internal EC is extremely important because these 
methods enable new logic synthesis procedures.   A  
powerful method of internal EC  was introduced in [8] 
where logic synthesis and EC of circuits with a 
common specification were considered. A 
specification of a circuit N is just a partition of N into 
subcircuits. Two circuits N1 and N2 have a common 
specification if they can be partitioned into k 
subcircuits N1

1,.., N1
k and N2

1,.., N2
k  such that   these 

subcircuits are connected in “ the same way”  in N1 and 
N2 and corresponding subcircuits N1

i, N2
i are toggle 

equivalent. We will refer to the EC procedure of [8]  as 
EC_TE where TE stands for toggle equivalence.  

The importance of EC_TE is twofold. First, it 
enables a powerful logic synthesis procedure. (We will 
refer to this procedure as LS_TE where LS stands for 
logic synthesis and TE for toggle equivalence).  Given 
a circuit N1 with specification N1

1,..,N2
k,  LS_TE  

builds an optimized circuit N2 that is functionally 
equivalent to N1 by replacing subcircuits N1

i with their 
toggle equivalent counterparts in topological order.  
(The equivalence of N1 and N2 can be established  by 
EC_TE). The power of LS_TE is in its good scalability 
and flexibility. LS_TE has linear complexity in the 
number k of subcircuits N1

i and exponential in the 
granularity of specification which is the size  of the 
largest subcircuit N1

i, in the number of gates. (EC_TE  
has the same complexity as LS_TE).  If a subcircuit N1

i 
of N1 has m outputs, then the number of m-output 
subcircuits that are toggle equivalent to N1

i is huge 
even for small m.  So LS_TE enjoys great flexibility 
even for specifications of very small granularity. 

The second reason why introduction of EC_TE is  
important is as follows.  Usually, external EC is 
assumed to be as powerful as internal.  The results of 
[8] imply, that, most probably, there is an exponential 
gap between external and internal EC.  The reason is 
that finding a common specification of N1 and N2 most 
likely can not be done efficiently. So EC of N1 and N2 

becomes infeasible if the partitioning of N1 and N2 into 
subcircuits N1

1,.., N1
k and N2

1,…, N2
k is not known. In 

other words, if N1 is a circuit of large width, external 
EC of N1 and N2 obtained from N1 by a logic 
optimization procedure is possible only if this 
procedure is very “weak” . Then N1 and N2 have so 
much similarity (like existence of many functionally 
equivalent internal points) that equivalence of N1 and 
N2 can be proven without any additional information. 

 

1.3 Our contribution and structure of the 
paper 
 

In this paper, we further develop the ideas of [8]. 
Our contribution is threefold. In [8], no concrete 
procedure that, given a subcircuit N1

i, generates a 
toggle equivalent counterpart N2

i, was introduced.  So 
one could consider the performance gap between 
internal and external EC as a mathematical curiosity. 
The first contribution of this paper is that we give 
experimental data showing the promise of  LS_TE, 
which makes  the theory of [8] much more tangible. 

 The second contribution is that we show that after 
a slight modification, EC_TE enables a logic synthesis 
procedure much more powerful than LS_TE. Given a 
circuit N1 and specification N1

1,..,N1
k, this procedure is 

to replace each subcircuit N1
i with a subcircuit N2

i that 
implies toggling of N1

i. We will refer to this procedure 
as LS_TI (where TI stands for toggle implication). 
LS_TI offers much more flexibility than LS_TE while 
its complexity is the same as the complexity of LS_TE.  
Showing that LS_TI “widens”  the gap between internal 
and external EC  is our third contribution.  

This paper is structured as follows. In Section 2 we 
give basic notions. Section 3 recalls EC_TE and 
LS_TE procedures of [8]. In Section 4 we describe an 
EC procedure enabling a logic synthesis procedure 
LS_TI more powerful than LS_TE. Section 5 gives 
experimental data showing the power of LS_TE and 
explains why LS_TI is more powerful than LS_TE. In 
Section 6 we discuss the complexity of external EC of 
circuits produced by LS_TE and LS_TI. We conclude 
with Section 7. 

2.  BASIC NOTIONS 

2.1 Toggle equivalence of Boolean functions 
 

In this subsection, we recall the notion of toggle 
equivalence and its properties.  All the propositions 



 

given in this section  are either proven in [8]  or can be 
easily derived from proofs given there. 
Definition 1. Let f:{ 0,1} n  → { 0,1} m be an m-output 
Boolean function. A toggle of f  is a pair of two 
different output vectors produced by f  for two input 
vectors. In other words, if y=f(x) and y′′′′ =f(x′′′′ ) and y ≠ 
y′, then (y, y′ ) is a toggle. 
Definition 2.  Let f1 and f2 be  m-output and k-output 
Boolean functions of the same set of variables.  
Functions f1 and f2 are called toggle equivalent if  
f1(x) ≠ f1(x′′′′ ) ⇔ f2(x) ≠ f2(x′′′′).  Circuits N1 and N2 
implementing toggle equivalent functions f1 and f2 are 
called toggle equivalent circuits.  
Proposition 1. Let f1:{ 0,1} n  → { 0,1} m and f2 { 0,1} n → 
{ 0,1} k be  m-output and k-output Boolean functions of 
the same set of variables. Let f1 be f2 are toggle 
equivalent. Then there is an invertible  function K such 
that  f1(x)=K(f2(x)) and f2(x)=K−1(f1(x)). 

 Proposition 1 means that if functions f1 and f2 are 
toggle equivalent, then there is a one-to-one mapping K 
between the output vectors produced by f1 and f2. 
Proposition 2. Let f1 and f2 be toggle equivalent single 
output Boolean functions. Then f1=f2 or f1=~f2 where 
‘~’  means negation.  

