

Abstract

We compare the complexity of “ internal” and
“ external” equivalence checking. The former is meant
for proving the correctness of a synthesis
transformation by which circuit N2 is obtained from
circuit N1. The latter is meant for proving that circuits
N1 and N2 are functionally equivalent without making
any explicit assumptions about the origin of N1 and N2.
We describe logic synthesis procedures that can
produce a circuit N2 whose equivalence with the
original circuit N1, most likely, can not be efficiently
proved by an external equivalence checker. On the
other hand, there are internal equivalence checking
procedures that easily prove that N1 and N2 are
equivalent. We give experimental data showing that
these logic synthesis procedures are not a
mathematical curiosity but indeed can be used as a
powerful method of logic optimization.

1. INTRODUCTION

Equivalence checking (EC) has become an
important part of design verification [7]. This success
can be attributed to a good scalability of the state-of-
the-art equivalence checkers. In turn, this scalability is
due to two factors. First, logic synthesis tools usually
do not re-encode state variables and so EC of two
sequential circuits reduces to EC of combinational
circuits bounded by registers and/or primary inputs and
outputs. (For this reason, in this paper, we consider
only EC of combinational circuits and when we refer to
a “circuit” we mean a “combinational circuit” .) Second,
in many cases circuits can be represented by small
BDDs [4]. Then EC of the corresponding
combinational circuits of two designs to be compared
can be performed efficiently.

1.1 EC of large circuits

The existence of large combinational circuits
poses a problem in EC. Informally, we consider a
circuit as “ large” , if its BDD cannot be built efficiently.
Typically, this happens when a circuit has a large width
[1]. The width of a circuit N describes the amount of
communication between different parts of N, multiplier
being a classical example of a “wide” circuit.

A lot of research in EC has been focused on
handling large combinational circuits. In [9], the idea
of combining SAT and BDD based methods was
explored. The case when circuits to be checked for
equivalence have compact BDDs under different
variable orders was studied in [13]. The most popular
method of handling large circuits is based on
employing cut points [2][3]. The idea is to prove
functional equivalence of circuits N1 and N2
inductively. First equivalence of some subcircuits of N1
and N2 is established. The outputs of equivalent
subcircuits are considered as cut points and new
subcircuits are tested for equivalence, inputs of these
subcircuits being cut points. This goes on until
equivalence of the outputs of N1 and N2 is proven in
terms of some cut points. This idea was further
developed in [10] and successfully used in many
equivalence checkers (e.g. [5][6]). It may happen that
even though N1 and N2 are equivalent, they appear to
be inequivalent in terms of the chosen cut points. This
situation is usually called a false negative. The problem
of false negatives was addressed in [12][14].

1.2 Internal and external EC

All the methods described above are meant for
“external” EC. Informally, EC is external if no
explicit assumptions are made about the origin of
combinational circuits N1 and N2 to be compared. We
will say that EC is “ internal” if it is meant for

On Complexity of Internal and External Equivalence Checking

Eugene Goldberg, Kanupriya Gulati
Cadence Design Systems, Texas A&M University,
 egold@cadence.com, kanu.gulati@gmail.com

verification of a logic synthesis transformation by
which circuit N2 is obtained from N1. So, by definition,
internal EC “knows” the relation between N1 and N2.
For simple transformations, internal EC is performed
implicitly by using some informal reasoning. Suppose,
for example, that internal points w and w′ of a circuit
N1 are functionally equivalent. Then one can optimize
N1 by removing w′ and feeding its fan-out nodes with
w (instead of w′). No explicit procedure is run for EC
of N1 and N2 because in this particular case the
equivalence of N1 and N2 is “obvious” .

Development of new “non-trivial” methods for
internal EC is extremely important because these
methods enable new logic synthesis procedures. A
powerful method of internal EC was introduced in [8]
where logic synthesis and EC of circuits with a
common specification were considered. A
specification of a circuit N is just a partition of N into
subcircuits. Two circuits N1 and N2 have a common
specification if they can be partitioned into k
subcircuits N1

1,.., N1
k and N2

1,.., N2
k such that these

subcircuits are connected in “ the same way” in N1 and
N2 and corresponding subcircuits N1

i, N2
i are toggle

equivalent. We will refer to the EC procedure of [8] as
EC_TE where TE stands for toggle equivalence.

The importance of EC_TE is twofold. First, it
enables a powerful logic synthesis procedure. (We will
refer to this procedure as LS_TE where LS stands for
logic synthesis and TE for toggle equivalence). Given
a circuit N1 with specification N1

1,..,N2
k, LS_TE

builds an optimized circuit N2 that is functionally
equivalent to N1 by replacing subcircuits N1

i with their
toggle equivalent counterparts in topological order.
(The equivalence of N1 and N2 can be established by
EC_TE). The power of LS_TE is in its good scalability
and flexibility. LS_TE has linear complexity in the
number k of subcircuits N1

i and exponential in the
granularity of specification which is the size of the
largest subcircuit N1

i, in the number of gates. (EC_TE
has the same complexity as LS_TE). If a subcircuit N1

i
of N1 has m outputs, then the number of m-output
subcircuits that are toggle equivalent to N1

i is huge
even for small m. So LS_TE enjoys great flexibility
even for specifications of very small granularity.

The second reason why introduction of EC_TE is
important is as follows. Usually, external EC is
assumed to be as powerful as internal. The results of
[8] imply, that, most probably, there is an exponential
gap between external and internal EC. The reason is
that finding a common specification of N1 and N2 most
likely can not be done efficiently. So EC of N1 and N2

becomes infeasible if the partitioning of N1 and N2 into
subcircuits N1

1,.., N1
k and N2

1,…, N2
k is not known. In

other words, if N1 is a circuit of large width, external
EC of N1 and N2 obtained from N1 by a logic
optimization procedure is possible only if this
procedure is very “weak” . Then N1 and N2 have so
much similarity (like existence of many functionally
equivalent internal points) that equivalence of N1 and
N2 can be proven without any additional information.

