On Complexity of Internal and External Equivalence Checking

Eugene Goldberg, Kanupriya Gulati Cadence Design Systems, Texas A&M University, egold@cadence.com, kanu.gulati@gmail.com

Abstract

We compare the complexity of "internal" and "external" equivalence checking. The former is meant for proving the correctness of a synthesis transformation by which circuit N_2 is obtained from circuit N_1 . The latter is meant for proving that circuits N_1 and N_2 are functionally equivalent without making any explicit assumptions about the origin of N_1 and N_2 . We describe logic synthesis procedures that can produce a circuit N_2 whose equivalence with the original circuit N_1 , most likely, can not be efficiently proved by an external equivalence checker. On the other hand, there are internal equivalence checking procedures that easily prove that N_1 and N_2 are equivalent. We give experimental data showing that these logic synthesis procedures are mathematical curiosity but indeed can be used as a powerful method of logic optimization.

1. Introduction

Equivalence checking (EC) has become an important part of design verification [7]. This success can be attributed to a good scalability of the state-ofthe-art equivalence checkers. In turn, this scalability is due to two factors. First, logic synthesis tools usually do not re-encode state variables and so EC of two sequential circuits reduces to EC of combinational circuits bounded by registers and/or primary inputs and outputs. (For this reason, in this paper, we consider only EC of combinational circuits and when we refer to a "circuit" we mean a "combinational circuit".) Second, in many cases circuits can be represented by small BDDs [4]. Then EC of the corresponding combinational circuits of two designs to be compared can be performed efficiently.

1.1 EC of large circuits

The existence of large combinational circuits poses a problem in EC. Informally, we consider a circuit as "large", if its BDD cannot be built efficiently. Typically, this happens when a circuit has a large width [1]. The width of a circuit N describes the amount of communication between different parts of N, multiplier being a classical example of a "wide" circuit.

A lot of research in EC has been focused on handling large combinational circuits. In [9], the idea of combining SAT and BDD based methods was explored. The case when circuits to be checked for equivalence have compact BDDs under different variable orders was studied in [13]. The most popular method of handling large circuits is based on employing cut points [2][3]. The idea is to prove functional equivalence of circuits N_1 and N_2 inductively. First equivalence of some subcircuits of N_1 and N_2 is established. The outputs of equivalent subcircuits are considered as cut points and new subcircuits are tested for equivalence, inputs of these subcircuits being cut points. This goes on until equivalence of the outputs of N_1 and N_2 is proven in terms of some cut points. This idea was further developed in [10] and successfully used in many equivalence checkers (e.g. [5][6]). It may happen that even though N_1 and N_2 are equivalent, they appear to be inequivalent in terms of the chosen cut points. This situation is usually called a false negative. The problem of false negatives was addressed in [12][14].

1.2 Internal and external EC

All the methods described above are meant for "**external**" EC. Informally, EC is external if no explicit assumptions are made about the origin of combinational circuits N_1 and N_2 to be compared. We will say that EC is "**internal**" if it is meant for

verification of a logic synthesis transformation by which circuit N_2 is obtained from N_1 . So, by definition, internal EC "knows" the relation between N_1 and N_2 . For simple transformations, internal EC is performed implicitly by using some informal reasoning. Suppose, for example, that internal points w and w' of a circuit N_1 are functionally equivalent. Then one can optimize N_1 by removing w' and feeding its fan-out nodes with w (instead of w'). No explicit procedure is run for EC of N_1 and N_2 because in this particular case the equivalence of N_1 and N_2 is "obvious".

Development of new "non-trivial" methods for internal EC is extremely important because these methods enable new logic synthesis procedures. powerful method of internal EC was introduced in [8] where logic synthesis and EC of circuits with a common specification were considered. specification of a circuit N is just a partition of N into subcircuits. Two circuits N_1 and N_2 have a common specification if they can be partitioned into ksubcircuits $N_1^1,...,N_1^k$ and $N_2^1,...,N_2^k$ such that these subcircuits are connected in "the same way" in N_1 and N_2 and corresponding subcircuits N_1^i, N_2^i are toggle equivalent. We will refer to the EC procedure of [8] as **EC_TE** where TE stands for toggle equivalence.

The importance of EC_TE is twofold. First, it enables a powerful logic synthesis procedure. (We will refer to this procedure as LS TE where LS stands for logic synthesis and TE for toggle equivalence). Given a circuit N_1 with specification $N_1^1,...,N_2^k$, LS_TE builds an optimized circuit N_2 that is functionally equivalent to N_1 by replacing subcircuits N_1^i with their toggle equivalent counterparts in topological order. (The equivalence of N_1 and N_2 can be established by EC_TE). The power of LS_TE is in its good scalability and flexibility. LS_TE has linear complexity in the number k of subcircuits N_1^{i} and exponential in the granularity of specification which is the size of the largest subcircuit N_1^i , in the number of gates. (EC_TE has the same complexity as LS_TE). If a subcircuit N_1^{-1} of N_1 has m outputs, then the number of m-output subcircuits that are toggle equivalent to N_1^{-1} is huge even for small m. So LS_TE enjoys great flexibility even for specifications of very small granularity.

The *second* reason why introduction of EC_TE is important is as follows. Usually, external EC is assumed to be as powerful as internal. The results of [8] imply, that, most probably, there is an exponential gap between external and internal EC. The reason is that finding a common specification of N_1 and N_2 most likely can not be done efficiently. So EC of N_1 and N_2

becomes infeasible if the partitioning of N_1 and N_2 into subcircuits $N_1^1,...,N_1^k$ and $N_2^1,...,N_2^k$ is not known. In other words, if N_1 is a circuit of large width, external EC of N_1 and N_2 obtained from N_1 by a logic optimization procedure is possible only if this procedure is very "weak". Then N_1 and N_2 have so much similarity (like existence of many functionally equivalent internal points) that equivalence of N_1 and N_2 can be proven without any additional information.

1.3 Our contribution and structure of the paper

In this paper, we further develop the ideas of [8]. Our contribution is threefold. In [8], no concrete procedure that, given a subcircuit N_1^i , generates a toggle equivalent counterpart N_2^i , was introduced. So one could consider the performance gap between internal and external EC as a mathematical curiosity. The *first* contribution of this paper is that we give experimental data showing the promise of LS_TE, which makes the theory of [8] much more tangible.