Let N1 and N2 be toggle equivalent functions. 
Definition 3, Definition 4 and Proposition 3 below 
explain how one can implicitly find the mapping K 
relating outputs produced by  N1 and N2. 
Definition 3.  Let f be a Boolean function. We will say 
that function f* is obtained from f by existentially 
quantifying away variable xi if f* = f(…, xi=0,…) ∨  
f(…, xi=1,….). 

Definition 4. Let N be a circuit. Denote by v(N) the set 
of variables of N. Denote by Sat(v(N))  the Boolean 
function such that Sat(z)=1 iff the assignment z to v(N) 
is “possible”  i.e consistent.  For example, if  N consists 
of just one AND gate y=x1 ∧ x2, then 
Sat(v(N)) = (~x1∨ ~x2 ∨ y)  ∧ (x1 ∨ ~y) ∧ (x2 ∨ ~y). For 
the sake of simplicity we will denote Sat(v(N)) as  
Sat(N). 

Proposition 3. Let N1 and N2 be toggle equivalent and 
Y1, Y2 be the sets of their output variables. Let function 
K* (Y1,Y2) be obtained from Sat(N1) ∧ Sat(N2) by 
existentially quantifying away the variables of  N1 and 
N2 except those of Y1 ∪ Y2. The function K* (Y1, Y2) 
implicitly specifies the one-to-one mapping K between 
output vectors produced by N1 and N2.  Namely 
K*(y1, y2) is equal to 1 iff y1=K(y2). 

2.2 Implication of toggling 
 

In this subsection, we introduce the notion of 
implication of toggling.  
Definition 5. Let f1 and f2 be two multi-output 
functions with the same set of variables X={ x1,…,xn} .  
Toggling of function f1 implies  toggling of  f2 
(denoted as f1 ≤  f2), if for any pair of assignments x′′′′, 
x″″″″ to  X, f1(x′′′′) ≠≠≠≠ f1(x″″″″) implies f2(x′′′′) ≠≠≠≠ f2(x″″″″).  
Definition 6. Toggling of  a multi-output function 
f1(x1,..,xn) strictly implies toggling of a multi-output 
function f2(x1,..,xn) (denoted as f1 < f2) if f1 ≤  f2 but  
f2 ≤  f1 does not hold.  
Remark 1. We will denote by N1 ≤ N2  (respectively  
N1 < N2) the fact that toggling of the function 
implemented by Boolean circuit N1 implies toggling of 
(respectively strictly implies toggling of) the function 
implemented by Boolean circuit N2.  

Proposition 4. Boolean functions f1 and f2 are toggle 
equivalent iff f1 ≤ f2 and f1 ≤ f2.  

Proposition 5. Let f1:{ 0,1} n  → { 0,1} m and f2 { 0,1} n → 
{ 0,1} k be  m-output and k-output Boolean functions of 
the same set of variables. Let f1 ≤  f2. Then there is a 
function K such that  f1(x)=K(f2(x)). 

Note that unless f1 and f2 are toggle equivalent, the 
function K is not invertible.  

2.3 Testing toggle implication and toggle 
equivalence 
 

In this subsection,  we describe how toggle 
equivalence and implication of toggling can be tested. 
Let N1 and N2 be two Boolean circuits to be checked 
for implication of toggling. Let X={ x1,.., xn}  be the set 
of input variables of N1, N2. Let Y={ y1,…, ym}   and 
Z={ z1,.., zk}  be the sets of output variables of N1 and N2  
respectively. Then  N1 ≤ N2 holds iff the function 
S  = H(N1, N2) ∧ H(N* 1, N* 2) ∧ Neq(Y, Y* ) ∧ Eq(Z, Z* ) 
is unsatisfiable (i.e. it is a constant 0). Here N*1 and 
N*2  are copies of circuits N1 and N2, with input 
variables X*={ x*1,.., x*n}   and  output variables 
Y*={ y* 1,…, y* m}  and Z*= { z* 1,.., z* k}  respectively. 
The function H(N1, N2) is equal to Sat(N1) ∧ Sat(N2). 
The value of Eq(y, y*) where y and y* are assignments 
to Y and Y* respectively is equal to 1 iff y=y*.  The 
function Neq(Y, Y*) is the negation of Eq(Y, Y*).    

Indeed, S=1 means that for a pair of input vectors 
x and x*, circuit N1 toggles (which sets   Neq(Y, Y*) to 
1) while N2 does not (which sets  Eq(Z,Z* ) to 1).   

From Proposition 4 it follows that checking for 
toggle equivalence reduces to two satisfiability checks 
(SAT-checks for short). 



 

2.4 Correlation function 
 

In this subsection, we use the notion of correlation 
function to extend definitions of toggle implication and 
toggle equivalence to the case when functions f1 and f2 
have different sets of  variables. 
Definition 7. Let X and X*  be two disjoint sets of 
Boolean variables (the number of variables in X and X*  
may be different).  A function D(X,X* ) is called a 
correlation function  if there are subsets QX ⊆ { 0,1} |X| 

and QX* ⊆ { 0,1} |X* | such  that D(X,X* ) specifies a 
bijective mapping M: QX → QX*. Namely  D(x, y)=1 iff 
x ∈∈∈∈ QX and y ∈ QX* and y = M(x). 