1.3 Our contribution and structure of the
paper

In this paper, we further develop the ideas of [8].
Our contribution is threefold. In [8], no concrete
procedure that, given a subcircuit N1

i, generates a
toggle equivalent counterpart N2

i, was introduced. So
one could consider the performance gap between
internal and external EC as a mathematical curiosity.
The first contribution of this paper is that we give
experimental data showing the promise of LS_TE,
which makes the theory of [8] much more tangible.

 The second contribution is that we show that after
a slight modification, EC_TE enables a logic synthesis
procedure much more powerful than LS_TE. Given a
circuit N1 and specification N1

1,..,N1
k, this procedure is

to replace each subcircuit N1
i with a subcircuit N2

i that
implies toggling of N1

i. We will refer to this procedure
as LS_TI (where TI stands for toggle implication).
LS_TI offers much more flexibility than LS_TE while
its complexity is the same as the complexity of LS_TE.
Showing that LS_TI “widens” the gap between internal
and external EC is our third contribution.

This paper is structured as follows. In Section 2 we
give basic notions. Section 3 recalls EC_TE and
LS_TE procedures of [8]. In Section 4 we describe an
EC procedure enabling a logic synthesis procedure
LS_TI more powerful than LS_TE. Section 5 gives
experimental data showing the power of LS_TE and
explains why LS_TI is more powerful than LS_TE. In
Section 6 we discuss the complexity of external EC of
circuits produced by LS_TE and LS_TI. We conclude
with Section 7.

2. BASIC NOTIONS

2.1 Toggle equivalence of Boolean functions

In this subsection, we recall the notion of toggle
equivalence and its properties. All the propositions

given in this section are either proven in [8] or can be
easily derived from proofs given there.
Definition 1. Let f:{ 0,1} n → { 0,1} m be an m-output
Boolean function. A toggle of f is a pair of two
different output vectors produced by f for two input
vectors. In other words, if y=f(x) and y′′′′ =f(x′′′′) and y ≠
y′, then (y, y′) is a toggle.
Definition 2. Let f1 and f2 be m-output and k-output
Boolean functions of the same set of variables.
Functions f1 and f2 are called toggle equivalent if
f1(x) ≠ f1(x′′′′) ⇔ f2(x) ≠ f2(x′′′′). Circuits N1 and N2
implementing toggle equivalent functions f1 and f2 are
called toggle equivalent circuits.
Proposition 1. Let f1:{ 0,1} n → { 0,1} m and f2 { 0,1} n →
{ 0,1} k be m-output and k-output Boolean functions of
the same set of variables. Let f1 be f2 are toggle
equivalent. Then there is an invertible function K such
that f1(x)=K(f2(x)) and f2(x)=K−1(f1(x)).

 Proposition 1 means that if functions f1 and f2 are
toggle equivalent, then there is a one-to-one mapping K
between the output vectors produced by f1 and f2.
Proposition 2. Let f1 and f2 be toggle equivalent single
output Boolean functions. Then f1=f2 or f1=~f2 where
‘~’ means negation.

Let N1 and N2 be toggle equivalent functions.
Definition 3, Definition 4 and Proposition 3 below
explain how one can implicitly find the mapping K
relating outputs produced by N1 and N2.
Definition 3. Let f be a Boolean function. We will say
that function f* is obtained from f by existentially
quantifying away variable xi if f* = f(…, xi=0,…) ∨
f(…, xi=1,….).

Definition 4. Let N be a circuit. Denote by v(N) the set
of variables of N. Denote by Sat(v(N)) the Boolean
function such that Sat(z)=1 iff the assignment z to v(N)
is “possible” i.e consistent. For example, if N consists
of just one AND gate y=x1 ∧ x2, then
Sat(v(N)) = (~x1∨ ~x2 ∨ y) ∧ (x1 ∨ ~y) ∧ (x2 ∨ ~y). For
the sake of simplicity we will denote Sat(v(N)) as
Sat(N).

Proposition 3. Let N1 and N2 be toggle equivalent and
Y1, Y2 be the sets of their output variables. Let function
K* (Y1,Y2) be obtained from Sat(N1) ∧ Sat(N2) by
existentially quantifying away the variables of N1 and
N2 except those of Y1 ∪ Y2. The function K* (Y1, Y2)
implicitly specifies the one-to-one mapping K between
output vectors produced by N1 and N2. Namely
K*(y1, y2) is equal to 1 iff y1=K(y2).

2.2 Implication of toggling

In this subsection, we introduce the notion of
implication of toggling.
Definition 5. Let f1 and f2 be two multi-output
functions with the same set of variables X={ x1,…,xn} .
Toggling of function f1 implies toggling of f2
(denoted as f1 ≤ f2), if for any pair of assignments x′′′′,
x″″″″ to X, f1(x′′′′) ≠≠≠≠ f1(x″″″″) implies f2(x′′′′) ≠≠≠≠ f2(x″″″″).
Definition 6. Toggling of a multi-output function
f1(x1,..,xn) strictly implies toggling of a multi-output
function f2(x1,..,xn) (denoted as f1 < f2) if f1 ≤ f2 but
f2 ≤ f1 does not hold.
Remark 1. We will denote by N1 ≤ N2 (respectively
N1 < N2) the fact that toggling of the function
implemented by Boolean circuit N1 implies toggling of
(respectively strictly implies toggling of) the function
implemented by Boolean circuit N2.

Proposition 4. Boolean functions f1 and f2 are toggle
equivalent iff f1 ≤ f2 and f1 ≤ f2.

Proposition 5. Let f1:{ 0,1} n → { 0,1} m and f2 { 0,1} n →
{ 0,1} k be m-output and k-output Boolean functions of
the same set of variables. Let f1 ≤ f2. Then there is a
function K such that f1(x)=K(f2(x)).

Note that unless f1 and f2 are toggle equivalent, the
function K is not invertible.

