
 Toggle Equivalence Preserving (TEP) Logic Optimization 
Eugene Goldberg (Cadence Berkeley Labs), Kanupriya Gulati  and Sunil  Khatri (Texas A&M University)

  
ABSTRACT  
We describe a procedure (called the TEP procedure) that, 
given a multi-output  circuit M, builds another multi-output 
circuit M* that is toggle equivalent to M. The TEP 
procedure can be used in the following two scenarios. 
First, since for single-output circuits toggle equivalence 
means functional equivalence, the TEP procedure can be 
used in “ regular”  logic synthesis. Second, the TEP 
procedure enables a powerful synthesis method called  
LS_TE (Logic Synthesis preserving Toggle Equivalence).  
Given a circuit N and its partitioning into subcircuits Ni , 
LS_TE builds an optimized circuit N* by replacing 
subcircuits Ni with their toggle equivalent counterparts N*

i . 
The replacement of Ni with N*

i is done by the TEP 
procedure. We give results of  optimizing single-output 
circuits by the TEP procedure  and some preliminary 
results of using the TEP procedure in LS_TE.  These results  
show the promise of the TEP procedure and LS_TE. 
 

1. INTRODUCTION 
In [4], a  new method of logic synthesis was introduced. We 
refer to this method as LS_TE, which stands for Logic 
Synthesis preserving Toggle Equivalence.  As shown in 
Figure 1, assume that a partitioning of N into subcircuits Ni, 
i=1, 2,…, k is specified.  The main idea of LS_TE  is to 
optimize N by replacing  each subcircuit Ni with a toggle 
equivalent  counterpart N*

i, i=1,2,..,k.   
 
Let us consider how LS_TE works by the example of 
Figure 1 where circuit N is partitioned into four subcircuits 
N1,..,N4. First, subcircuits N1 and N2 are replaced with their 
toggle equivalent counterparts N*

1 and N*
2. Then the 

relations CF(N1, N
*
1)  and CF(N2, N

*
2) betweens outputs of 

N1 and N*
1 and N2 and N*

2 are computed. (These relations 
are called correlation functions (CF)). Then a single-output 
subcircuit N*

3 that is toggle equivalent to the single-output 
subcircuit N3 under the constraints specified by CF(N1, N

*
1) 

and CF(N2, N
*
2) is built.  Since toggle equivalence for 

single output circuits means functional equivalence (modulo 
complement), outputs y1 and y*

1 are functionally equivalent 
(modulo complement).  Finally single-output subcircuit N4 
is replaced with a single-output toggle equivalent subcircuit 
N*

4, which makes outputs y2 and y*
2 functionally equivalent 

(modulo complement). So the optimized circuit N* 
consisting of subcircuits N*

1,..,N
*
4 is functionally equivalent 

to N modulo complement of its outputs. 
 
The advantage of LS_TE is twofold (at least). First, LS_TE 
is scalable. The complexity of LS_TE is linear in the 

number of subcircuits Ni and exponential in the size of the 
largest subcircuit Ni or N*

i,i=1,..,k. Since the number of 
subcircuits toggle equivalent to Ni is huge even if Ni is very 
small,  LS_TE can  explore a very large search space and 
still have linear complexity. Second,  LS_TE can escape 
local minima that would trap a solution obtained by a 
traditional logic synthesis procedure (Section 3). 
 

N

N*i is obtained
from N i by TEP

N1 N2

N3 N4

N*

N*1 N*2

N*3 N*4

y1 y2 y*2y*1

 
Figure 1. Optimization of circuit N  by LS_TE 

 
Unfortunately, [4] did not provide a specific procedure  
that, given a subcircuit Ni, would build a toggle equivalent 
subcircuit N*

i.  The main contribution of this paper is the 
introduction of such a procedure which we refer to as the 
Toggle Equivalence Preserving (TEP) logic optimization 
procedure. In the TEP procedure, we use a non-trivial 
convergence scheme that makes this procedure structure-
agnostic. That is if a circuit M′  toggle equivalent to an 
original circuit M is built by the TEP procedure,  the 
topology  of M′  is not limited to that of M. This important 
feature of TEP is discussed in Section 3.  
 