Let  f1(X) and f2(X* ) be two multi-output Boolean 
functions  where X={ x1,…, xk}   and X* ={ x* 1,…, x* p}  
are sets of their variables. (Note, that f1 and f2 may 
have different number of variables.). Let D(X, X* ) be a 
correlation function relating variables of f1 and f2. Then 
one can introduce notions of toggle equivalence and 
toggle implication for f1 and f2. The only difference 
from  definitions and results listed in subsections  
2.1,Proposition 3,2.3  is that now one should consider 
only assignments that satisfy D(X,X* ).  

Let us show how this works for toggle 
equivalence. Functions f1(X) and f2(X* ) are said to be 
toggle equivalent under input constraint D(X,X* ), if for 
any two pairs (x, x*) and (y, y*) of input vectors such 
that D(x, x*)=D(y, y* )=1, it is true that  f1(x) ≠ f1(y ) 
⇔ f2(x*) ≠ f2(y*).   The mapping between output 
vectors produced by toggle equivalent circuits N1 and 
N2 (implementing functions f1 and f2 respectively), can 
be obtained from Sat(N1) ∧ Sat(N2) ∧ D(X, X* ) by 
existentially quantifying away all  the variables of  N1  
and N2 except output variables. The other results and 
definitions of subsections 2.1,Proposition 3,2.3  can be 
modified in a similar manner. 

3. LOGIC SYNTHESIS AND EC OF CIRCUITS 

WITH COMMON SPECIFICATION  
 

In this section, we recall LS_TE and EC_TE 
procedures of  [8]. From now on we assume that circuit 
N1 to be optimized has only one output.  (If a circuit to 
be optimized  has more than one output, then the 
LS_TE procedure can be separately applied to every  
subcircuit feeding an output of N1).  
 

3.1 Logic synthesis preserving toggle 
equivalence 
 

In this subsection, we recall the procedure of Logic 
Synthesis preserving Toggle Equivalence (abbreviated 
as LS_TE) introduced in [8].  The pseudocode of the 
LS_TE procedure is shown in  Figure 1. 

 
1  LS_TE(N1, Spec(N1),cost_function) {    
2     for (i=1; i <= k ; i++) {  
3          Dinp(N1

i, N2
i )= constraint_function(N1,N2,i);  

4           N2
i = synth_toggle_equivalent(N1

i, Dinp,cost_function) 
5           Dout(N1

i, N2
i ) =  exist_quantify(N1

i,N2
i, Dinp);     }  

6   return(N2,Spec(N2))}  

Figure 1. Pseudocode of the LS_TE procedure 

 
Following  [8]  we also assume that specification 

Spec(N1) = { N1
1,.., N1

k}  (i.e. the initial partition of 
circuit N1 into subcircuits N1

i) is topological. Let G be a 
directed graph whose nodes are subcircuits N1

i and an 
edge of G directed from  node N1

i to  node N1
j  implies 

that an output of N1
i is connected to an input of N1

j. We 
will call G a specification graph. Spec(N1) is a 
topological  specification if its specification graph G 
is acyclic.  

 Given a circuit N1 with specification Spec(N1) = 
{ N1

1,.., N1
k} , LS_TE builds circuit N2 with 

specification Spec(N2)= { N2
1,.., N2

k}  that is identical to 
Spec(N1). Let G1 and G2 be directed graphs describing 
connections of subcircuits N1 and N2 as described 
above.  Spec(N1) and Spec(N2) are considered to be 
identical specifications if a) G1 and G2 are acyclic; b) 
G1 and G2 are isomorphic; c) subcircuits N1

i and N2
i are 

toggle equivalent, i=1,..,k in terms of their inputs 
related by a constraint function that is a correlation 
function (see below).  

Since Spec(N1) is topological, one can assign 
levels to subcircuits N1

i.  We assume that subcircuits 
N1

i are numbered “ topologically”  i.e. if i < j then 
topol_level(N1

i) ≤ topol_level(N1
j). The LS_TE 

procedure builds circuit N2 by replacing subcircuits N1
i, 

i=1,..,k with their toggle equivalent  counterparts N2
i  in 

topological order, from inputs to outputs. 
Let us consider how  LS_TE works by the example 

of Figure 2. LS_TE starts with subcircuit N1
1 and 

recovers the function Dinp(N1
1, N2

1 ) relating inputs of 
N1

1 and subcircuit N1
2 to be built  (line 3 of the 

pseudocode). The inputs of N1
1 are inputs of N1 (and so 

N1
1 has the lowest topological level 1). In that case, 

Dinp(N1
1, N2

1 ) is just a conjunction of equality functions 
relating corresponding inputs of N1

1 and N2
1 (and so 

Dinp(N1
1, N2

1 ) is a correlation function “ identifying”  the 



 

corresponding inputs of N1
1 and N2

1.) Then an actual 
subcircuit N2

1 toggle equivalent to N1
1 is synthesized 

(line 4). In the end of this iteration, the function 
Dout(N1

1, N2
1) relating outputs of N1

1 and N2
1 is built 

(line 5) as described in Proposition 3. Since N1
1 and 

N2
1 are toggle equivalent, there is a one-to-one 

mapping between the output vectors they produce. So 
Dout(N1

1, N2
1) is a correlation function. 