2.3 Testing toggle implication and toggle
equivalence

In this subsection, we describe how toggle
equivalence and implication of toggling can be tested.
Let N1 and N2 be two Boolean circuits to be checked
for implication of toggling. Let X={ x1,.., xn} be the set
of input variables of N1, N2. Let Y={ y1,…, ym} and
Z={ z1,.., zk} be the sets of output variables of N1 and N2
respectively. Then N1 ≤ N2 holds iff the function
S = H(N1, N2) ∧ H(N* 1, N* 2) ∧ Neq(Y, Y*) ∧ Eq(Z, Z*)
is unsatisfiable (i.e. it is a constant 0). Here N*1 and
N*2 are copies of circuits N1 and N2, with input
variables X*={ x*1,.., x*n} and output variables
Y*={ y* 1,…, y* m} and Z*= { z* 1,.., z* k} respectively.
The function H(N1, N2) is equal to Sat(N1) ∧ Sat(N2).
The value of Eq(y, y*) where y and y* are assignments
to Y and Y* respectively is equal to 1 iff y=y*. The
function Neq(Y, Y*) is the negation of Eq(Y, Y*).

Indeed, S=1 means that for a pair of input vectors
x and x*, circuit N1 toggles (which sets Neq(Y, Y*) to
1) while N2 does not (which sets Eq(Z,Z*) to 1).

From Proposition 4 it follows that checking for
toggle equivalence reduces to two satisfiability checks
(SAT-checks for short).

2.4 Correlation function

In this subsection, we use the notion of correlation
function to extend definitions of toggle implication and
toggle equivalence to the case when functions f1 and f2
have different sets of variables.
Definition 7. Let X and X* be two disjoint sets of
Boolean variables (the number of variables in X and X*
may be different). A function D(X,X*) is called a
correlation function if there are subsets QX ⊆ { 0,1} |X|

and QX* ⊆ { 0,1} |X* | such that D(X,X*) specifies a
bijective mapping M: QX → QX*. Namely D(x, y)=1 iff
x ∈∈∈∈ QX and y ∈ QX* and y = M(x).

Let f1(X) and f2(X*) be two multi-output Boolean
functions where X={ x1,…, xk} and X* ={ x* 1,…, x* p}
are sets of their variables. (Note, that f1 and f2 may
have different number of variables.). Let D(X, X*) be a
correlation function relating variables of f1 and f2. Then
one can introduce notions of toggle equivalence and
toggle implication for f1 and f2. The only difference
from definitions and results listed in subsections
2.1,Proposition 3,2.3 is that now one should consider
only assignments that satisfy D(X,X*).

Let us show how this works for toggle
equivalence. Functions f1(X) and f2(X*) are said to be
toggle equivalent under input constraint D(X,X*), if for
any two pairs (x, x*) and (y, y*) of input vectors such
that D(x, x*)=D(y, y*)=1, it is true that f1(x) ≠ f1(y)
⇔ f2(x*) ≠ f2(y*). The mapping between output
vectors produced by toggle equivalent circuits N1 and
N2 (implementing functions f1 and f2 respectively), can
be obtained from Sat(N1) ∧ Sat(N2) ∧ D(X, X*) by
existentially quantifying away all the variables of N1
and N2 except output variables. The other results and
definitions of subsections 2.1,Proposition 3,2.3 can be
modified in a similar manner.

3. LOGIC SYNTHESIS AND EC OF CIRCUITS

WITH COMMON SPECIFICATION

In this section, we recall LS_TE and EC_TE
procedures of [8]. From now on we assume that circuit
N1 to be optimized has only one output. (If a circuit to
be optimized has more than one output, then the
LS_TE procedure can be separately applied to every
subcircuit feeding an output of N1).

3.1 Logic synthesis preserving toggle
equivalence

In this subsection, we recall the procedure of Logic
Synthesis preserving Toggle Equivalence (abbreviated
as LS_TE) introduced in [8]. The pseudocode of the
LS_TE procedure is shown in Figure 1.

1 LS_TE(N1, Spec(N1),cost_function) {
2 for (i=1; i <= k ; i++) {
3 Dinp(N1

i, N2
i)= constraint_function(N1,N2,i);

4 N2
i = synth_toggle_equivalent(N1

i, Dinp,cost_function)
5 Dout(N1

i, N2
i) = exist_quantify(N1

i,N2
i, Dinp); }

6 return(N2,Spec(N2))}

Figure 1. Pseudocode of the LS_TE procedure

Following [8] we also assume that specification

Spec(N1) = { N1
1,.., N1

k} (i.e. the initial partition of
circuit N1 into subcircuits N1

i) is topological. Let G be a
directed graph whose nodes are subcircuits N1

i and an
edge of G directed from node N1

i to node N1
j implies

that an output of N1
i is connected to an input of N1

j. We
will call G a specification graph. Spec(N1) is a
topological specification if its specification graph G
is acyclic.

 Given a circuit N1 with specification Spec(N1) =
{ N1

1,.., N1
k} , LS_TE builds circuit N2 with

specification Spec(N2)= { N2
1,.., N2

k} that is identical to
Spec(N1). Let G1 and G2 be directed graphs describing
connections of subcircuits N1 and N2 as described
above. Spec(N1) and Spec(N2) are considered to be
identical specifications if a) G1 and G2 are acyclic; b)
G1 and G2 are isomorphic; c) subcircuits N1

i and N2
i are

toggle equivalent, i=1,..,k in terms of their inputs
related by a constraint function that is a correlation
function (see below).

Since Spec(N1) is topological, one can assign
levels to subcircuits N1

i. We assume that subcircuits
N1

i are numbered “ topologically” i.e. if i < j then
topol_level(N1

i) ≤ topol_level(N1
j). The LS_TE

procedure builds circuit N2 by replacing subcircuits N1
i,

i=1,..,k with their toggle equivalent counterparts N2
i in

topological order, from inputs to outputs.
Let us consider how LS_TE works by the example

of Figure 2. LS_TE starts with subcircuit N1
1 and

recovers the function Dinp(N1
1, N2

1) relating inputs of
N1

1 and subcircuit N1
2 to be built (line 3 of the

pseudocode). The inputs of N1
1 are inputs of N1 (and so

N1
1 has the lowest topological level 1). In that case,

Dinp(N1
1, N2

1) is just a conjunction of equality functions
relating corresponding inputs of N1

1 and N2
1 (and so

Dinp(N1
1, N2

1) is a correlation function “ identifying” the

corresponding inputs of N1
1 and N2

1.) Then an actual
subcircuit N2

1 toggle equivalent to N1
1 is synthesized

(line 4). In the end of this iteration, the function
Dout(N1

1, N2
1) relating outputs of N1

1 and N2
1 is built

(line 5) as described in Proposition 3. Since N1
1 and

N2
1 are toggle equivalent, there is a one-to-one

mapping between the output vectors they produce. So
Dout(N1

1, N2
1) is a correlation function.