In the formulation of LS_TE given in [4], circuit N to be 
optimized is partitioned into subcircuits Ni, i=1,..,k 
However, LS_TE can be also applied if, for example, 
subcircuits Ni share internal gates. Suppose, for instance, 
that subcircuits N3 and N4 of Figure 1 share internal gates. 
Then when building subcircuit N*

4 toggle equivalent to N4, 
one can reuse the logic of N*

3 (assuming that N*
3 was 

synthesized before N*
4). Such logic sharing can be done by 

the TEP procedure (slightly modified). However, a 
discussion of this topic is beyond the scope of this paper. 
 
As we mentioned above, for single-output Boolean 
functions, toggle equivalence is the same as functional 
equivalence modulo negation. So, besides enabling LS_TE, 
the TEP procedure can be used in traditional logic 
synthesis.  In order to compare the TEP procedure with 
traditional logic synthesis, the focus in this paper is on 
optimization of single-output functions. Even though the 
vast optimization flexibility of the TEP procedure can not 
be invoked for single-output functions, it still has the 



advantage of being structure-agnostic. As a consequence, 
for many single-output  circuits the TEP procedure found 
better solutions than SIS [9].  Our initial results also show 
that for multiple output circuits (where the vast 
optimization flexibility can be exploited), the LS_TE 
procedure gave significant improvements over SIS 
 
The rest of this paper is organized as follows. Section  2 
discusses related previous work, including a comparison 
and contrasting of LS_TE and TEP with SPFDs 
[1][10][12]. In Section 3, we emphasize some important 
features of LS_TE and TEP procedures. Section 4 provides 
definitions.  Section 5 details our TEP procedure. In 
Section 6, we report results of our experiments. Section 7 
concludes the paper, with some directions for future work 
in this topic. 

2. PREVIOUS WORK 
Multi-level logic synthesis can be performed using 
algebraic means such as factorization [2], kernelling [2][11] 
etc. Although  these techniques are fast, being algebraic, 
they explore only a limited portion of the  optimization 
space. Other techniques like ODC [6][7] and CODC [8] 
perform don't care based optimization, but they do not 
modify the structure of the circuit. (Sometimes a node gets 
removed as a result of don't care based optimization. 
However, such an occurrence is rare.) Toggle equivalence 
is different from the algebraic techniques, since it explores 
the ''Boolean'' options in the search space, while it differs 
from multi-level don't care based techniques since it does 
not restrict itself to the original circuit topology.  
 
Sets of Pairs of Functions to be Distinguished (SPFDs) 
were introduced in [1][10][12] as a new way to do logic 
optimization. One should distinguish between SPFDs as a 
means to express circuit flexibility and concrete methods 
for computing SPFDs.  The main difference between 
LS_TE and the method for computing SPFDs of [10][12] is 
that LS_TE is scalable. The method for computing SPFDs 
of  [10][12] is unscalable because SPFDs are built   by 
computing non-local relations between points of the circuit.   
Besides, when computing SPFDs by the method of [10][12] 
one has to follow the circuit topology.  On the other hand, 
computations in LS_TE are local because they involve only 
subcircuits Ni and N*

i
  (and correlation functions relating 

their inputs).   Besides,   LS_TE preserves only the  high-
level structure of the circuit (because subcircuits Ni and N*

i 
are connected in the same way) but the topology of 
subcircuits Ni and N*

i can be vastly different. 
 
The “ language”  of SPFDs is  sufficient to express the 
notions of toggle implication and equivalence that we use in 
the paper. For example, to test that circuits M and M′ are 
toggle equivalent one can build SPFDs of M and M′  and 
check them for graph isomorphism. However, toggle 

equivalence of M and M′  can be computed much more 
efficiently  without building their SPFDs (by performing 
two SAT-checks). Moreover, the formulation of the TEP 
procedure in terms of SPFDs is hard at best. An SPFD is a  
relation between  input assignments  while the TEP 
procedure operates on output assignments and the same pair 
of output assignments (i.e. the same toggle) may be caused 
by an exponential number of pairs of input assignments. In 
a sense, the problem is that the definition of SPFDs was 
tailored to facilitate their computation from outputs to 
inputs, while in LS_TE and TEP procedure  computations 
go in the opposite direction. 