N 2
1 N 2  

2

N 2  3

N
1  

1 N 1  
2

N 1  3N 1
N 2

 
Figure 2. Optimization of N1 by LS_TE  

 
Then, the LS_TE procedure processes subcircuit 

N1
2 in the same manner, generating a toggle equivalent 

subcircuit N2
2 and the correlation function 

Dout(N1
2, N2

2). Finally, the subcircuit N1
3 is processed 

similarly to N1
1 and N1

2 with one exception. The inputs 
of N1

3 are fed by the outputs of N1
1 and N1

2. So now the 
function Dinp(N1

3, N2
3) relating inputs of N1

3 and N2
3 

(synthesized in line 4) equals Dout(N1
1, N2

1)  ∧  
Dout(N1

2, N2
2). (To obtain Dinp(N1

3, N2
3) one has to take 

the conjunction of Dout(N1
i, N2

i) for all the subcircuits 
whose outputs feed inputs of N1

3 and N2
3. In this 

particular case, these subcircuits are N1
1, N1

2 and 
N2

1, N2
2.)  It is not hard to show that a conjunction of 

correlation functions is a correlation function too and 
so Dinp(N1

3, N2
3) is a correlation function. 

Let us N2
3 be a circuit  toggle equivalent to N1

3 
under constraints Dinp(N1

3, N2
3). Recall that N1

3 has 
only one output. It is not hard to show that  then N2

3 
either has one output or all outputs of N2

3 but one can 
be removed without affecting its being toggle 
equivalent to N1

3. (So we will assume that N2
3 has one 

output.)  Since N1
3 and N2

3 are single-output 
subcircuits, their toggle equivalence, means that they 
are functionally equivalent modulo negation. So the 
circuit N2 consisting of subcircuits N2

1, N2
2, N2

3 is 
functionally equivalent to N1 (modulo negation). 

 

3.2 EC of circuits with a common 
specification 
 

The EC of N1 and a circuit N2 obtained from N1 by 
LS_TE can be done by the EC_TE procedure of [8] 
whose (slightly changed) pseudocode is shown in 
Figure 3. EC stands for equivalence checking and TE 

stands for toggle equivalence.  Recall that N1 is a 
single-output circuit and, as we mentioned above, 
LS_TE builds a circuit N2 that has one output too. 

The input to the EC_TE procedure are circuits N1 
and N2 and their specifications Spec(N1)={ N1

1,.., N1
k} , 

Spec(N2)= { N2
1,.., N2

k} . So EC_TE is an internal EC 
procedure. EC_TE is incomplete in the sense that it 
gives a definite answer only if Spec(N1) and Spec(N2) 
are identical. Otherwise, EC_TE returns the answer 
‘CS_check_failure’ , which means that specifications of 
N1 and N2 are different.  
 
1   EC_TE(N1, N2, Spec(N1),Spec(N2)) {  
2   if (topol_spec(N1, Spec(N1)) == ‘no’ ) || topol_spec(N2, Spec(N2)) == ‘no’ )) 
3          return(‘CS_check_failure’ ); 
4   if (graph_isomorphism (  N1, N2, Spec(N1),Spec(N2)) == ‘no’ ) 
5          return(‘CS_check_failure’ ); 
6   for (i=1; i <= k ; i++) {   
7       Dinp(N1

i, N2
i )= constraint_function(N1,N2,i);  

8       if (toggle_equiv((N1
i, N2

i, Dinp)) == ‘no’ ) return(‘CS_check_failure’ ); 
9       Dout(N1

i, N2
i) =  exist_quantify(N1

i,N2
i, Dinp);}  

10  if (Dout(N1
k, N2

k) is ‘equivalence_function’ )  return(‘equivalent’ ); 
11  else return(‘ inequivalent’ );}  

Figure 3. Pseudocode of the EC_TE procedure 
 

Let G1, G2 be specification graphs for  Spec(N1) 
and Spec(N2) respectively (see subsection 3.1.)  In line 
2, EC_TE checks if graphs G1 and G2 are acyclic.  In 
line 4, EC_TE checks if G1 and G2 are isomorphic.  If 
either check fails, ‘CS_check_failure’  is reported.   

The main work is done in  the ‘ for’  loop (lines 6-9) 
where subcircuits N1

i and N2
i (i=1,..,k) are checked for 

toggle equivalence in topological order.  First, in line 7 
the function Dinp(N1

i, N2
i ) relating inputs of N1

i and N2
i 

is formed exactly as it is done by LS_TE (Figure 1, line 
3). In line 8, EC_TE checks if N1

i and N2
i (whose 

inputs are related by the function Dinp(N1
i, N2

i) 
computed in line 7) are toggle equivalent. If not, then 
EC_TE returns ‘CS_check_failure’ . (As we showed in 
subsection 2.3, checking of toggle equivalence reduces 
to two SAT-checks.) In line 9, the function Dout(N1

i, 
N2

i) relating outputs of  N1
i and N2

i  is computed. This is 
done  by existentially quantifying away from Sat(N1

i) ∧ 
Sat(N2

i) ∧ Dinp(N1
i, N2

i ) all the variables except the  
output variables of N1

i and N2
i.   

After finishing the ‘ for’  loop, in lines 10-11, 
EC_TE checks if  the function Dout(N1

k, N2
k) (note that 

the outputs of N1
k and N2

k  are outputs of N1 and N2 
respectively) is an equivalence function. If it is, then N1 
and N2 are equivalent. Otherwise, N1 and N2 are 
complements of each other (because N1

k and N2
k are 

toggle equivalent but not functionally equivalent) and 
so they are inequivalent. 

The complexity of both EC_TE and LS_TE is 
linear in the number of subcircuits in N1 and N2 and 



 

exponential in granularities of Spec(N1) and Spec(N2). 
(Recall that granularity of Spec(N1) is the number of 
gates in the largest subcircuit N1

i, i=1,..,k.) 
 