The *second* contribution is that we show that after a slight modification, EC_TE enables a logic synthesis procedure much more powerful than LS_TE. Given a circuit N_1 and specification $N_1^1,...,N_1^k$, this procedure is to replace each subcircuit N_1^i with a subcircuit N_2^i that implies toggling of N_1^i . We will refer to this procedure as **LS_TI** (where TI stands for toggle implication). LS_TI offers much more flexibility than LS_TE while its complexity is the same as the complexity of LS_TE. Showing that LS_TI "widens" the gap between internal and external EC is our *third* contribution.

This paper is structured as follows. In Section 2 we give basic notions. Section 3 recalls EC_TE and LS_TE procedures of [8]. In Section 4 we describe an EC procedure enabling a logic synthesis procedure LS_TI more powerful than LS_TE. Section 5 gives experimental data showing the power of LS_TE and explains why LS_TI is more powerful than LS_TE. In Section 6 we discuss the complexity of external EC of circuits produced by LS_TE and LS_TI. We conclude with Section 7.

2. BASIC NOTIONS

2.1 Toggle equivalence of Boolean functions

In this subsection, we recall the notion of toggle equivalence and its properties. All the propositions given in this section are either proven in [8] or can be easily derived from proofs given there.

Definition 1. Let $f:\{0,1\}^n \to \{0,1\}^m$ be an *m*-output Boolean function. A **toggle** of f is a pair of two different output vectors produced by f for two input vectors. In other words, if y=f(x) and y'=f(x') and $y \neq y'$, then (y, y') is a toggle.

Definition 2. Let f_1 and f_2 be m-output and k-output Boolean functions of the same set of variables. Functions f_1 and f_2 are called **toggle equivalent** if $f_1(x) \neq f_1(x') \Leftrightarrow f_2(x) \neq f_2(x')$. Circuits N_1 and N_2 implementing toggle equivalent functions f_1 and f_2 are called **toggle equivalent circuits**.

Proposition 1. Let $f_1:\{0,1\}^n \to \{0,1\}^m$ and $f_2\{0,1\}^n \to \{0,1\}^k$ be *m*-output and *k*-output Boolean functions of the same set of variables. Let f_1 be f_2 are toggle equivalent. Then there is an invertible function K such that $f_1(x)=K(f_2(x))$ and $f_2(x)=K^{-1}(f_1(x))$.

Proposition 1 means that if functions f_1 and f_2 are toggle equivalent, then there is a one-to-one mapping K between the output vectors produced by f_1 and f_2 .

Proposition 2. Let f_1 and f_2 be toggle equivalent single output Boolean functions. Then $f_1=f_2$ or $f_1=\sim f_2$ where \sim means negation.

Let N_1 and N_2 be toggle equivalent functions. Definition 3, Definition 4 and Proposition 3 below explain how one can *implicitly* find the mapping K relating outputs produced by N_1 and N_2 .

Definition 3. Let f be a Boolean function. We will say that function f^* is obtained from f by **existentially quantifying away** variable x_i if $f^* = f(..., x_i=0,...) \lor f(..., x_i=1,...)$.

Definition 4. Let N be a circuit. Denote by v(N) the set of variables of N. Denote by Sat(v(N)) the Boolean function such that Sat(z)=1 iff the assignment z to v(N) is "possible" i.e consistent. For example, if N consists of just one AND gate $y=x_1 \wedge x_2$, then $Sat(v(N)) = (\sim x_1 \vee \sim x_2 \vee y) \wedge (x_1 \vee \sim y) \wedge (x_2 \vee \sim y)$. For the sake of simplicity we will denote Sat(v(N)) as Sat(N).

Proposition 3. Let N_1 and N_2 be toggle equivalent and Y_1 , Y_2 be the sets of their output variables. Let function $K^*(Y_1,Y_2)$ be obtained from $Sat(N_1) \wedge Sat(N_2)$ by existentially quantifying away the variables of N_1 and N_2 except those of $Y_1 \cup Y_2$. The function $K^*(Y_1, Y_2)$ implicitly specifies the one-to-one mapping K between output vectors produced by N_1 and N_2 . Namely $K^*(y_1, y_2)$ is equal to 1 iff $y_1 = K(y_2)$.

2.2 Implication of toggling

In this subsection, we introduce the notion of implication of toggling.

Definition 5. Let f_1 and f_2 be two multi-output functions with the same set of variables $X = \{x_1, ..., x_n\}$. Toggling of function f_1 implies toggling of f_2 (denoted as $f_1 \le f_2$), if for any pair of assignments x', x'' to $X, f_1(x') \ne f_1(x'')$ implies $f_2(x') \ne f_2(x'')$.

Definition 6. Toggling of a multi-output function $f_1(x_1,...,x_n)$ strictly implies toggling of a multi-output function $f_2(x_1,...,x_n)$ (denoted as $f_1 < f_2$) if $f_1 \le f_2$ but $f_2 \le f_1$ does not hold.

Remark 1. We will **denote** by $N_1 \le N_2$ (respectively $N_1 < N_2$) the fact that toggling of the function implemented by Boolean circuit N_I implies toggling of (respectively strictly implies toggling of) the function implemented by Boolean circuit N_2 .

Proposition 4. Boolean functions f_1 and f_2 are toggle equivalent iff $f_1 \le f_2$ and $f_1 \le f_2$.

Proposition 5. Let $f_1: \{0,1\}^n \to \{0,1\}^m$ and $f_2 \{0,1\}^n \to \{0,1\}^k$ be *m*-output and *k*-output Boolean functions of the same set of variables. Let $f_1 \le f_2$. Then there is a function *K* such that $f_1(x) = K(f_2(x))$.

Note that unless f_1 and f_2 are toggle equivalent, the function K is not invertible.

2.3 Testing toggle implication and toggle equivalence

In this subsection, we describe how toggle equivalence and implication of toggling can be tested. Let N_1 and N_2 be two Boolean circuits to be checked for implication of toggling. Let $X = \{x_1, ..., x_n\}$ be the set of input variables of N_1, N_2 . Let $Y=\{y_1, ..., y_m\}$ and $Z=\{z_1,...,z_k\}$ be the sets of output variables of N_1 and N_2 respectively. Then $N_1 \le N_2$ holds iff the function $S = H(N_1, N_2) \wedge H(N_1, N_2) \wedge Neq(Y, Y_1) \wedge Eq(Z, Z_1)$ is unsatisfiable (i.e. it is a constant 0). Here N_1^* and N_2^* are copies of circuits N_1 and N_2 , with input variables $X^*=\{x^*_1,...,x^*_n\}$ and output variables $Y^* = \{y^*_1, ..., y^*_m\}$ and $Z^* = \{z^*_1, ..., z^*_k\}$ respectively. The function $H(N_1, N_2)$ is equal to $Sat(N_1) \wedge Sat(N_2)$. The value of $Eq(y, y^*)$ where y and y^* are assignments to Y and Y* respectively is equal to 1 iff y=y*. The function $Neq(Y, Y^*)$ is the negation of $Eq(Y, Y^*)$.