N 2
1 N 2

2

N 2 3

N
1

1 N 1
2

N 1 3N 1
N 2

Figure 2. Optimization of N1 by LS_TE

Then, the LS_TE procedure processes subcircuit

N1
2 in the same manner, generating a toggle equivalent

subcircuit N2
2 and the correlation function

Dout(N1
2, N2

2). Finally, the subcircuit N1
3 is processed

similarly to N1
1 and N1

2 with one exception. The inputs
of N1

3 are fed by the outputs of N1
1 and N1

2. So now the
function Dinp(N1

3, N2
3) relating inputs of N1

3 and N2
3

(synthesized in line 4) equals Dout(N1
1, N2

1) ∧
Dout(N1

2, N2
2). (To obtain Dinp(N1

3, N2
3) one has to take

the conjunction of Dout(N1
i, N2

i) for all the subcircuits
whose outputs feed inputs of N1

3 and N2
3. In this

particular case, these subcircuits are N1
1, N1

2 and
N2

1, N2
2.) It is not hard to show that a conjunction of

correlation functions is a correlation function too and
so Dinp(N1

3, N2
3) is a correlation function.

Let us N2
3 be a circuit toggle equivalent to N1

3
under constraints Dinp(N1

3, N2
3). Recall that N1

3 has
only one output. It is not hard to show that then N2

3
either has one output or all outputs of N2

3 but one can
be removed without affecting its being toggle
equivalent to N1

3. (So we will assume that N2
3 has one

output.) Since N1
3 and N2

3 are single-output
subcircuits, their toggle equivalence, means that they
are functionally equivalent modulo negation. So the
circuit N2 consisting of subcircuits N2

1, N2
2, N2

3 is
functionally equivalent to N1 (modulo negation).

3.2 EC of circuits with a common
specification

The EC of N1 and a circuit N2 obtained from N1 by
LS_TE can be done by the EC_TE procedure of [8]
whose (slightly changed) pseudocode is shown in
Figure 3. EC stands for equivalence checking and TE

stands for toggle equivalence. Recall that N1 is a
single-output circuit and, as we mentioned above,
LS_TE builds a circuit N2 that has one output too.

The input to the EC_TE procedure are circuits N1
and N2 and their specifications Spec(N1)={ N1

1,.., N1
k} ,

Spec(N2)= { N2
1,.., N2

k} . So EC_TE is an internal EC
procedure. EC_TE is incomplete in the sense that it
gives a definite answer only if Spec(N1) and Spec(N2)
are identical. Otherwise, EC_TE returns the answer
‘CS_check_failure’ , which means that specifications of
N1 and N2 are different.

1 EC_TE(N1, N2, Spec(N1),Spec(N2)) {
2 if (topol_spec(N1, Spec(N1)) == ‘no’) || topol_spec(N2, Spec(N2)) == ‘no’))
3 return(‘CS_check_failure’);
4 if (graph_isomorphism (N1, N2, Spec(N1),Spec(N2)) == ‘no’)
5 return(‘CS_check_failure’);
6 for (i=1; i <= k ; i++) {
7 Dinp(N1

i, N2
i)= constraint_function(N1,N2,i);

8 if (toggle_equiv((N1
i, N2

i, Dinp)) == ‘no’) return(‘CS_check_failure’);
9 Dout(N1

i, N2
i) = exist_quantify(N1

i,N2
i, Dinp);}

10 if (Dout(N1
k, N2

k) is ‘equivalence_function’) return(‘equivalent’);
11 else return(‘ inequivalent’);}

Figure 3. Pseudocode of the EC_TE procedure

Let G1, G2 be specification graphs for Spec(N1)
and Spec(N2) respectively (see subsection 3.1.) In line
2, EC_TE checks if graphs G1 and G2 are acyclic. In
line 4, EC_TE checks if G1 and G2 are isomorphic. If
either check fails, ‘CS_check_failure’ is reported.

The main work is done in the ‘ for’ loop (lines 6-9)
where subcircuits N1

i and N2
i (i=1,..,k) are checked for

toggle equivalence in topological order. First, in line 7
the function Dinp(N1

i, N2
i) relating inputs of N1

i and N2
i

is formed exactly as it is done by LS_TE (Figure 1, line
3). In line 8, EC_TE checks if N1

i and N2
i (whose

inputs are related by the function Dinp(N1
i, N2

i)
computed in line 7) are toggle equivalent. If not, then
EC_TE returns ‘CS_check_failure’ . (As we showed in
subsection 2.3, checking of toggle equivalence reduces
to two SAT-checks.) In line 9, the function Dout(N1

i,
N2

i) relating outputs of N1
i and N2

i is computed. This is
done by existentially quantifying away from Sat(N1

i) ∧
Sat(N2

i) ∧ Dinp(N1
i, N2

i) all the variables except the
output variables of N1

i and N2
i.

After finishing the ‘ for’ loop, in lines 10-11,
EC_TE checks if the function Dout(N1

k, N2
k) (note that

the outputs of N1
k and N2

k are outputs of N1 and N2
respectively) is an equivalence function. If it is, then N1
and N2 are equivalent. Otherwise, N1 and N2 are
complements of each other (because N1

k and N2
k are

toggle equivalent but not functionally equivalent) and
so they are inequivalent.

The complexity of both EC_TE and LS_TE is
linear in the number of subcircuits in N1 and N2 and

exponential in granularities of Spec(N1) and Spec(N2).
(Recall that granularity of Spec(N1) is the number of
gates in the largest subcircuit N1

i, i=1,..,k.)