4. NEW EC AND LOGIC SYNTHESIS 

PROCEDURES  
 

In this section, we describe an extension of the 
EC_TE and LS_TE procedures called EC_TI and 
LS_TI  respectively (where TI stands for toggle 
implication).  First, we give a generic method  for 
introducing a logic transformation through an 
“enabling”  procedure and explain how this method 
works for EC_TE and LS_TE. Then we introduce 
EC_TI and LS_TI.  

 

4.1 A generic method for introducing  logic 
transformation 
 

The idea of the method is to introduce a logic 
transformation through an Enabling internal EC 
procedure (we will refer to it a EEC ). The input to an 
EEC is an original circuit N1, a modified circuit N2 and 
some information about the transformation T used to 
obtain N2 from N1.  EEC has to be sound. That is, if 
EEC says that N1 and N2 are equivalent (or 
inequivalent) it has to give the right answer.  Besides,  
EEC should be able to recognize if N2 can not be 
obtained from N1 by the transformation T. After 
designing an EEC, one formulates a logic synthesis 
procedure that given a circuit N1 generates a circuit N2  
whose equivalence to N1 can be verified by this EEC. 
We will say that this synthesis procedure is enabled by 
this EEC. 

Let us illustrate how this method works for 
introducing LS_TE.   The EC_TE procedure satisfies 
the requirements above for an EEC. Indeed, the input 
to EC_TE consists of circuits N1 and N2 and partitions 
Spec(N1), Spec(N2) as information about the synthesis 
transformation to be enabled.  The soundness of  
EC_TE trivially follows from the fact that EC_TE 
returns the ‘equivalent’  (or ‘ inequivalent’ ) answer only 
if it correctly derived the equivalence  (respectively 
inequivalence) function relating the outputs of N1 and 
N2.  It is not hard to see that LS_TE is exactly the 
procedure enabled by EC_TE.  Indeed, EC_TE checks 
in topological order if subcircuits N1

i and N2
i of 

Spec(N1) and Spec(N2) are toggle equivalent. In turn, 
LS_TE builds N2 by generating toggle equivalent 

counterparts of subcircuits N1
i in topological order.  

 

4.2 Introduction of LS_TI  
 

Let EC_TI be an EC procedure that is different 
from EC_TE only in one aspect.  Instead of checking if 
N1

i and N2
i (line 8 of Figure 3) are toggle equivalent it 

checks if toggling of  N1
i implies that of N2

i . That is 
instead of checking if  both N1

i ≤ N2
i  and N2

i ≤ N1
i hold 

it just checks if N1
i ≤ N2

i. The EC_TI procedure is 
sound for the same reason as EC_TE. (That is it 
correctly derives an (in)equivalence function relating 
the outputs of N1 and N2. The correctness of derivation 
follows from the “soundness”  of existential 
quantification that is used to obtain functions 
Dout(N1

i, N2
i) i=1,..,k) 

In the context of the EC_TI procedure, we will say 
that circuits N1 and N2 have identical specifications 
Spec(N1)= { N1

1,.., N1
k}  and Spec(N2)={ N2

1,..,N2
k}  if 

specification graphs G1 and G2 are acyclic, isomorphic 
and  N1

i ≤ N2
i , i=1,..,k-1 and for the last value of i (i.e. 

i=k), subcircuits N1
k and N2

k are toggle equivalent. The 
EC_TI procedure either correctly identifies circuits N1 
and N2 as (in)equivalent or reports that Spec(N1) and 
Spec(N2) are not identical. 

Now we define a procedure enabled by EC_TE. 
Let N1 be a circuit and Spec(N1)={ N1

1,…,N1
k}  be its 

specification. Let LS_TI be a logic synthesis procedure 
that is different from LS_TE only in two aspects. First, 
for i=1,..,k-1 LS_TI generates subcircuit N2

i such that   
toggling of N1

i implies that of N2
i i.e. N1

i ≤ N2
i  (So, 

LS_TI is different from LS_TE in  line 4 of Figure 1). 
Only for i=k, LS_TI generates subcircuit N2

i that is 
toggle equivalent to N1

i.  
Second, when generating  a subcircuit N2

i, LS_TI 
limits the number of outputs of N2

i. The reason is as 
follows.  Let Dinp(N1

i, N2
i) be the constraint function 

relating inputs of N1
i and the subcircuit N2

i to be built.  
If the number of outputs in N2

i is not limited, then the 
simplest  subcircuit N2

i such that N1
i ≤ N2

i is the 
identity circuit Ip where p is the number of inputs in 
N2

i. (Ip is a circuit with inputs x1,..,xp and p outputs 
y1,..yp, implementing the functions yi=xi, i=1,.., p. So Ip 
does not have any gates.) Hence, without  limiting the 
number of outputs in N2

i, LS_TI would just generate 
identity circuits as  N2

i, i=1,..,k-1 pumping all the 
functionality into functions Dinp(N1

i,N2
i). Only when 

generating the subcircuit N2
k (which is toggle 

equivalent to N1
k and has one output)  a non-empty 

subcircuit would be generated. It can be shown that in 



 

this case Dinp(N1
k, N2

k), would essentially describe the 
relation between inputs of  N1

k and the primary inputs 
of N1. This means that if one does not limit the number 
of outputs in N2

i, the LS_TI procedure would delay all 
the synthesis work until i=k and so it would not be 
scalable.  The simplest way to limit the number of 
outputs in N2

i is to require that num_of_outputs(N2
i) ≤ 

num_of_outputs(N1
i). Under such a restriction, LS_TI 

has the same complexity as LS_TE i.e. it is linear in the 
number of subcircuits in Spec(N1) and exponential in 
the granularity of Spec(N1).) 