Indeed, S=1 means that for a pair of input vectors x and x^* , circuit N_1 toggles (which sets $Neq(Y, Y^*)$ to 1) while N_2 does not (which sets $Eq(Z,Z^*)$ to 1).

From Proposition 4 it follows that checking for toggle equivalence reduces to two satisfiability checks (SAT-checks for short).

2.4 Correlation function

In this subsection, we use the notion of correlation function to extend definitions of toggle implication and toggle equivalence to the case when functions f_1 and f_2 have different sets of variables.

Definition 7. Let X and X^* be two disjoint sets of Boolean variables (the number of variables in X and X^* may be different). A function $D(X,X^*)$ is called a **correlation function** if there are subsets $Q^X \subseteq \{0,1\}^{|X|}$ and $Q^{X^*} \subseteq \{0,1\}^{|X^*|}$ such that $D(X,X^*)$ specifies a bijective mapping $M: Q^X \to Q^{X^*}$. Namely D(x,y)=1 iff $x \in Q^X$ and $y \in Q^{X^*}$ and y = M(x).

Let $f_1(X)$ and $f_2(X^*)$ be two multi-output Boolean functions where $X = \{x_1, \dots, x_k\}$ and $X^* = \{x^*_1, \dots, x^*_p\}$ are sets of their variables. (Note, that f_1 and f_2 may have different number of variables.). Let $D(X, X^*)$ be a correlation function relating variables of f_1 and f_2 . Then one can introduce notions of toggle equivalence and toggle implication for f_1 and f_2 . The only difference from definitions and results listed in subsections 2.1,Proposition 3,2.3 is that now one should consider only assignments that satisfy $D(X, X^*)$.

Let us show how this works for toggle equivalence. Functions $f_1(X)$ and $f_2(X^*)$ are said to be toggle equivalent under input constraint $D(X,X^*)$, if for any two pairs (x, x^*) and (y, y^*) of input vectors such that $D(x, x^*) = D(y, y^*) = 1$, it is true that $f_1(x) \neq f_1(y)$ $\Leftrightarrow f_2(x^*) \neq f_2(y^*)$. The mapping between output vectors produced by toggle equivalent circuits N_1 and N_2 (implementing functions f_1 and f_2 respectively), can be obtained from $Sat(N_1) \wedge Sat(N_2) \wedge D(X, X^*)$ by existentially quantifying away all the variables of N_1 and N_2 except output variables. The other results and definitions of subsections 2.1,Proposition 3,2.3 can be modified in a similar manner.

3.LOGIC SYNTHESIS AND EC OF CIRCUITS WITH COMMON SPECIFICATION

In this section, we recall LS_TE and EC_TE procedures of [8]. From now on we assume that circuit N_1 to be optimized has only one output. (If a circuit to be optimized has more than one output, then the LS_TE procedure can be separately applied to every subcircuit feeding an output of N_1).

3.1 Logic synthesis preserving toggle equivalence

In this subsection, we recall the procedure of Logic Synthesis preserving Toggle Equivalence (abbreviated as **LS_TE**) introduced in [8]. The pseudocode of the LS TE procedure is shown in Figure 1.

```
1 LS_TE(N<sub>1</sub>, Spec(N<sub>1</sub>),cost_function) {
2  for (i=1; i <= k; i++) {
3    D<sub>inp</sub>(N<sub>1</sub><sup>i</sup>, N<sub>2</sub><sup>i</sup>) = constraint_function(N<sub>1</sub>,N<sub>2</sub>,i);
4    N<sub>2</sub><sup>i</sup> = synth_toggle_equivalent(N<sub>1</sub><sup>i</sup>, D<sub>inp</sub>,cost_function)
5    D<sub>out</sub>(N<sub>1</sub><sup>i</sup>, N<sub>2</sub><sup>i</sup>) = exist_quantify(N<sub>1</sub><sup>i</sup>,N<sub>2</sub><sup>i</sup>, D<sub>inp</sub>); }
6  return(N<sub>2</sub>,Spec(N<sub>2</sub>))}
```

Figure 1. Pseudocode of the LS_TE procedure

Following [8] we also assume that specification $Spec(N_1) = \{N_1^1,...,N_1^k\}$ (i.e. the initial partition of circuit N_1 into subcircuits N_1^i) is topological. Let G be a directed graph whose nodes are subcircuits N_1^i and an edge of G directed from node N_1^i to node N_1^j implies that an output of N_1^i is connected to an input of N_1^j . We will call G a **specification graph**. $Spec(N_1)$ is a **topological specification** if its specification graph G is acyclic.

Given a circuit N_1 with specification $Spec(N_1) = \{N_1^1,...,N_1^k\}$, LS_TE builds circuit N_2 with specification $Spec(N_2) = \{N_2^1,...,N_2^k\}$ that is identical to $Spec(N_1)$. Let G_1 and G_2 be directed graphs describing connections of subcircuits N_1 and N_2 as described above. $Spec(N_1)$ and $Spec(N_2)$ are considered to be **identical specifications** if a) G_1 and G_2 are acyclic; b) G_1 and G_2 are isomorphic; c) subcircuits N_1^i and N_2^i are toggle equivalent, i=1,...,k in terms of their inputs related by a constraint function that is a correlation function (see below).

Since $Spec(N_1)$ is topological, one can assign levels to subcircuits N_1^i . We assume that subcircuits N_1^i are numbered "topologically" i.e. if i < j then $topol_level(N_1^i) \le topol_level(N_1^j)$. The LS_TE procedure builds circuit N_2 by replacing subcircuits N_1^i , i=1,...,k with their toggle equivalent counterparts N_2^i in topological order, from inputs to outputs.

Let us consider how LS_TE works by the example of Figure 2. LS_TE starts with subcircuit N_1^1 and recovers the function $D_{inp}(N_1^1, N_2^1)$ relating inputs of N_1^1 and subcircuit N_1^2 to be built (line 3 of the pseudocode). The inputs of N_1^1 are inputs of N_1 (and so N_1^1 has the lowest topological level 1). In that case, $D_{inp}(N_1^1, N_2^1)$ is just a conjunction of equality functions relating corresponding inputs of N_1^1 and N_2^1 (and so $D_{inp}(N_1^1, N_2^1)$) is a correlation function "identifying" the

corresponding inputs of N_1^1 and N_2^1 .) Then an actual subcircuit N_2^1 toggle equivalent to N_1^1 is synthesized (line 4). In the end of this iteration, the function $D_{\text{out}}(N_1^1, N_2^1)$ relating outputs of N_1^1 and N_2^1 is built (line 5) as described in Proposition 3. Since N_1^1 and N_2^1 are toggle equivalent, there is a one-to-one mapping between the output vectors they produce. So $D_{\text{out}}(N_1^1, N_2^1)$ is a correlation function.