3. IMPORTANCE OF LS_TE AND TEP  
In this section, we emphasize two important features of 
LS_TE and the TEP procedure.  In Subsection 3.1, we 
show that LS_TE, in terms of equivalent transformations, 
can make moves that increase the size of  intermediate 
circuits. This allows LS_TE to escape local minima that 
would trap a solution built by a  traditional method of logic 
synthesis. In Subsection 3.2 we discuss the importance of 
the novel convergence scheme of the TEP procedure. 

3.1 Escaping local minima in LS_TE 
Given a circuit N, a typical synthesis transformation is to 
replace a multi-output subcircuit N′ of N with a functionally 
equivalent subcircuit N″ such that |N″ | < |N′ |. (Here |M| is 
the size of circuit M.) The size of N′  is kept small for 
complexity reasons. Suppose there is no transformation 
decreasing the size of N such that |N′ | < p. This means that 
circuit N is stuck in a local minimum. To escape this 
minimum, one needs to make equivalent transformations 
that affect subcircuits of N larger than p. But how does one 
make such transformations in  a scalable manner?   
 
LS_TE answers the question above. Let N be partitioned 
into subcircuits N1,..,Nk. By replacing subcircuits Ni,i=1,.,k 
with toggle equivalent counterparts N*

i  LS_TE makes a 
single equivalent transformation that may encompass the 
entire circuit N (then the subcircuit N′ we replace with an 
equivalent one is N itself). If the size of subcircuits Ni is 
small, this transformation can be done efficiently.  Note that 
LS_TE can optimize N even if |Ni| < p, i=1,.,k. The reason 
is that replacement of Ni with N*

i is not an equivalent 
transformation. So LS_TE can get N out of a local 
minimum even by making transformations of “small scope” . 
 
Suppose N implements the expression x2 < 100 as shown in 
Figure 2. Here subcircuit N1 implements y=square(x) and 
subcircuit N2 implements y < 100. (Let assume that the 
number n of bits in x is small enough to be handled 
efficiently.) LS_TE can optimize N as follows. First N1 is 
replaced with an optimized subcircuit N*

1 toggle equivalent 
to N1 (e.g. N*

1 may implement the function abs(x) which is 
the simplest function toggle equivalent to square(x)).  Then 



output relation CF(N1,N
*
1) is computed (as described in 

[4]). After that a subcircuit N*
2 toggle equivalent to N2 

under constraint CF(N1, N
*
1) is built. (If N*

1 implements 
y∗∗∗∗=abs(x), then N*

2 implements y∗∗∗∗< 100 modulo negation.) 
Note that N can not be optimized much by replacing N1 
with a functionally equivalent subcircuit N*

1 (for example, 
N1 can be an optimal implementation of square(x)).  At the 
same time, LS_TE can dramatically optimize N because it 
can  replace N1 with a toggle equivalent subcircuit. 

 

Figure 2. Optimization of expression x2 < 100 by LS_TE 

The replacement of N1 with N*
1 can be “simulated”  as an 

equivalent transformation as shown in Figure 2 (on the 
right). Here R*

1 is a re-encoding circuit such that 
N1 = R*

1(N
*
1). (The second step of LS_TE is “simulated”  as 

replacing N*
1 and R*

1 with N*
2.) Note that even though N*

1 
is much smaller than N1 it may be the case that |N1| < |N*

1|+ 
|R*

1|. In other words, the reason why LS_TE can escape 
local minima is that it may make transformations that 
temporarily increase the circuit size. (A discussion of this 
topic can be found in [5].) 

3.2 Novel convergence scheme of the TEP 
procedure 
As mentioned above, the importance of the TEP procedure 
is due to its enabling  LS_TE. However, the  TEP 
procedure is also important in its own right. Given a single-
output circuit N, the TEP procedure can build a functionally 
equivalent circuit N* with  a completely different topology. 
(So it can be used in “regular”  logic synthesis without any 
relation to LS_TE.)  This property is extremely important 
for at least three reasons. First, N may not have any 
topology to reuse (e.g. if N is specified as the truth table or 
is represented implicitly). Second, N may contain some 
non-local redundancy which makes unreasonable  to reuse 
its. Third, one may need to implement N using a particular 
library of gates (e.g. in technology mapping) and the current 
topology of N may be not good for these library.  