LS_TI is a synthesis procedure enabled by EC_TI. 
That is, if for a given N1 and specification Spec(N1), 
LS_TI builds a circuit N2 with specification  Spec(N2), 
EC_TI will prove N1 and N2 to be equivalent.   

 

5.  BIG PROMISE OF LOGIC SYNTHESIS 

PRESERVING COMMON SPECIFICATION 
In this section we give some experimental data 

showing the power of  the LS_TE procedure and 
discuss the  potential of LS_TI  that should be much 
more powerful than LS_TE. 

 

5.1 Power of LS_TE 
 

The key procedure of LS_TE is called in the loop 
(line 4 of  Figure 1) k times to generate a subcircuit N2

i 
that is toggle equivalent to N1

i,i=1,..,k. We will refer to 
it  as the TEP procedure (TEP stands for Toggle 
Equivalence Preserving). Such a procedure has been 
developed in [17].   

Let  M′ and M″ denote subcircuits N1
i and N2

i 
respectively. Given M′  and a constraint  (correlation 
function) imposed on inputs M′ and M″,  the TEP 
procedure of [17] builds M″ as follows.  It constructs a 
sequence of circuits M1, M2,.., such that  M ≤ Mi+1 < Mi. 
(Here M1 is an identity  circuit Ip and p is the number of 
inputs in M″ ).  That is Mi+1 toggles at least “as much”  
as M, but “strictly less”  than Mi. Since every circuit 
Mi+1 of this sequence loses at least one toggle of Mi, 
this sequence converges to a circuit Ms such that    Ms ≤ 
M and M ≤ Ms. This means that Ms is toggle equivalent 
to M′ and so Ms is the final circuit M″ . (A more 
detailed description of the TEP procedure is beyond 
the scope of this paper. ) 

In this paper we give some experimental data on 
our implementation of the TEP procedure for 
optimization of multi-output circuits just to show that 

LS_TE has a great practical potential. So the fact that 
external EC of circuits produced by LS_TE is 
problematic is significant. 
 

Table 1. Generation of toggle equivalent 
circuits 

Circuit  #in-
puts 

Initial 
#outputs 

TEP 
#outputs 

SIS 
#gates 

TEP 
#gates 

squar5 5 8 8 60 4 
rd84 8 4 8 174 52 
5xp1 7 10 7 140 0 
b1 3 4 3 11 2 
bw 5 28 8 155 9 
cm138
a 

6 8 4 28 15 
cm42a 4 10 6 31 6 
cm82a 5 3 5 21 18 
exp5p 8 63 19 286 131 
f51m 8 8 8 101 0 
con1 7 4 8 82 94 

sqrt 8 4 9 76 90 

 
In  Table 1 we compare the results of optimization 

of some MCNC benchmarks by SIS [15] and by the 
TEP procedure.  The name of the circuit and the 
number of inputs and outputs are shown in the first 
three columns of Table 1. The results of optimization 
by SIS with the script ‘ rugged’   followed by technology 
decomposition (to obtain a circuit of two-input AND 
gates and invertors) is shown in the fifth column. The 
results of using TEP to build a toggle equivalent circuit 
are shown in the fourth (the number of outputs) and 
sixth (the number of gates)  columns. 

For the majority of circuits TEP was able to find 
much smaller toggle equivalent counterparts. In two 
cases (5xp1 and f51m) , TEP removed all the logic. 
This means that, for example,  for different input 
assignments, circuit 5xp1  generates different output 
assignments. So the identity circuit I7 is toggle 
equivalent to 5xp1. 

Of course, such re-encoding of output assignments 
of the original circuit requires changing the 
surrounding logic. To explain why  re-encoding may 
still lead to significant logic reduction let us consider 
the following example. Suppose that a circuit N1 to be 
optimized consists of two subcircuits, N1

1 and N1
2  

where the outputs of N1
1 are connected to  inputs of 

N1
2. Suppose circuits N1

1 and N1
2 were built 

“ independently” . That is  when designing circuit N1
1, 

the output encoding for N1
1 was chosen without any 

consideration of circuit N1
2. Then, in a sense,  any 

circuit toggle equivalent to N1
1 is as good as  N1

1. So, it 
is a reasonable heuristic to build a circuit N2

1 that is  



 

the smallest toggle equivalent counterpart of N1
1 and 

then try to find the smallest subcircuit N2
2 that is toggle 

equivalent to N1
2  under constraints specified by the 

function Dout(N1
1, N1

2). 
 Table 2 shows results of  applying  LS_TE with 

the heuristic above to logic optimization of some 
arithmetic expressions with an integer variable x, x ≥ 0. 
(The second column of Table 2  gives the number of 
bits in x. ) Each circuit N1 of Table 2  consists of 
subcircuits N1

1 and N1
2.  First three circuits N1 

implement  Boolean function x2 < C1. Here N1
1 

implements the  function x2 and subcircuit N1
2 

implements comparison with a constant C1. The last 
three circuits N1 implement Boolean function C1∗x < 
C2. Here, subcircuit N1

1 implements the function C1∗x,  
and N1

2 implements comparison with a constant C2. 
Circuits N1

1   and N1
2  were built from  standard 

combinational blocks. (So, for example,  in our 
experiments,  N1

1 was a derivative of a regular 
multiplier.) 
 

Table 2. Optimization by  LS_TE 
Circuit #bits C1 C2 SIS 

#gates 
LS_TE 
#gates 

x2 < C1 6 200 - 196(12) 5 
x2 < C1 7 200 - 265 (16) 6 
x2 < C1 7 500 - 273(15) 6 
C1∗x < C2 7 49 300 84(15)  6 
C1∗x < C2 7 111 300 160(12) 6 
C1∗x < C2 7 49 500 56(14) 6 

 
 It is not hard to see that x2 < C1 is equivalent to 

x < C′1 where C′1  is the constant equal to 
ceiling(square_root(C1)). Similarly, C1∗x < C2 is 
equivalent to x < C′2 where C′2=ceiling(C2/C1). So 
there is a very simple circuit implementation of either 
Boolean function. 