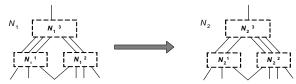


Figure 2. Optimization of N_1 by LS TE

Then, the LS_TE procedure processes subcircuit N_1^2 in the same manner, generating a toggle equivalent subcircuit N_2^2 and the correlation function $D_{\text{out}}(N_1^2, N_2^2)$. Finally, the subcircuit N_1^3 is processed similarly to $N_1^{\ 1}$ and $N_1^{\ 2}$ with one exception. The inputs of N_1^3 are fed by the outputs of N_1^1 and N_1^2 . So now the function $D_{\text{inp}}(N_1^3, N_2^3)$ relating inputs of N_1^3 and N_2^3 (synthesized in line 4) equals $D_{\text{out}}(N_1^1, N_2^1) \wedge$ $D_{\text{out}}(N_1^2, N_2^2)$. (To obtain $D_{\text{inp}}(N_1^3, N_2^3)$ one has to take the conjunction of $D_{\text{out}}(N_1^i, N_2^i)$ for all the subcircuits whose outputs feed inputs of N_1^3 and N_2^3 . In this particular case, these subcircuits are N_1^1, N_1^2 and N_2^{-1} , N_2^{-2} .) It is not hard to show that a conjunction of correlation functions is a correlation function too and so $D_{\text{inp}}(N_1^3, N_2^3)$ is a correlation function.

Let us N_2^3 be a circuit toggle equivalent to N_1^3 under constraints $D_{\rm inp}(N_1^3, N_2^3)$. Recall that N_1^3 has only one output. It is not hard to show that then N_2^3 either has one output or all outputs of N_2^3 but one can be removed without affecting its being toggle equivalent to N_1^3 . (So we will assume that N_2^3 has one output.) Since N_1^3 and N_2^3 are single-output subcircuits, their toggle equivalence, means that they are functionally equivalent modulo negation. So the circuit N_2 consisting of subcircuits N_2^1, N_2^2, N_2^3 is functionally equivalent to N_1 (modulo negation).

3.2 EC of circuits with a common specification

The EC of N_1 and a circuit N_2 obtained from N_1 by LS_TE can be done by the **EC_TE** procedure of [8] whose (slightly changed) pseudocode is shown in Figure 3. EC stands for equivalence checking and TE

stands for toggle equivalence. Recall that N_1 is a single-output circuit and, as we mentioned above, LS_TE builds a circuit N_2 that has one output too.

The input to the EC_TE procedure are circuits N_1 and N_2 and their specifications $Spec(N_1)=\{N_1^1,...,N_1^k\}$, $Spec(N_2)=\{N_2^1,...,N_2^k\}$. So EC_TE is an internal EC procedure. EC_TE is incomplete in the sense that it gives a definite answer only if $Spec(N_1)$ and $Spec(N_2)$ are identical. Otherwise, EC_TE returns the answer ' $CS_check_failure$ ', which means that specifications of N_1 and N_2 are different.

```
1 EC_TE(N<sub>1</sub>, N<sub>2</sub>, Spec(N<sub>1</sub>),Spec(N<sub>2</sub>)) {
2 if (topol_spec(N<sub>1</sub>, Spec(N<sub>1</sub>)) == 'no') || topol_spec(N<sub>2</sub>, Spec(N<sub>2</sub>)) == 'no'))
3 return('CS_check_failure');
4 if (graph_isomorphism ( N<sub>1</sub>, N<sub>2</sub>, Spec(N<sub>1</sub>),Spec(N<sub>2</sub>)) == 'no')
5 return('CS_check_failure');
6 for (i=1; i <= k; i++) {
7 D<sub>lup</sub>(N<sub>1</sub><sup>1</sup>, N<sub>2</sub><sup>1</sup>) = constraint_function(N<sub>1</sub>,N<sub>2</sub>,i);
8 if (toggle_equiv((N<sub>1</sub><sup>1</sup>, N<sub>2</sub><sup>1</sup>, D<sub>lup</sub>)) == 'no') return('CS_check_failure');
9 D<sub>out</sub>(N<sub>1</sub><sup>1</sup>, N<sub>2</sub><sup>1</sup>) = exist_quantify(N<sub>1</sub><sup>1</sup>, N<sub>2</sub><sup>1</sup>, D<sub>lup</sub>);}
10 if (D<sub>out</sub>(N<sub>1</sub><sup>1</sup>, N<sub>2</sub><sup>1</sup>) is 'equivalence_function') return('equivalent');
11 else return('inequivalent');}
```

Figure 3. Pseudocode of the EC TE procedure

Let G_1 , G_2 be specification graphs for $Spec(N_1)$ and $Spec(N_2)$ respectively (see subsection 3.1.) In line 2, EC_TE checks if graphs G_1 and G_2 are acyclic. In line 4, EC_TE checks if G_1 and G_2 are isomorphic. If either check fails, ' $CS_check_failure$ ' is reported.

The main work is done in the 'for' loop (lines 6-9) where subcircuits $N_1^{\ i}$ and $N_2^{\ i}$ (i=1,...,k) are checked for toggle equivalence in topological order. First, in line 7 the function $D_{inp}(N_1^{\ i}, N_2^{\ i})$ relating inputs of $N_1^{\ i}$ and $N_2^{\ i}$ is formed exactly as it is done by LS_TE (Figure 1, line 3). In line 8, EC_TE checks if $N_1^{\ i}$ and $N_2^{\ i}$ (whose inputs are related by the function $D_{inp}(N_1^{\ i}, N_2^{\ i})$ computed in line 7) are toggle equivalent. If not, then EC_TE returns ' $CS_check_failure$ '. (As we showed in subsection 2.3, checking of toggle equivalence reduces to two SAT-checks.) In line 9, the function $D_{out}(N_1^{\ i}, N_2^{\ i})$ relating outputs of $N_1^{\ i}$ and $N_2^{\ i}$ is computed. This is done by existentially quantifying away from $Sat(N_1^{\ i}) \wedge Sat(N_2^{\ i}) \wedge D_{inp}(N_1^{\ i}, N_2^{\ i})$ all the variables except the output variables of $N_1^{\ i}$ and $N_2^{\ i}$.