4. NEW EC AND LOGIC SYNTHESIS

PROCEDURES

In this section, we describe an extension of the
EC_TE and LS_TE procedures called EC_TI and
LS_TI respectively (where TI stands for toggle
implication). First, we give a generic method for
introducing a logic transformation through an
“enabling” procedure and explain how this method
works for EC_TE and LS_TE. Then we introduce
EC_TI and LS_TI.

4.1 A generic method for introducing logic
transformation

The idea of the method is to introduce a logic
transformation through an Enabling internal EC
procedure (we will refer to it a EEC). The input to an
EEC is an original circuit N1, a modified circuit N2 and
some information about the transformation T used to
obtain N2 from N1. EEC has to be sound. That is, if
EEC says that N1 and N2 are equivalent (or
inequivalent) it has to give the right answer. Besides,
EEC should be able to recognize if N2 can not be
obtained from N1 by the transformation T. After
designing an EEC, one formulates a logic synthesis
procedure that given a circuit N1 generates a circuit N2
whose equivalence to N1 can be verified by this EEC.
We will say that this synthesis procedure is enabled by
this EEC.

Let us illustrate how this method works for
introducing LS_TE. The EC_TE procedure satisfies
the requirements above for an EEC. Indeed, the input
to EC_TE consists of circuits N1 and N2 and partitions
Spec(N1), Spec(N2) as information about the synthesis
transformation to be enabled. The soundness of
EC_TE trivially follows from the fact that EC_TE
returns the ‘equivalent’ (or ‘ inequivalent’) answer only
if it correctly derived the equivalence (respectively
inequivalence) function relating the outputs of N1 and
N2. It is not hard to see that LS_TE is exactly the
procedure enabled by EC_TE. Indeed, EC_TE checks
in topological order if subcircuits N1

i and N2
i of

Spec(N1) and Spec(N2) are toggle equivalent. In turn,
LS_TE builds N2 by generating toggle equivalent

counterparts of subcircuits N1
i in topological order.

4.2 Introduction of LS_TI

Let EC_TI be an EC procedure that is different
from EC_TE only in one aspect. Instead of checking if
N1

i and N2
i (line 8 of Figure 3) are toggle equivalent it

checks if toggling of N1
i implies that of N2

i . That is
instead of checking if both N1

i ≤ N2
i and N2

i ≤ N1
i hold

it just checks if N1
i ≤ N2

i. The EC_TI procedure is
sound for the same reason as EC_TE. (That is it
correctly derives an (in)equivalence function relating
the outputs of N1 and N2. The correctness of derivation
follows from the “soundness” of existential
quantification that is used to obtain functions
Dout(N1

i, N2
i) i=1,..,k)

In the context of the EC_TI procedure, we will say
that circuits N1 and N2 have identical specifications
Spec(N1)= { N1

1,.., N1
k} and Spec(N2)={ N2

1,..,N2
k} if

specification graphs G1 and G2 are acyclic, isomorphic
and N1

i ≤ N2
i , i=1,..,k-1 and for the last value of i (i.e.

i=k), subcircuits N1
k and N2

k are toggle equivalent. The
EC_TI procedure either correctly identifies circuits N1
and N2 as (in)equivalent or reports that Spec(N1) and
Spec(N2) are not identical.

Now we define a procedure enabled by EC_TE.
Let N1 be a circuit and Spec(N1)={ N1

1,…,N1
k} be its

specification. Let LS_TI be a logic synthesis procedure
that is different from LS_TE only in two aspects. First,
for i=1,..,k-1 LS_TI generates subcircuit N2

i such that
toggling of N1

i implies that of N2
i i.e. N1

i ≤ N2
i (So,

LS_TI is different from LS_TE in line 4 of Figure 1).
Only for i=k, LS_TI generates subcircuit N2

i that is
toggle equivalent to N1

i.
Second, when generating a subcircuit N2

i, LS_TI
limits the number of outputs of N2

i. The reason is as
follows. Let Dinp(N1

i, N2
i) be the constraint function

relating inputs of N1
i and the subcircuit N2

i to be built.
If the number of outputs in N2

i is not limited, then the
simplest subcircuit N2

i such that N1
i ≤ N2

i is the
identity circuit Ip where p is the number of inputs in
N2

i. (Ip is a circuit with inputs x1,..,xp and p outputs
y1,..yp, implementing the functions yi=xi, i=1,.., p. So Ip
does not have any gates.) Hence, without limiting the
number of outputs in N2

i, LS_TI would just generate
identity circuits as N2

i, i=1,..,k-1 pumping all the
functionality into functions Dinp(N1

i,N2
i). Only when

generating the subcircuit N2
k (which is toggle

equivalent to N1
k and has one output) a non-empty

subcircuit would be generated. It can be shown that in

this case Dinp(N1
k, N2

k), would essentially describe the
relation between inputs of N1

k and the primary inputs
of N1. This means that if one does not limit the number
of outputs in N2

i, the LS_TI procedure would delay all
the synthesis work until i=k and so it would not be
scalable. The simplest way to limit the number of
outputs in N2

i is to require that num_of_outputs(N2
i) ≤

num_of_outputs(N1
i). Under such a restriction, LS_TI

has the same complexity as LS_TE i.e. it is linear in the
number of subcircuits in Spec(N1) and exponential in
the granularity of Spec(N1).)

LS_TI is a synthesis procedure enabled by EC_TI.
That is, if for a given N1 and specification Spec(N1),
LS_TI builds a circuit N2 with specification Spec(N2),
EC_TI will prove N1 and N2 to be equivalent.

5. BIG PROMISE OF LOGIC SYNTHESIS

PRESERVING COMMON SPECIFICATION
In this section we give some experimental data

showing the power of the LS_TE procedure and
discuss the potential of LS_TI that should be much
more powerful than LS_TE.

5.1 Power of LS_TE

The key procedure of LS_TE is called in the loop
(line 4 of Figure 1) k times to generate a subcircuit N2

i
that is toggle equivalent to N1

i,i=1,..,k. We will refer to
it as the TEP procedure (TEP stands for Toggle
Equivalence Preserving). Such a procedure has been
developed in [17].