 The results of optimization by SIS are shown in 
the fifth column. The first number of this column gives 
the number of gates in the circuit obtained after 
applying script ‘ rugged’  and technology 
decomposition. The number in parenthesis gives the 
number of gates in the resulting circuit after applying 
script ‘ rugged’  many times until the solution stabilizes 
and then running technology decomposition.  

The results of applying LS_TE (that used the TEP 
procedure of [17]) are shown in the last column. Note 
that N1

1 (for both x2 and C1∗x cases) generates different 
output assignments for different input assignments. 
This means that the identity circuit Im (where m is the 
number of bits in x) is toggle equivalent to N1

1. So 
LS_TE picked Im as N2

1. Then it computed the function 

Dout(N1
1, N2

1) relating outputs of N1
1 and N2

1 and  built 
subcircuit N2

2 toggle equivalent to N1
2 under 

constraints specified by Dout(N1
1, N2

1). The size of 
circuits obtained by LS_TE is smaller than those of SIS 
even after multiple applications of the script ‘ rugged’ .  
(Since a circuit built by LS_TE is functionally 
equivalent to the original one, it is a fair comparison.) 

Note, that indeed LS_TE applied the heuristic 
mentioned above. Since N1

1 implementing, say, x2 was 
built without any consideration of N1

2 any circuit toggle 
equivalent to N1

1 is as “good”  as N1
1. So LS_TE picked 

the simplest such a  circuit that is Im.  
  

5.2 Potential  of LS_TI 
 

LS_TI is  more powerful than LS_TE because 
toggle implication is a more general relation than 
toggle equivalence.  So LS_TI is much more flexible 
than LS_TE (while its  complexity is the same as that 
of LS_TE).    

Let N1
i be a subcircuit of circuit N1 with 

specification Spec(N1)={ N1
1,., N1

k} . If N2
i is a 

subcircuit synthesized by LS_TE  that is toggle 
equivalent to N1

i (under constraints specified by 
function Dinp(N1

i, N2
i)), every toggle of N2

i has a 
“matching”  toggle of N1

i. On the other hand, if N2
i is 

built by LS_TI, it may have toggles that are not 
matched by N1

i (because LS_TI has to preserve only 
N1

i ≤ N2
i).  Since LS_TI builds a circuit N2 that is 

functionally equivalent to N1, these unmatched toggles 
of N2

i  do not reach the output of N2. The blocking of 
the unmatched toggles is done “automatically” . 

Let us consider advantage of LS_TI over LS_TE 
by a simple example. Suppose that one needs to 
implement   Boolean function f(x) < 9 where x  is an m-
bit integer. Let f(x) be equal to x2 at all the 2m points 
except for the point x=4 where f(4) is equal to 25 
(instead of 16). It is not hard to see that  the expression 
f(x) < 9 is equivalent to x < 3.  Suppose that f(x) < 9 is 
implemented by a circuit N1 that is a composition of 
subcircuits N1

1 and N1
2 where N1

1 implements f(x) and 
N1

2 implements comparison with 9.  
Suppose that the LS_TE procedure is applied to 

optimize N1. LS_TE can not use Im as N2
1, because 

f(4)=f(5)= 25 and so Im  is  not toggle equivalent to N1
1. 

So LS_TE would build N2
1 implementing some “non-

trivial”  function of x. Hence, N2
2 would have to 

implement a more complex function than  x < 3.   
Now suppose that N1 is optimized by LS_TI. Note 

that toggling of N1
1 implies toggling of the identity 



 

circuit Im. So LS_TI can use Im as subcircuit N2
1. Then 

LS_TI can build subcircuit N2
2 implementing x < 3. So 

due to greater flexibility LS_TI is able to generate a 
smaller circuit than LS_TE. 

To become practical,  LS_TI  needs a procedure 
that, given a subcircuit N1

i and a constraint function 
Dinp, builds an optimized subcircuit N2

i such that a) N1
i 

≤ N2
i under constraint Dinp; b) the number of outputs in 

N2
i is limited by a constant. (We will refer to this 

procedure as Toggle Implication Preserving or TIP.)  
Interestingly, the TEP procedure of [17] briefly 
sketched in  the previous subsection can be also used as 
a TIP procedure. Given a circuit M′, the TEP 
procedure above builds a sequence of circuits M1,M2, ..  
such that M1 is an identity circuit Ip and  M ≤ Mi+1 < Mi. 
The TEP procedure stops when Ms is toggle equivalent 
to M.  Suppose the TEP procedure stops as soon as the 
number of outputs in the current circuit Mi is below a 
threshold. Then M ≤ Mi and the number of outputs in  
Mi is bounded by a specified threshold. So the TEP 
procedure of [17] with the new termination condition is 
a TIP procedure. 