After finishing the 'for' loop, in lines 10-11, EC_TE checks if the function $D_{out}(N_1^k, N_2^k)$ (note that the outputs of N_1^k and N_2^k are outputs of N_1 and N_2 respectively) is an equivalence function. If it is, then N_1 and N_2 are equivalent. Otherwise, N_1 and N_2 are complements of each other (because N_1^k and N_2^k are toggle equivalent but not functionally equivalent) and so they are inequivalent.

The complexity of both EC_TE and LS_TE is linear in the number of subcircuits in N_1 and N_2 and

exponential in granularities of $Spec(N_1)$ and $Spec(N_2)$. (Recall that **granularity** of $Spec(N_1)$ is the number of gates in the largest subcircuit N_1^i , i=1,...,k.)

4. NEW EC AND LOGIC SYNTHESIS PROCEDURES

In this section, we describe an extension of the EC_TE and LS_TE procedures called EC_TI and LS_TI respectively (where TI stands for toggle implication). First, we give a generic method for introducing a logic transformation through an "enabling" procedure and explain how this method works for EC_TE and LS_TE. Then we introduce EC_TI and LS_TI.

4.1 A generic method for introducing logic transformation

The idea of the method is to introduce a logic transformation through an Enabling internal EC procedure (we will refer to it a **EEC**). The input to an EEC is an original circuit N_1 , a modified circuit N_2 and some information about the transformation T used to obtain N_2 from N_1 . EEC has to be sound. That is, if EEC says that N_1 and N_2 are equivalent (or inequivalent) it has to give the right answer. Besides, EEC should be able to recognize if N_2 can not be obtained from N_1 by the transformation T. After designing an EEC, one formulates a logic synthesis procedure that given a circuit N_1 generates a circuit N_2 whose equivalence to N_1 can be verified by this EEC. We will say that this synthesis procedure is enabled by this EEC.

Let us illustrate how this method works for introducing LS_TE. The EC_TE procedure satisfies the requirements above for an EEC. Indeed, the input to EC_TE consists of circuits N_1 and N_2 and partitions $Spec(N_1)$, $Spec(N_2)$ as information about the synthesis transformation to be enabled. The soundness of EC TE trivially follows from the fact that EC TE returns the 'equivalent' (or 'inequivalent') answer only if it correctly derived the equivalence (respectively inequivalence) function relating the outputs of N_1 and N_2 . It is not hard to see that LS_TE is exactly the procedure enabled by EC_TE. Indeed, EC_TE checks in topological order if subcircuits N_1^i and N_2^i of $Spec(N_1)$ and $Spec(N_2)$ are toggle equivalent. In turn, LS_TE builds N_2 by generating toggle equivalent

counterparts of subcircuits N_1^i in topological order.

4.2 Introduction of LS TI

Let EC_TI be an EC procedure that is different from EC_TE only in one aspect. Instead of checking if N_1^i and N_2^i (line 8 of Figure 3) are toggle equivalent it checks if toggling of N_1^i implies that of N_2^i . That is instead of checking if both $N_1^i \le N_2^i$ and $N_2^i \le N_1^i$ hold it just checks if $N_1^i \le N_2^i$. The EC_TI procedure is sound for the same reason as EC_TE. (That is it correctly derives an (in)equivalence function relating the outputs of N_1 and N_2 . The correctness of derivation follows from the "soundness" of existential quantification that is used to obtain functions $D_{\text{out}}(N_1^i, N_2^i)$ i=1,...,k)

In the context of the EC_TI procedure, we will say that circuits N_1 and N_2 have **identical specifications** $Spec(N_1) = \{N_1^{\ 1},...,N_1^{\ k}\}$ and $Spec(N_2) = \{N_2^{\ 1},...,N_2^{\ k}\}$ if specification graphs G_1 and G_2 are acyclic, isomorphic and $N_1^{\ i} \le N_2^{\ i}$, i=1,...,k-1 and for the last value of i (i.e. i=k), subcircuits $N_1^{\ k}$ and $N_2^{\ k}$ are toggle equivalent. The EC_TI procedure either correctly identifies circuits N_1 and N_2 as (in)equivalent or reports that $Spec(N_1)$ and $Spec(N_2)$ are not identical.

Now we define a procedure enabled by EC_TE. Let N_1 be a circuit and $Spec(N_1) = \{N_1^{\ 1}, ..., N_1^{\ k}\}$ be its specification. Let LS_TI be a logic synthesis procedure that is different from LS_TE only in two aspects. *First*, for i=1,...,k-1 LS_TI generates subcircuit N_2^i such that toggling of N_1^i implies that of N_2^i i.e. $N_1^i \le N_2^i$ (So, LS_TI is different from LS_TE in line 4 of Figure 1). Only for i=k, LS_TI generates subcircuit N_2^i that is toggle equivalent to N_1^i .

Second, when generating a subcircuit N_2^i , LS_TI limits the number of outputs of N_2^i . The reason is as follows. Let $D_{inp}(N_1^i, N_2^i)$ be the constraint function relating inputs of N_1^1 and the subcircuit N_2^1 to be built. If the number of outputs in N_2^{-1} is not limited, then the simplest subcircuit N_2^i such that $N_1^i \le N_2^i$ is the **identity circuit** I_p where p is the number of inputs in N_2^{-1} . (I_p is a circuit with inputs $x_1,...,x_p$ and p outputs $y_1,...y_p$, implementing the functions $y_i=x_i$, i=1,...,p. So I_p does not have any gates.) Hence, without limiting the number of outputs in N_2^i , LS_TI would just generate identity circuits as N_2^i , i=1,...,k-1 pumping all the functionality into functions $D_{inp}(N_1^i, N_2^i)$. Only when generating the subcircuit N_2^k (which is toggle equivalent to N_1^k and has one output) a non-empty subcircuit would be generated. It can be shown that in this case $D_{\text{inp}}(N_1^k, N_2^k)$, would essentially describe the relation between inputs of N_1^k and the primary inputs of N_1 . This means that if one does not limit the number of outputs in N_2^i , the LS_TI procedure would delay all the synthesis work until i=k and so it would not be scalable. The simplest way to limit the number of outputs in N_2^i is to require that $num_of_outputs(N_2^i) \le num_of_outputs(N_1^i)$. Under such a restriction, LS_TI has the same complexity as LS_TE i.e. it is linear in the number of subcircuits in $Spec(N_1)$ and exponential in the granularity of $Spec(N_1)$.)