 
In the current synthesis methods, if the topology of N can 
not be reused for some reason, a new circuit N* is obtained 
from  a very limited space of implementations (N* may be 
further optimized using local transformations). For 
example, in SIS [9], if N is represented as the truth table, 
first, a circuit N* equivalent to N is synthesized as a sum-of-
products (which is a very limited class of circuits). Then by 

local transformations a multi-level circuit is obtained from 
N*.  Another approach would be to build a circuit N* of 
multiplexers (i.e. build a BDD  [3]) equivalent to N and 
then optimize it using some local transformations. BDDs is 
another example of a restricted class of circuits. 
 

The reason why current methods have to restrict the class of 
implementations considered when changing the topology of 
N is the “convergence problem”. Suppose we build a circuit 
N* that does not use the topology of N. Then  we have to 
make sure that the network of gates being built “converges”  
to a circuit equivalent to N.  The TEP procedure solves this 
problem by introducing a very simple and general 
convergence scheme. Namely, it builds a sequence of 
circuits N 1, N 2,… such that a) N i+1 toggles strictly less than 
N i and b) every circuit of this sequence toggles at least as 
much at the original circuit N. Here N 1 is an “empty circuit”  
consisting only of inputs of N. In other words,  the TEP 
procedure builds a sequence of circuits that monotonically 
lose toggles until a circuit N m toggle equivalent to N is 
built.  The TEP procedure also restricts the class of 
implementations it considers since it requires that only  
primary outputs of N i are allowed to feed the  gates of N i+1 
that are not in N i. However, this is a mild restriction  in 
comparison to ones used by existing methods.  So,  the TEP 
procedure can select an optimized implementation from a 
very general class of multi-level circuits. 

4. PRELIMINARIES AND TERMINOLOGY 
In this section, we recall the notion of toggle equivalence 
and its properties.  All the propositions given in this paper 
are either proven in [4], or can be easily derived from them. 
 

4.1 Toggle Equivalence of Boolean Functions 
Definition 1. Let f:{ 0,1} n  → { 0,1} m be an m-output 
Boolean function. Then, given y′′′′ = f(x′′′′ ) and y″″″″ = f(x″″″″), the 
pair (y′′′′, y″″″″ ) is a toggle if y′′′′ ≠ y″″″″. 
Definition 2. Let f1 and f2 respectively be two  m-output 
and k-output Boolean functions with the same set of 
variables.  Functions  f1 and f2  are called toggle equivalent 
if  f1(x′′′′) ≠ f1 (x″″″″)  ⇔   f2(x′′′′) ≠ f2(x″″″″). Circuits N1 and N2 
implementing toggle equivalent functions f1 and f2  are 
called toggle equivalent circuits.  

Proposition 1. Let f1:{ 0,1} n  → { 0,1} m and f2 { 0,1} n → 
{ 0,1} k be  m-output and k-output Boolean functions of the 
same set of variables. Let f1 be f2  toggle equivalent. Then 
there is an invertible  function H such that  f1(x)=H(f2(x)) 
and f2(x)=H-1(f1(x)). 

Proposition 2. Let f1 and f2 be toggle equivalent single 
output Boolean functions. Then f1=f2 or f1=~f2. 

Definition 3.  Let N be a circuit. Let Y be the set of all 
variables of N. Let Sat(N) be the CNF expression for N,  
such that Sat(N)=1 iff the assignment y to Y is consistent 



within the circuit N. For example, if  N consists of just one 
AND gate w = x1 ∧ x2, then SAT(N) = (~x1  ∨  ~x2  ∨ w)∧  
(x1 ∨ ~w) ∧  (x2 ∨ ~w). 
Proposition 3. Let N1 and N2 be two toggle equivalent 
circuits, with variables Y1 and Y2 respectively. Let the 
output variables of N1 and N2 be Z1 and Z2  respectively.  
Then the function  H*(Z1,Z2) specifying the one-to-one 
mapping H between the output vectors produced by N1 and 
N2 can be obtained from Sat(N1) ∧ Sat(N2) by existentially 
quantifying away the variables of (Y1 ∪ Y2)\ (Z1 ∪ Z2). 
(Then H*(z1, z2) =1 iff there is an input vector x such that 
N1(x)=z1 and N2(x)=z2.)  