Let M′ and M″ denote subcircuits N1
i and N2

i
respectively. Given M′ and a constraint (correlation
function) imposed on inputs M′ and M″, the TEP
procedure of [17] builds M″ as follows. It constructs a
sequence of circuits M1, M2,.., such that M ≤ Mi+1 < Mi.
(Here M1 is an identity circuit Ip and p is the number of
inputs in M″). That is Mi+1 toggles at least “as much”
as M, but “strictly less” than Mi. Since every circuit
Mi+1 of this sequence loses at least one toggle of Mi,
this sequence converges to a circuit Ms such that Ms ≤
M and M ≤ Ms. This means that Ms is toggle equivalent
to M′ and so Ms is the final circuit M″ . (A more
detailed description of the TEP procedure is beyond
the scope of this paper.)

In this paper we give some experimental data on
our implementation of the TEP procedure for
optimization of multi-output circuits just to show that

LS_TE has a great practical potential. So the fact that
external EC of circuits produced by LS_TE is
problematic is significant.

Table 1. Generation of toggle equivalent
circuits

Circuit #in-
puts

Initial
#outputs

TEP
#outputs

SIS
#gates

TEP
#gates

squar5 5 8 8 60 4
rd84 8 4 8 174 52
5xp1 7 10 7 140 0
b1 3 4 3 11 2
bw 5 28 8 155 9
cm138
a

6 8 4 28 15
cm42a 4 10 6 31 6
cm82a 5 3 5 21 18
exp5p 8 63 19 286 131
f51m 8 8 8 101 0
con1 7 4 8 82 94

sqrt 8 4 9 76 90

In Table 1 we compare the results of optimization

of some MCNC benchmarks by SIS [15] and by the
TEP procedure. The name of the circuit and the
number of inputs and outputs are shown in the first
three columns of Table 1. The results of optimization
by SIS with the script ‘ rugged’ followed by technology
decomposition (to obtain a circuit of two-input AND
gates and invertors) is shown in the fifth column. The
results of using TEP to build a toggle equivalent circuit
are shown in the fourth (the number of outputs) and
sixth (the number of gates) columns.

For the majority of circuits TEP was able to find
much smaller toggle equivalent counterparts. In two
cases (5xp1 and f51m) , TEP removed all the logic.
This means that, for example, for different input
assignments, circuit 5xp1 generates different output
assignments. So the identity circuit I7 is toggle
equivalent to 5xp1.

Of course, such re-encoding of output assignments
of the original circuit requires changing the
surrounding logic. To explain why re-encoding may
still lead to significant logic reduction let us consider
the following example. Suppose that a circuit N1 to be
optimized consists of two subcircuits, N1

1 and N1
2

where the outputs of N1
1 are connected to inputs of

N1
2. Suppose circuits N1

1 and N1
2 were built

“ independently” . That is when designing circuit N1
1,

the output encoding for N1
1 was chosen without any

consideration of circuit N1
2. Then, in a sense, any

circuit toggle equivalent to N1
1 is as good as N1

1. So, it
is a reasonable heuristic to build a circuit N2

1 that is

the smallest toggle equivalent counterpart of N1
1 and

then try to find the smallest subcircuit N2
2 that is toggle

equivalent to N1
2 under constraints specified by the

function Dout(N1
1, N1

2).
 Table 2 shows results of applying LS_TE with

the heuristic above to logic optimization of some
arithmetic expressions with an integer variable x, x ≥ 0.
(The second column of Table 2 gives the number of
bits in x.) Each circuit N1 of Table 2 consists of
subcircuits N1

1 and N1
2. First three circuits N1

implement Boolean function x2 < C1. Here N1
1

implements the function x2 and subcircuit N1
2

implements comparison with a constant C1. The last
three circuits N1 implement Boolean function C1∗x <
C2. Here, subcircuit N1

1 implements the function C1∗x,
and N1

2 implements comparison with a constant C2.
Circuits N1

1 and N1
2 were built from standard

combinational blocks. (So, for example, in our
experiments, N1

1 was a derivative of a regular
multiplier.)

Table 2. Optimization by LS_TE
Circuit #bits C1 C2 SIS

#gates
LS_TE
#gates

x2 < C1 6 200 - 196(12) 5
x2 < C1 7 200 - 265 (16) 6
x2 < C1 7 500 - 273(15) 6
C1∗x < C2 7 49 300 84(15) 6
C1∗x < C2 7 111 300 160(12) 6
C1∗x < C2 7 49 500 56(14) 6

 It is not hard to see that x2 < C1 is equivalent to

x < C′1 where C′1 is the constant equal to
ceiling(square_root(C1)). Similarly, C1∗x < C2 is
equivalent to x < C′2 where C′2=ceiling(C2/C1). So
there is a very simple circuit implementation of either
Boolean function.

 The results of optimization by SIS are shown in
the fifth column. The first number of this column gives
the number of gates in the circuit obtained after
applying script ‘ rugged’ and technology
decomposition. The number in parenthesis gives the
number of gates in the resulting circuit after applying
script ‘ rugged’ many times until the solution stabilizes
and then running technology decomposition.

The results of applying LS_TE (that used the TEP
procedure of [17]) are shown in the last column. Note
that N1

1 (for both x2 and C1∗x cases) generates different
output assignments for different input assignments.
This means that the identity circuit Im (where m is the
number of bits in x) is toggle equivalent to N1

1. So
LS_TE picked Im as N2

1. Then it computed the function

Dout(N1
1, N2

1) relating outputs of N1
1 and N2

1 and built
subcircuit N2

2 toggle equivalent to N1
2 under

constraints specified by Dout(N1
1, N2

1). The size of
circuits obtained by LS_TE is smaller than those of SIS
even after multiple applications of the script ‘ rugged’ .
(Since a circuit built by LS_TE is functionally
equivalent to the original one, it is a fair comparison.)

Note, that indeed LS_TE applied the heuristic
mentioned above. Since N1

1 implementing, say, x2 was
built without any consideration of N1

2 any circuit toggle
equivalent to N1

1 is as “good” as N1
1. So LS_TE picked

the simplest such a circuit that is Im.