LS_TI is a synthesis procedure enabled by EC_TI. That is, if for a given N_1 and specification $Spec(N_1)$, LS_TI builds a circuit N_2 with specification $Spec(N_2)$, EC_TI will prove N_1 and N_2 to be equivalent.

5. BIG PROMISE OF LOGIC SYNTHESIS PRESERVING COMMON SPECIFICATION

In this section we give some experimental data showing the power of the LS_TE procedure and discuss the potential of LS_TI that should be much more powerful than LS_TE.

5.1 Power of LS TE

The key procedure of LS_TE is called in the loop (line 4 of Figure 1) k times to generate a subcircuit N_2^{i} that is toggle equivalent to N_1^{i} ,i=1,...,k. We will refer to it as the **TEP** procedure (TEP stands for **Toggle Equivalence Preserving**). Such a procedure has been developed in [17].

Let M' and M'' denote subcircuits N_1^i and N_2^i respectively. Given M' and a constraint (correlation function) imposed on inputs M' and M'', the TEP procedure of [17] builds M'' as follows. It constructs a sequence of circuits $M_1, M_2,...$, such that $M \leq M_{i+1} < M_i$. (Here M_1 is an identity circuit I_p and p is the number of inputs in M''). That is M_{i+1} toggles at least "as much" as M, but "strictly less" than M_i . Since every circuit M_{i+1} of this sequence loses at least one toggle of M_i , this sequence converges to a circuit M_s such that $M_s \leq M$ and $M \leq M_s$. This means that M_s is toggle equivalent to M' and so M_s is the final circuit M''. (A more detailed description of the TEP procedure is beyond the scope of this paper.)

In this paper we give some experimental data on *our* implementation of the TEP procedure for optimization of multi-output circuits just to show that

LS_TE has a great practical potential. So the fact that external EC of circuits produced by LS_TE is problematic is significant.

Table 1. Generation of toggle equivalent circuits

on out								
Circuit	#in- puts	Initial #outputs	TEP #outputs	SIS #gates	TEP #gates			
squar5	5	8	8	60	4			
rd84	8	4	8	174	52			
5xp1	7	10	7	140	0			
b1	3	4	3	11	2			
bw	5	28	8	155	9			
cm138	6	8	4	28	15			
cm42a	4	10	6	31	6			
cm82a	5	3	5	21	18			
exp5p	8	63	19	286	131			
f51m	8	8	8	101	0			
con1	7	4	8	82	94			
sqrt	8	4	9	76	90			

In Table 1 we compare the results of optimization of some MCNC benchmarks by SIS [15] and by the TEP procedure. The name of the circuit and the number of inputs and outputs are shown in the first three columns of Table 1. The results of optimization by SIS with the script 'rugged' followed by technology decomposition (to obtain a circuit of two-input AND gates and invertors) is shown in the fifth column. The results of using TEP to build a toggle equivalent circuit are shown in the fourth (the number of outputs) and sixth (the number of gates) columns.

For the majority of circuits TEP was able to find much smaller toggle equivalent counterparts. In two cases (5xp1 and f51m), TEP removed all the logic. This means that, for example, for different input assignments, circuit 5xp1 generates different output assignments. So the identity circuit I_7 is toggle equivalent to 5xp1.

Of course, such re-encoding of output assignments of the original circuit requires changing the surrounding logic. To explain why re-encoding may still lead to significant logic reduction let us consider the following example. Suppose that a circuit N_1 to be optimized consists of two subcircuits, N_1^1 and N_1^2 where the outputs of N_1^1 are connected to inputs of N_1^2 . Suppose circuits N_1^1 and N_1^2 were built "independently". That is when designing circuit N_1^1 , the output encoding for N_1^1 was chosen without any consideration of circuit N_1^2 . Then, in a sense, any circuit toggle equivalent to N_1^1 is as good as N_1^1 . So, it is a reasonable heuristic to build a circuit N_2^1 that is

the smallest toggle equivalent counterpart of N_1^1 and then try to find the smallest subcircuit N_2^2 that is toggle equivalent to N_1^2 under constraints specified by the function $D_{\text{out}}(N_1^1, N_1^2)$.

Table 2 shows results of applying LS_TE with the heuristic above to logic optimization of some arithmetic expressions with an integer variable $x, x \ge 0$. (The second column of Table 2 gives the number of bits in x.) Each circuit N_1 of Table 2 consists of subcircuits N_1^1 and N_1^2 . First three circuits N_1 Boolean function $x^2 < C_1$. Here N_1^{-1} implement implements the function x^2 and subcircuit N_1^2 implements comparison with a constant C_1 . The last three circuits N_1 implement Boolean function $C_1*x <$ C_2 . Here, subcircuit N_1^{-1} implements the function C_1*x , and N_1^2 implements comparison with a constant C_2 . Circuits N_1^{-1} and N_1^2 were built from standard combinational blocks. (So, for example, in our $N_1^{\ 1}$ was a derivative of a regular experiments, multiplier.)

Table 2. Optimization by LS TE

1 u sie 21 o p z y								
Circuit	#bits	C_1	C_2	SIS	LS_TE			
				#gates	#gates			
$x^2 < C_1$	6	200	-	196(12)	5			
$x^2 < C_1$	7	200	-	265 (16)	6			
$x^2 < C_1$	7	500	-	273(15)	6			
$C_1 * x < C_2$	7	49	300	84(15)	6			
$C_1 * x < C_2$	7	111	300	160(12)	6			
$C_1 * x < C_2$	7	49	500	56(14)	6			

It is not hard to see that $x^2 < C_1$ is equivalent to $x < C_1'$ where C_1' is the constant equal to $ceiling(square_root(C_1))$. Similarly, $C_1*x < C_2$ is equivalent to $x < C_2'$ where $C_2'=ceiling(C_2/C_1)$. So there is a very simple circuit implementation of either Boolean function.

The results of optimization by SIS are shown in the fifth column. The first number of this column gives the number of gates in the circuit obtained after applying script 'rugged' and technology decomposition. The number in parenthesis gives the number of gates in the resulting circuit after applying script 'rugged' many times until the solution stabilizes and then running technology decomposition.

The results of applying LS_TE (that used the TEP procedure of [17]) are shown in the last column. Note that N_1^{-1} (for both x^2 and C_1*x cases) generates different output assignments for different input assignments. This means that the identity circuit I_m (where m is the number of bits in x) is toggle equivalent to N_1^{-1} . So LS_TE picked I_m as N_2^{-1} . Then it computed the function

 $D_{\text{out}}(N_1^1, N_2^1)$ relating outputs of N_1^1 and N_2^1 and built subcircuit N_2^2 toggle equivalent to N_1^2 under constraints specified by $D_{\text{out}}(N_1^1, N_2^1)$. The size of circuits obtained by LS_TE is smaller than those of SIS even after multiple applications of the script 'rugged'. (Since a circuit built by LS_TE is functionally equivalent to the original one, it is a fair comparison.)