4.2 Implication of Toggling 
In this subsection, we introduce the notion of implication of 
toggling and describe how toggle equivalence and 
implication of toggling can be tested. 
Definition 4. Let f1: { 0,1} n → { 0,1} m  and  f1: { 0,1} n → 
{ 0,1} k  respectively be two m-output and k-output Boolean 
functions with the same set of input variables. Toggling of 
f1 implies toggling of  f2 iff for any pair of input variable 
assignments x′ and x″,   f1(x′′′′) ≠ f1 (x″″″″) �   f2(x′′′′) ≠ f2(x″″″″). 

Definition 5. Let f1 and f2 be multi-output Boolean 
functions. Toggling of f1 strictly implies toggling of f2 if  
toggling of f1 implies toggling of f2 and there is a pair of  
assignments  x′ and x″ such that f1(x′′′′)=f1 (x″″″″)  while   
f2(x′′′′) ≠ f2(x″″″″). We will denote by f1 ≤≤≤≤  f2   (respectively f1  <  
f2)  the fact that toggling of function f1 implies toggling of  
(respectively strictly implies toggling of)  f2.  Let circuits N1 
and N2 implement functions f1 and f2 respectively. We will 
denote by N1 ≤ N2 (respectively  N1 < N2) the fact that f1 ≤≤≤≤  
f2   (respectively f1  <  f2). 

 
Proposition 4. Boolean functions f1 and f2 are toggle 
equivalent iff f1 ≤≤≤≤  f2  and  f2≤≤≤≤  f1. 

4.2.1 Testing for Implication of Toggling 
Let N1 and N2 be two Boolean circuits to be checked for 
implication of  toggling. Let X be the set of input variables 
of N1 and N2, while  Y1 and Y2 are respectively the sets of 
variables of N1 and N2. Let  Z1 and Z2 be the sets of output 
variables of N1 and  N2  respectively. Also, assume N*

1 and 
N*

2  are copies of N1  and N2, with output variables Y*
1 and 

Y*
2  respectively, and  input variables X* . Then  N1 ≤ N2 

holds iff the function  S(N1, N2) is unsatisfiable, where 
S(N1, N2) = SAT(N1) ∧ SAT(N2) ∧ SAT(N*

1) ∧  SAT(N*
2) ∧  

(Y1 ≠ Y*
1) ∧ (Y2 = Y*

2). 
 
Based on this, we can make the following three comments.  
1) To test if N1 ≤ N2, we simply test the satisfiability of 
S(N1, N2). If it is  unsatisfiable (i.e. a constant zero), we 
conclude that N1 ≤ N2. 2) If  S(N1, N2) is satisfiable, it 
means that there exists a pair of input vectors x  and x* for 
which circuit N1 toggles, while N2 does not. 3) Let S(N1, N2) 

be satisfiable. If we removed all  toggles  from N1 that “are 
not in”  N2, we would have N1 ≤ N2. In other words, given 
two circuits N1 and N2, we can define a function 
find_toggle_setdifference(N1, N2) = ALLSAT(S(N1, N2)) 
which returns toggles of N1 that are not matched by toggles 
of N2. This is the set of toggles that must be removed from 
N1. If the resulting set ALLSAT(N1, N2) is too large, its  
manageable subset  can be used. 
 
From Proposition 4, it follows that checking for toggle 
equivalence reduces to two satisfiability checks (henceforth 
called SAT checks).  

4.3 Correlation function 
In this section, we briefly introduce the notion of 
correlation function, to extend definitions of toggle 
implication and toggle equivalence to the case when 
functions f1  and f2  have different sets of input variables. 
 
Definition 6. Let X  and Y be two disjoint sets of Boolean 
variables (the number of variables in X and Y may be 
different).  A function CF(X, Y) is called a correlation 
function  if there are subsets  SX ⊆ { 0,1} ||X| and SY ⊆ 
{ 0,1} ||Y|   such  that CF(X, Y) specifies a bijective mapping  
M: SX → SY.  Namely, CF(x, y)=1  iff x ∈ SX, y ∈ SY and 
y = M(x).  