5.2 Potential of LS_TI

LS_TI is more powerful than LS_TE because
toggle implication is a more general relation than
toggle equivalence. So LS_TI is much more flexible
than LS_TE (while its complexity is the same as that
of LS_TE).

Let N1
i be a subcircuit of circuit N1 with

specification Spec(N1)={ N1
1,., N1

k} . If N2
i is a

subcircuit synthesized by LS_TE that is toggle
equivalent to N1

i (under constraints specified by
function Dinp(N1

i, N2
i)), every toggle of N2

i has a
“matching” toggle of N1

i. On the other hand, if N2
i is

built by LS_TI, it may have toggles that are not
matched by N1

i (because LS_TI has to preserve only
N1

i ≤ N2
i). Since LS_TI builds a circuit N2 that is

functionally equivalent to N1, these unmatched toggles
of N2

i do not reach the output of N2. The blocking of
the unmatched toggles is done “automatically” .

Let us consider advantage of LS_TI over LS_TE
by a simple example. Suppose that one needs to
implement Boolean function f(x) < 9 where x is an m-
bit integer. Let f(x) be equal to x2 at all the 2m points
except for the point x=4 where f(4) is equal to 25
(instead of 16). It is not hard to see that the expression
f(x) < 9 is equivalent to x < 3. Suppose that f(x) < 9 is
implemented by a circuit N1 that is a composition of
subcircuits N1

1 and N1
2 where N1

1 implements f(x) and
N1

2 implements comparison with 9.
Suppose that the LS_TE procedure is applied to

optimize N1. LS_TE can not use Im as N2
1, because

f(4)=f(5)= 25 and so Im is not toggle equivalent to N1
1.

So LS_TE would build N2
1 implementing some “non-

trivial” function of x. Hence, N2
2 would have to

implement a more complex function than x < 3.
Now suppose that N1 is optimized by LS_TI. Note

that toggling of N1
1 implies toggling of the identity

circuit Im. So LS_TI can use Im as subcircuit N2
1. Then

LS_TI can build subcircuit N2
2 implementing x < 3. So

due to greater flexibility LS_TI is able to generate a
smaller circuit than LS_TE.

To become practical, LS_TI needs a procedure
that, given a subcircuit N1

i and a constraint function
Dinp, builds an optimized subcircuit N2

i such that a) N1
i

≤ N2
i under constraint Dinp; b) the number of outputs in

N2
i is limited by a constant. (We will refer to this

procedure as Toggle Implication Preserving or TIP.)
Interestingly, the TEP procedure of [17] briefly
sketched in the previous subsection can be also used as
a TIP procedure. Given a circuit M′, the TEP
procedure above builds a sequence of circuits M1,M2, ..
such that M1 is an identity circuit Ip and M ≤ Mi+1 < Mi.
The TEP procedure stops when Ms is toggle equivalent
to M. Suppose the TEP procedure stops as soon as the
number of outputs in the current circuit Mi is below a
threshold. Then M ≤ Mi and the number of outputs in
Mi is bounded by a specified threshold. So the TEP
procedure of [17] with the new termination condition is
a TIP procedure.

Let N1
i be a subcircuit N1 to be re-synthesized by

LS_TI. Let N1
i have k outputs and we want to build a

subcircuit N2
i of k outputs. The number of k-output

Boolean functions f2
i such that f1

i ≤ f2
i ,where f1

i is the
function implemented by N1

i, is no less than (2k!).
Indeed, even if some output assignments of N1

i are
unsatisfiable, there is always subcircuit N2

i (if its
number of inputs of N2

i is greater or equal to k) such
that all 2k output assignments of N2

i are satisfiable and
N1

i ≤ N2
i. Let this be the case and f2

i be the function
implemented by N2

i. Any permutation of 2k output
assignments in the truth table of f2

i gives a new
function f′′′′2i such that f1

i ≤ f′′′′2i.
The value of (2k!) is huge even for small k (e.g. if

k=5, then (25)! is equal to 2.6∗1035). So even if
Spec(N1) has a very small granularity, LS_TI still
enjoys great flexibility. On the other hand, since the
complexity of LS_TI is linear in the number of
subcircuits in Spec(N1), LS_TI is scalable (if one keeps
the granularity of Spec(N1) small.)

6. COMPLEXITY OF EXTERNAL EC OF

CIRCUITS WITH COMMON SPECIFICATION

Let N1 be a circuit with specification
Spec(N1)={ N1

1,..,N1
k} . Let N2 be a circuit with

specification Spec(N2)={ N2
1,..,N2

k} . produced from N1
by either by EC_TE or EC_TI. In this section, we

discuss the complexity of external EC of N1 and N2.

6.1 EC of circuits produced by LS_TE

In [8], a top commercial tool was used for
“external” EC of circuits with a common specification
(Table 2 of [8]). These results showed that even for
circuits with a common specification of small
granularity, their EC was too hard for that tool (even
with a 10 hour time limit). On the other hand, all
examples were solved by EC_TE within 1-2 minutes.

One can always pick circuits N1 and N2 with a
common specification that will “break” current EC
algorithms. The reason is that an external checker
inevitably makes implicit assumptions that can be
easily broken. For example, algorithms based on
computing cut-points make an assumption that N1 and
N2 have functionally equivalent internal points.
However, if N2 is produced from N1 by LS_TE, N1 and
N2, in general, have no functionally equivalent points.
Algorithms based on BDD computation make an
implicit assumption that N1 and N2 have a small width
while LS_TE can be used for optimization of circuits
of arbitrary width. EC based on recursive learning [11]
assumes that implications relating points of N1 and N2
can be obtained inductively by a computation of small
“ recursion depth” . This assumption can be easily
broken as well. The method of [12] also makes a
breakable assumption that N1 and N2 do not have a
large number of reconvergent fan-outs.