Note, that indeed LS_TE applied the heuristic mentioned above. Since N_1^{-1} implementing, say, x^2 was built without any consideration of N_1^{-2} any circuit toggle equivalent to N_1^{-1} is as "good" as N_1^{-1} . So LS_TE picked the simplest such a circuit that is $I_{\rm m}$.

5.2 Potential of LS TI

LS_TI is more powerful than LS_TE because toggle implication is a more general relation than toggle equivalence. So LS_TI is much more flexible than LS_TE (while its complexity is the same as that of LS_TE).

Let N_1^i be a subcircuit of circuit N_1 with specification $Spec(N_1) = \{N_1^1,...,N_1^k\}$. If N_2^i is a subcircuit synthesized by LS_TE that is toggle equivalent to N_1^i (under constraints specified by function $D_{inp}(N_1^i,N_2^i)$), every toggle of N_2^i has a "matching" toggle of N_1^i . On the other hand, if N_2^i is built by LS_TI, it may have toggles that are not matched by N_1^i (because LS_TI has to preserve only $N_1^i \le N_2^i$). Since LS_TI builds a circuit N_2 that is functionally equivalent to N_1 , these unmatched toggles of N_2^i do not reach the output of N_2 . The blocking of the unmatched toggles is done "automatically".

Let us consider advantage of LS_TI over LS_TE by a simple example. Suppose that one needs to implement Boolean function f(x) < 9 where x is an m-bit integer. Let f(x) be equal to x^2 at all the 2^m points except for the point x=4 where f(4) is equal to 25 (instead of 16). It is not hard to see that the expression f(x) < 9 is equivalent to x < 3. Suppose that f(x) < 9 is implemented by a circuit N_1 that is a composition of subcircuits N_1^1 and N_1^2 where N_1^1 implements f(x) and N_1^2 implements comparison with 9.

Suppose that the LS_TE procedure is applied to optimize N_1 . LS_TE can not use $I_{\rm m}$ as $N_2^{\ 1}$, because f(4)=f(5)=25 and so I_m is not toggle equivalent to $N_1^{\ 1}$. So LS_TE would build $N_2^{\ 1}$ implementing some "nontrivial" function of x. Hence, $N_2^{\ 2}$ would have to implement a more complex function than x < 3.

Now suppose that N_1 is optimized by LS_TI. Note that toggling of N_1^{-1} implies toggling of the identity

circuit $I_{\rm m}$. So LS_TI can use $I_{\rm m}$ as subcircuit N_2^1 . Then LS_TI can build subcircuit N_2^2 implementing x < 3. So due to greater flexibility LS_TI is able to generate a smaller circuit than LS_TE.

To become practical, LS_TI needs a procedure that, given a subcircuit N_1^{-1} and a constraint function D_{inp} , builds an optimized subcircuit N_2^{i} such that a) N_1^{i} $\leq N_2^{i}$ under constraint D_{inp} ; b) the number of outputs in N_2^{i} is limited by a constant. (We will refer to this procedure as Toggle Implication Preserving or TIP.) Interestingly, the TEP procedure of [17] briefly sketched in the previous subsection can be also used as a TIP procedure. Given a circuit M', the TEP procedure above builds a sequence of circuits $M_1, M_2, ...$ such that M_1 is an identity circuit I_p and $M \le M_{i+1} < M_i$. The TEP procedure stops when M_s is toggle equivalent to M. Suppose the TEP procedure stops as soon as the number of outputs in the current circuit M_i is below a threshold. Then $M \leq M_i$ and the number of outputs in M_i is bounded by a specified threshold. So the TEP procedure of [17] with the new termination condition is a TIP procedure.

Let N_1^i be a subcircuit N_1 to be re-synthesized by LS_TI. Let N_1^i have k outputs and we want to build a subcircuit N_2^i of k outputs. The number of k-output Boolean functions f_2^i such that $f_1^i \le f_2^i$, where f_1^i is the function implemented by N_1^i , is no less than $(2^k!)$. Indeed, even if some output assignments of N_1^i are unsatisfiable, there is always subcircuit N_2^i (if its number of inputs of N_2^i is greater or equal to k) such that all 2^k output assignments of N_2^i are satisfiable and $N_1^i \le N_2^i$. Let this be the case and f_2^i be the function implemented by N_2^i . Any permutation of 2^k output assignments in the truth table of f_2^i gives a new function f_2^{ii} such that $f_1^i \le f_2^{ii}$.

The value of $(2^k!)$ is huge even for small k (e.g. if k=5, then $(2^5)!$ is equal to $2.6*10^{35}$). So even if $Spec(N_1)$ has a very small granularity, LS_TI still enjoys great flexibility. On the other hand, since the complexity of LS_TI is linear in the number of subcircuits in $Spec(N_1)$, LS_TI is scalable (if one keeps the granularity of $Spec(N_1)$ small.)

6. COMPLEXITY OF EXTERNAL EC OF CIRCUITS WITH COMMON SPECIFICATION

Let N_1 be a circuit with specification $Spec(N_1)=\{N_1^1,...,N_1^k\}$. Let N_2 be a circuit with specification $Spec(N_2)=\{N_2^1,...,N_2^k\}$. produced from N_1 by either by EC_TE or EC_TI. In this section, we

discuss the complexity of external EC of N_1 and N_2 .

6.1 EC of circuits produced by LS_TE

In [8], a top commercial tool was used for "external" EC of circuits with a common specification (Table 2 of [8]). These results showed that even for circuits with a common specification of small granularity, their EC was too hard for that tool (even with a 10 hour time limit). On the other hand, all examples were solved by EC_TE within 1-2 minutes.

One can always pick circuits N_1 and N_2 with a common specification that will "break" current EC algorithms. The reason is that an external checker inevitably makes implicit assumptions that can be easily broken. For example, algorithms based on computing cut-points make an assumption that N_1 and N_2 have functionally equivalent internal points. However, if N_2 is produced from N_1 by LS_TE, N_1 and N_2 , in general, have no functionally equivalent points. Algorithms based on BDD computation make an implicit assumption that N_1 and N_2 have a small width while LS_TE can be used for optimization of circuits of arbitrary width. EC based on recursive learning [11] assumes that implications relating points of N_1 and N_2 can be obtained inductively by a computation of small "recursion depth". This assumption can be easily broken as well. The method of [12] also makes a breakable assumption that N_1 and N_2 do not have a large number of reconvergent fan-outs.