Definition 7. Let  Boolean functions f1 and f2 have different 
sets of  variables (X and Y  respectively) that are related by 
a correlation function CF(X, Y).  f1 and f2 are said to be 
toggle equivalent under input constraint CF(X1,Y), if for 
any pairs (x, y) and (x′′′′, y′′′′) of input vectors such that 
CF(x, y)= CF(x′′′′, y′′′′ )=1,  it is true that  f1(x) ≠ f1(x′′′′ ) ⇔ 
f2(y) ≠ f2(y′′′′).  (Definition of toggle implication can be 
reformulated in a similar manner).  

 
In LS_TE, the output relation between toggle equivalent 
subcircuits N 

i and N*
i is computed    by existentially 

quantifying from SAT(Ni) ∧ SAT(N*
i) ∧ 

Constr(inp_vars(Ni),inp_vars(N*
i)) all but output variables 

of N 
i and N*

i [4].  If Ni and N*
i are subcircuits of the first 

topological level (and so have identical sets of input 
variables), then Constr(inp_vars(Ni), inp_vars(N*

i)) just 
describes equivalence of corresponding variables.  Since 
toggle equivalence of Ni and N*

i means one-to-one mapping 
between output assignments, their output relation is a 
correlation function. In general, Constr(inp_vars(Ni), 
inp_vars(N*

i)) is the conjunction of correlation functions 
that are  output relations of  all the subcircuits Nj, N

*
j 

feeding Ni, N
*
i. For the sake of simplicity, in Section 5, 

when describing the TEP procedure, we assume that circuit 
N1 and its toggle equivalent counterpart N2 have identical 
sets of variables.  
 



5. TEP LOGIC OPTIMIZATION 
The TEP procedure produces the circuit N2 (given a 
combinational circuit N1) in a topological manner from 
inputs to outputs. These operations are illustrated in Figure 
3. The circuit N2 is built up as a sequence of circuits N2

1, 
N2

2, …, N2
m. Each circuit N2

i specifies a cut Ci of N2 
consisting of the primary outputs of N2

i. In this way, the 
sequence of cuts Ci that are produced, are topologically 
ordered. This means that for a pair of cuts Ci and Cp such 
that i < p no path from a primary input to a primary output 
of N2 can traverse Cp before Ci, although Ci and Cp may 
have common nodes.  Then,  if a node in Cp toggles for a 
given pair of input vectors, then there must be at least one 
node in Ci that toggles as well. So just from the fact that Ci 
and Cp are topologically ordered it follows that N2

p ≤ N2
i. 

 

… .

… .N 1

… .

… .N 2

N 2
1

N 2
2

N 2
3

N 2
m

…
.

N 2

C 1

C 2

C 3

 
Figure 3. Sequence of  circuits N2

i constructed by TEP 

 
 
The TEP procedure starts with N2

1 = ∅ i.e. with  an empty 
circuit which allows all possible toggles. As a result, N1 ≤ 
N2

1 (which is trivially true since the set of inputs forms a cut 
of N1). At each successive step, N2

i+1 is created from N2
i 

such that N2
i+1 < N2

i.  The invariant that the TEP procedure 
maintains at each step is  N1 ≤ N2

i+1 < N2
i. In other words, 

the TEP procedure selectively removes one or more toggles 
in each step, until it is true that N2

m ≤ N1. At this step, since 
N1 ≤ N2

m, N2
m is toggle equivalent to N1, and the procedure 

returns the circuit N2
m.  

 
TEP(N1) 
{ if (is_constant(N1)) return “constant”  ; 
 N2

current = ∅; 
 while(true)  
   { if (N2

current ≤ N1) return N2
current  ; 

     N2
current = discard_toggles(N2

current, N1); 
     N2

current = remove_redundant_outputs(N2
current); 

   } }  
Figure 4. Pseudocode of the TEP procedure 

It is not hard to see that the TEP procedure has the 
desirable property of convergence. Since N2

1 has all 
toggles, and N2

i+1 < N2
i, the sequence of circuits N2

1, N2
2,…, 

N2
m must converge to a circuit which is toggle equivalent to 

N1. 
 