In terms of proof sizes (computed with respect to a
concrete proof system like resolution), the problem
with existing (and most likely any) external
equivalence checkers is as follows. It may well be the
case that any proofs of equivalence different from the
ones generated by LC_TE are much “ longer” . On the
other hand, to find a proof generated by LC_TE one
needs to build partitions Spec(N1) and Spec(N2), which
is very hard. The reason is that finding a pair of
subcircuits N1

i, N2
i that are toggle equivalent requires

testing ≈|N1|
p1∗|N2|

p2 pairs of subcircuits where pi, i=1,2
is the granularity of Spec(Ni).

6.2 EC of circuits produced by LS_TI

Although external verification of circuits built by
LS_TE looks infeasible, verification of circuits
produced by LS_TI is “even harder” . The reason is as
follows. Suppose that N2 with specification Spec(N2)

is produced from N1 with specification Spec(N1) by
LS_TE. Suppose an external equivalence checker
somehow managed to find subcircuits N1

i and N2
i that

are toggle equivalent. Then, it has to decide whether
this toggle equivalence is “accidental” or N1

i and N2
i

are subcircuits of Spec(N1) and Spec(N2). If N1
i and N2

i
are toggle equivalent “accidentally” , then one cannot
use outputs of N1

i and N2
i as “cut-points” to find

subcircuits that are toggle equivalent in terms of
previous cut-points (because the wrong choice of cut-
points leads to false negatives). However, it is
conceivable that toggle equivalence of subcircuits of N1
and N2 is a “rare” occasion and so N1

i and N2
i are

subcircuits of Spec(N1), Spec(N2) with some
reasonable probability.

The situation with LS_TI is vastly different. If N2
with specification Spec(N2) is obtained from N1 with
specification Spec(N1) by LS_TI, any method of
finding Spec(N1) and Spec(N2) faces huge false
negative problem. Indeed, if N1

i ≤ N2
i holds for some

subcircuits of N1 and N2, then N1
i ≤ N′2i also holds if

N′2i is a subcircuit of N′2i such that the outputs of N′2i
form a cut of N2

i. (A cut of N2
i cannot toggle “ less”

than the set of outputs of N2
i.) Besides, N1

i ≤ N″2
i also

holds if N2
i is a subcircuit of N″2

i and the set of outputs
of N″2

i contains all the outputs of N2
i (adding more

outputs to N2
i only increases toggling.) So, the number

of pairs of subcircuits N1
i , N2

i for which N1
i ≤ N2

i
holds is, in general, astronomical. So picking the
“right” pair of subcircuits N1

i, N2
i is extremely unlikely

and hence finding Spec(N1) and Spec(N2) looks even
“more impossible” than in the case of LS_TE.

7. CONCLUSION

In this paper, we discuss how “external”
equivalence checkers can be affected by the
appearance of new powerful logic synthesis
procedures. Our results imply that the increasing power
of synthesis procedures may make external
equivalence checking problematic if not impossible.

8. REFERENCES

[1] C.L.Berman. Circuit width, register allocation, and

ordered binary decision diagrams. IEEE Trans. on
CAD. Vol 10:8, 1991, pp. 1059-1066.

[2] C.L.Berman, L.H.Trevillyan. Functional comparison of
logic designs for VLSI circuits. ICCAD-89, pp.456-459.

[3] D.Brand. Verification of large synthesized designs.
ICCAD-93,pp.534-537.

[4] R.Bryant. Graph-Based Algorithms for Boolean
Function Manipulation. IEEE Trans. on Computers,
Vol. C - 35, No. 8, August, 1986, pp. 677 - 691.

[5] J.R.Burch,V.Singhal. Tight integration of
combinational verification methods. ICCAD-98,
pp.570-576.

[6] R. Drechsler and S. Horeth. Gatecomp: Equivalence
Checking of Digital Circuits in an Industrial
Environment, International Workshop on Boolean
Problems, pp. 195-200, 2002.

[7] Electronic Design Automation For Integrated Circuits
Handbook, by L.Lavagno, G.Martin, and L.Scheffer,
Volume 2, Chapter 4, Equivalence Checking, by F.
Somenzi and A. Kuehlmann.

[8] E.Goldberg. On Equivalence Checking and Logic
Synthesis of Circuits with a Common Specification.
Proceedings of GLSVLSI, Chicago, April 17-19, 2005,
pp.102-107, (http://eigold.tripod.com/papers/glsvlsi-
2005.pdf).

[9] A. Gupta, P.Ashar. Integrating a Boolean Satisfiability
Checker and BDDs for Combinational Equivalence
Checking. VLSI Design 1998. pp. 222-225.

[10] A.Kuehlmann, F.Krohm. Equivalence checking using
cuts and heaps, DAC-98, pp.263-268.

[11] W.Kunz, D.Pradhan. Recursive Learning: A New
Implication Technique for Efficient Solutions to CAD-
problems: Test, Verification and Optimization. IEEE
trans. on CAD, Vol. 13, No. 9, pp. 1143-1158, 1994.

[12] H.Kwak, I.Moon, J.Kukula, T.Shiple. Combinational
equivalence checking through function transformation,
ICCAD-2002, pp. 526-533.

[13] I.-H.Moon, C. Pixley. Non-miter-based Combinational
Equivalence Checking by Comparing BDDs with
Different Variable Orders. FMCAD 2004, 144-158

[14] J. Moondanos, C.-J. H. Seger, Z.Hanna, D. Kaiss.
CLEVER: Divide and Conquer Combinational Logic
Equivalence VERification with False Negative
Elimination. CAV-2001,pp. 131-143.

[15] E.M. Sentovich et. al. SIS: A system for sequential
circuit synthesis. Technical report, University of
California at Berkeley, 1992. Memorandum No.
UCB/ERL M92/41.

[16] S.Sinha , S.Khatri, R.Brayton, A. Sangiovanni-
Vincentelli. Binary and multi-valued SPFD-based wire
removal in PLA networks, ICCD-2000, pp. 494-503.

[17] E.Goldberg,K.Gulati,S.Khatri Toggle Equivalence
Preserving (TEP) logic synthesis. IWLS-2007, San
Diego 2007 (http://eigold.tripod.com/papers/iwls-2007-
tep.pdf)