In terms of proof sizes (computed with respect to a concrete proof system like resolution), the problem with existing (and most likely any) external equivalence checkers is as follows. It may well be the case that any proofs of equivalence different from the ones generated by LC_TE are much "longer". On the other hand, to find a proof generated by LC_TE one needs to build partitions $Spec(N_1)$ and $Spec(N_2)$, which is very hard. The reason is that finding a pair of subcircuits N_1^i , N_2^i that are toggle equivalent requires testing $\approx |N_1|^{p_1} * |N_2|^{p_2}$ pairs of subcircuits where p_i , i=1,2 is the granularity of $Spec(N_i)$.

6.2 EC of circuits produced by LS TI

Although external verification of circuits built by LS_TE looks infeasible, verification of circuits produced by LS_TI is "even harder". The reason is as follows. Suppose that N_2 with specification $Spec(N_2)$

is produced from N_1 with specification $Spec(N_1)$ by LS_TE. Suppose an external equivalence checker somehow managed to find subcircuits N_1^{i} and N_2^{i} that are toggle equivalent. Then, it has to decide whether this toggle equivalence is "accidental" or N_1^i and N_2^i are subcircuits of $Spec(N_1)$ and $Spec(N_2)$. If N_1^{-1} and N_2^{-1} are toggle equivalent "accidentally", then one cannot use outputs of N_1^i and N_2^i as "cut-points" to find subcircuits that are toggle equivalent in terms of previous cut-points (because the wrong choice of cutpoints leads to false negatives). However, it is conceivable that toggle equivalence of subcircuits of N_1 and N_2 is a "rare" occasion and so N_1^i and N_2^i are subcircuits of $Spec(N_1)$, $Spec(N_2)$ with reasonable probability.

The situation with LS_TI is vastly different. If N_2 with specification $Spec(N_2)$ is obtained from N_1 with specification $Spec(N_1)$ by LS_TI, any method of finding $Spec(N_1)$ and $Spec(N_2)$ faces huge false negative problem. Indeed, if $N_1^i \le N_2^i$ holds for some subcircuits of N_1 and N_2 , then $N_1^i \le N_2^{i}$ also holds if $N_2^{\prime i}$ is a subcircuit of $N_2^{\prime i}$ such that the outputs of $N_2^{\prime i}$ form a cut of N_2^i . (A cut of N_2^i cannot toggle "less" than the set of outputs of N_2^i .) Besides, $N_1^i \le N_2^{"i}$ also holds if N_2^i is a subcircuit of $N_2^{\prime\prime}$ and the set of outputs of $N_2^{"i}$ contains all the outputs of N_2^{i} (adding more outputs to N_2^i only increases toggling.) So, the number of pairs of subcircuits N_1^i , N_2^i for which $N_1^i \le N_2^i$ holds is, in general, astronomical. So picking the "right" pair of subcircuits N_1^i , N_2^i is extremely unlikely and hence finding $Spec(N_1)$ and $Spec(N_2)$ looks even "more impossible" than in the case of LS_TE.

7. CONCLUSION

In this paper, we discuss how "external" equivalence checkers can be affected by the appearance of new powerful logic synthesis procedures. Our results imply that the increasing power of synthesis procedures may make external equivalence checking problematic if not impossible.

8. REFERENCES

- C.L.Berman. Circuit width, register allocation, and ordered binary decision diagrams. IEEE Trans. on CAD. Vol 10:8, 1991, pp. 1059-1066.
- [2] C.L.Berman, L.H.Trevillyan. Functional comparison of logic designs for VLSI circuits. ICCAD-89, pp.456-459.
- [3] D.Brand. Verification of large synthesized designs. ICCAD-93,pp.534-537.

- [4] R.Bryant. Graph-Based Algorithms for Boolean Function Manipulation. IEEE Trans. on Computers, Vol. C - 35, No. 8, August, 1986, pp. 677 - 691.
- [5] J.R.Burch, V.Singhal. Tight integration of combinational verification methods. ICCAD-98, pp.570-576.
- [6] R. Drechsler and S. Horeth. Gatecomp: Equivalence Checking of Digital Circuits in an Industrial Environment, International Workshop on Boolean Problems, pp. 195-200, 2002.
- [7] Electronic Design Automation For Integrated Circuits Handbook, by L.Lavagno, G.Martin, and L.Scheffer, Volume 2, Chapter 4, Equivalence Checking, by F. Somenzi and A. Kuehlmann.
- [8] E.Goldberg. On Equivalence Checking and Logic Synthesis of Circuits with a Common Specification. Proceedings of GLSVLSI, Chicago, April 17-19, 2005, pp.102-107, (http://eigold.tripod.com/papers/glsvlsi-2005.pdf).
- [9] A. Gupta, P.Ashar. Integrating a Boolean Satisfiability Checker and BDDs for Combinational Equivalence Checking. VLSI Design 1998. pp. 222-225.
- [10] A.Kuehlmann, F.Krohm. *Equivalence checking using cuts and heaps*, DAC-98, pp.263-268.
- [11] W.Kunz, D.Pradhan. Recursive Learning: A New Implication Technique for Efficient Solutions to CADproblems: Test, Verification and Optimization. IEEE trans. on CAD, Vol. 13, No. 9, pp. 1143-1158, 1994.
- [12] H.Kwak, I.Moon, J.Kukula, T.Shiple. Combinational equivalence checking through function transformation, ICCAD-2002, pp. 526-533.
- [13] I.-H.Moon, C. Pixley. Non-miter-based Combinational Equivalence Checking by Comparing BDDs with Different Variable Orders. FMCAD 2004, 144-158
- [14] J. Moondanos, C.-J. H. Seger, Z.Hanna, D. Kaiss. CLEVER: Divide and Conquer Combinational Logic Equivalence VERification with False Negative Elimination. CAV-2001,pp. 131-143.
- [15] E.M. Sentovich et. al. SIS: A system for sequential circuit synthesis. Technical report, University of California at Berkeley, 1992. Memorandum No. UCB/ERL M92/41.
- [16] S.Sinha, S.Khatri, R.Brayton, A. Sangiovanni-Vincentelli. *Binary and multi-valued SPFD-based wire* removal in PLA networks, ICCD-2000, pp. 494-503.
- [17] E.Goldberg, K.Gulati, S. Khatri Toggle Equivalence Preserving (TEP) logic synthesis. IWLS-2007, San Diego 2007 (http://eigold.tripod.com/papers/iwls-2007tep.pdf)