The pseudocode of the TEP procedure is shown in Figure 4. 
To start with, we test if the input circuit N1 is a constant, in 

which case the TEP procedure reports this fact. The 
sequence of circuits N2

i mentioned earlier is built in the 
while loop.  This sequence starts with an empty circuit 
N2

current, which allows all possible toggles.  In the while 
loop, we first check if N2

current ≤ N1. If so, N2
current is toggle 

equivalent with N1 (since N1 ≤ N2
current by construction) and 

we return N2
current as the resulting circuit N2. If N2

current ≤ N1 
does not hold, then a new circuit N2

current is generated, such 
that it has at least one less toggle than the previous N2

current . 
This operation is performed by the function 
discard_toggles, which is described in the next subsection.  
Finally, redundant outputs of N2

current  are removed in the 
function remove_redundant_outputs.  An output of N2

current 
is redundant if, after its removal from N2

current, the condition 
N1 ≤  N2

current still holds.  
 
Note that for each test for implication of toggling (i.e each 
“≤”check), we utilize the SAT-based algorithm described in 
subsection 4.2.1. 

5.1 Discard toggles from N2
i 

Figure 5 describes the pseudocode of the discard_toggles 
procedure used by the TEP procedure ( Figure 4). 
 
discard_toggles(N2

current, N1) 
{  R* = find_toggle_setdifference(N2

current, N1); 
  (N2

temp, R) = remove_toggles(R*, N2
current); 

  D = find_toggle_setdifference(N1, N2
temp); 

  N2
new_current = add_toggles(R, D, N2

current, N2
temp); 

  return N2
new_current ;}  

Figure 5. Pseudocode of the discard_toggles procedure 

The procedure  discard_toggles consists of two parts. The 
procedures remove_toggles and  add_toggles are explained 
in detail in the following subsections. In both these 
procedures, toggle removal and addition is done with AND 
gates, with their inputs appropriately complemented. The 
routine find_toggle_setdifference(N2

current, N1) was sketched 
in subsection 4.2.1. The heuristics of remove_toggles and 
add_toggles are aimed at minimizing the size of N2. 

5.1.1 Procedure remove_toggles 
The function remove_toggles adds an AND gate G to 
N2

current, to remove at least one toggle in the set R*, which is 
computed  in line 1 of the discard_toggles procedure.  (R* 
specifies either the complete set of  additional toggles that 
are present in N2

current and are not required in N1 or a 
manageable subset of this set.) The resulting circuit is 
called N2

temp, and the set of toggles  of R* actually removed 
are referred to as R.  
 
Recall that each circuit N2

i specifies a cut Ci of N2 
(consisting of the primary outputs of N2

i.) Suppose the 
circuit N2

current specifies the cut Ccurrent. Then the AND gate 
G above may have as its inputs, any of the nodes on Ccurrent. 
After the addition of the AND gate G, the new cut Cnew is 
formed from Ccurrent by a) adding to Ccurrent the node 



corresponding to the output of G; b) eliminating from 
Ccurrent the nodes that are toggling inputs of G. 
 
Suppose the cut Ccurrent consists of the set of nodes Y. 
Suppose that r = (y, y')  is a toggle from the set R*. Let Y1 
and Y2 form a partition of Y, such that Y1 (Y2) corresponds 
to the components of y and y'  which are different (same). In 
other words, Y1 (Y2) corresponds to the nodes of Y that have 
different (same) values for the toggle r = (y, y').  
 
To remove the toggle r, we add an AND gate G. We 
consider two cases. 
Case i): If  Y1= 1, then gate G has two inputs. One of these 
inputs is specified by the variable of Y1, and another input is 
chosen from Y2. All possible polarities of the second input 
are considered as well. The   configuration for which  
G(y) = G(y')=0 and that removes the largest number of 
toggles of R* is selected.  
Case ii): if  Y1 > 1, then gate G has |Y1| inputs. These inputs   
are connected  to the variables in Y1, with appropriate   
polarity selection to guarantee that G(y) = G(y') = 0.  
In both cases, the construction of gate G guarantees that 
G(y)=G(y')=0. After adding the gate G, we form the cut 
Cnew by removing from Ccurrent all the nodes in Y1 and adding 
the output of G. Then, the toggle r =(y, y') is removed from 
the nodes of Cnew. The circuit resulting from this operation 
is called N2

temp.   
 