Let N1
i be a subcircuit N1 to be re-synthesized by 

LS_TI. Let N1
i have k outputs and we want to build a 

subcircuit N2
i of k outputs. The number of k-output 

Boolean functions f2
i such that f1

i ≤ f2
i ,where f1

i is the 
function implemented by N1

i, is no less than (2k!). 
Indeed, even if some output assignments of N1

i are 
unsatisfiable, there is always  subcircuit N2

i (if its 
number of inputs of N2

i is greater or equal to k) such 
that all  2k output assignments of N2

i are satisfiable and 
N1

i ≤ N2
i. Let this be the case and f2

i be the function 
implemented by N2

i. Any permutation of  2k output 
assignments in the truth table of f2

i  gives a new 
function f′′′′2i such that f1

i ≤ f′′′′2i.   
The value of (2k!) is huge even for small k (e.g. if 

k=5, then (25)! is equal to 2.6∗1035). So even if 
Spec(N1) has a very small granularity, LS_TI still 
enjoys great flexibility. On the other hand, since the 
complexity of LS_TI is linear in the number of 
subcircuits in Spec(N1), LS_TI is scalable (if one keeps 
the granularity of Spec(N1) small.)  

6. COMPLEXITY OF EXTERNAL EC OF 

CIRCUITS WITH COMMON SPECIFICATION 
 

Let N1 be a circuit with specification 
Spec(N1)={ N1

1,..,N1
k} .  Let N2 be a circuit with 

specification Spec(N2)={ N2
1,..,N2

k} . produced from N1 
by either by EC_TE or EC_TI. In this section,  we 

discuss the complexity of external EC of N1 and N2. 
 

6.1 EC of circuits produced by LS_TE 
 

In [8], a top commercial tool was used for 
“external”  EC of circuits  with a common specification 
(Table 2 of [8]). These results showed that even for 
circuits with a common specification of small 
granularity, their EC was  too hard for that tool (even 
with  a 10 hour time limit). On the other hand, all 
examples were solved by EC_TE within 1-2 minutes. 

One can always pick  circuits N1 and N2 with a 
common specification that will “break”  current EC 
algorithms. The reason is that an external checker 
inevitably makes implicit assumptions that can be 
easily broken. For example, algorithms based on 
computing cut-points make an assumption that N1 and 
N2 have functionally equivalent internal points. 
However, if N2 is produced from N1 by LS_TE,  N1 and 
N2, in general, have no functionally equivalent points. 
Algorithms based on BDD computation make an 
implicit assumption that N1 and N2 have a small width 
while LS_TE can be used for optimization of circuits 
of arbitrary width.  EC based on recursive learning [11] 
assumes that implications relating points of N1 and N2 
can be obtained inductively by a computation of small 
“ recursion depth” . This assumption can be easily 
broken as well.  The method of [12] also makes a 
breakable assumption that N1 and N2 do not have a 
large number  of reconvergent fan-outs. 

In terms of proof sizes (computed with respect to a 
concrete proof system like resolution), the problem 
with existing (and most likely any) external 
equivalence checkers is as follows. It may well be the 
case that any proofs of equivalence different from the 
ones generated by  LC_TE  are much “ longer” . On the 
other hand, to find a proof generated by LC_TE one 
needs to build partitions Spec(N1) and Spec(N2), which 
is very hard. The reason is that finding a pair of 
subcircuits N1

i, N2
i that are toggle equivalent  requires 

testing ≈|N1|
p1∗|N2|

p2  pairs of subcircuits where pi, i=1,2 
is the granularity of Spec(Ni).  

 

6.2 EC of circuits produced by LS_TI 
 

Although external verification of circuits built by 
LS_TE looks infeasible, verification of circuits 
produced by LS_TI is “even harder” . The reason is as 
follows.  Suppose that  N2 with specification Spec(N2) 



 

is produced from N1 with specification Spec(N1) by 
LS_TE. Suppose an external equivalence checker 
somehow managed to find  subcircuits N1

i and N2
i that 

are toggle equivalent. Then, it has to decide whether 
this toggle equivalence is “accidental”  or N1

i and N2
i 

are subcircuits of Spec(N1) and Spec(N2). If N1
i and N2

i 
are toggle equivalent “accidentally” , then one cannot 
use outputs of N1

i and N2
i as “cut-points”  to  find 

subcircuits that are toggle equivalent in terms of 
previous cut-points (because the wrong choice of cut-
points leads to false negatives).  However, it is 
conceivable that toggle equivalence of subcircuits of N1 
and N2 is a “rare”  occasion  and so N1

i and N2
i are 

subcircuits of Spec(N1), Spec(N2) with  some 
reasonable  probability. 

The  situation with LS_TI  is vastly different.  If N2  
with specification Spec(N2) is obtained from N1 with 
specification Spec(N1) by LS_TI, any method of  
finding Spec(N1) and Spec(N2) faces  huge false 
negative problem. Indeed, if  N1

i ≤ N2
i  holds for some 

subcircuits of N1 and N2, then N1
i ≤ N′2i also holds if  

N′2i is a subcircuit of N′2i such that the outputs of N′2i 
form a cut of N2

i. (A  cut of N2
i cannot toggle “ less”  

than the set of outputs of N2
i.) Besides, N1

i ≤ N″2
i also 

holds if N2
i is a subcircuit of N″2

i and the set of outputs 
of N″2

i contains all the outputs of N2
i (adding more 

outputs to N2
i only increases toggling.) So, the number 

of pairs of subcircuits N1
i , N2

i  for which N1
i ≤ N2

i 
holds is, in general, astronomical.  So picking the 
“right”  pair of subcircuits N1

i, N2
i is extremely unlikely 

and hence finding Spec(N1) and Spec(N2) looks even 
“more impossible”  than in the case of LS_TE. 

7.  CONCLUSION  
 

In this paper, we discuss how “external”  
equivalence checkers  can be affected by the 
appearance of new  powerful logic synthesis 
procedures. Our results imply that the increasing power 
of  synthesis procedures may make external 
equivalence checking problematic if not impossible. 
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