5.1.2 Procedure add_toggles 
Unfortunately, adding the gate G in the previous subsection 
may sometimes remove certain toggles that are required in 
N1. As a consequence, we have to perform a ''clean-up'' 
step, and add these toggles back into the design.  
 
We begin with computing D, the set of toggles that need to 
be added. D is computed by find_toggle_setdifference(N1, 
N2

temp). The objective is to add minimum number of AND 
gates  that re-introduce all toggles from D, and at the same 
time minimize the number of toggles that get re-introduced 
from R. It is not hard to prove that one can always re-
introduce a toggle from the set D, by using a 2-input AND 
gate H,  with appropriately selected inputs and input 
polarities, without re-introducing a toggle from the set R.  
The proof is omitted due to space constraints.   
 
Once again, we have two cases to consider, analogous to 
those in the previous subsection: 
Case i): When the gate  G added by remove_toggles was a 
2-input gate, with |Y1| = 1,  then one of the inputs of H is the 
same as the node in Y1. The other  input of H is selected 
from among nodes in Y2. All possible nodes and  polarities 
are explored to maximize the weighted cost function 
n1+p∗n2. Here, n1 is the number of toggles of  R   prevented 
from being re-introduced, n2 is the number of toggles of D 

re-introduced and   p is the weight parameter (that was set 
to 1 in our experiments). We add only those gates for which 
n1 is 1 or more. 
Case ii): If  |Y1| > 1 , then select the first input of H from Y1, 
and  the second from Y, except the input already chosen as 
the first leg.   The cost function to select inputs and their 
polarities is identical to the one explained in Case i above. 
 
After each AND gate added to the circuit, the set D is 
recomputed. The routine add_toggles continues to add 
AND gates until the set D reduces to ∅. At this point  the 
resulting circuit N2

new_current is returned. It satisfies the 
property that N1 ≤ N2

new_current < N2
current. Note that for a 

single gate added in remove_toggles,  zero, one  or more 
AND gates could be added in the following call of  
add_toggles. 
 

6. EXPERIMENTAL RESULTS 
Our preliminary implementation of the TEP procedure 

is in SIS [9]. We performed various experiments to 
compare TEP with traditional logic synthesis commands. 
The experiments were performed on a 3 GHz Xeon CPU, 
with 2GB of memory.  

Table 1.  Results for optimizing arithmetic expressions 

script.rugged collapse, 
script.rugged 

TEP BDD Exper. #bits 
time #gates 

time (s) #gates time(s) #gates time(s) 
x2 < C 10  3  590  0.5  28  5  20  0.01   
x2 < C 14  34  1,361  95  44  17  21  0.25   
x2 < C 16  94  1,808  2,151  52  54  46  0.9   
x2 < C 27  35  7,037  >10h  -  282  50  Mem   
x2 < C 30  56  8,681  >10h  -  525  57  Mem   

C1∗x < C2 16  24  1,054  121  15  14  19  0.07   
C1∗x < C2 18  39  1,201  1,659  17  25  28  0.11   
C1∗x < C2 38  37  6,709  >10h  -  497  58  Mem   

C1∗x < C2 50  136  10,483  >10h  -  2,183 66  Mem   

 

Table 1 provides the results of applying TEP procedure and 
SIS for optimizing circuits implementing  the  expressions 
x2  < C  and C1∗x < C2 for different word sizes. (In contrast 
to the example of  Subsection 3.1, the expressions above 
were optimized as one circuit i.e. by one call of the TEP 
procedure.)  In all experiments, the value of C was chosen 
to be 200 (the results do not change much if one varies C). 
C1 and C2 were set to decimal value 11111. The two 
expressions above can be reduced to much simpler 
expressions x < C′ and x < C″ respectively where C′ is equal 
to sqrt(C) and C″ is equal to C2/C1. The objective of this 
experiment was to show that since TEP is structure-agnostic 
it can be used to simplify “ non-local”  redundancy.  Note 
that although optimization of these expressions can be 
easily done manually, one can give examples of non-local 
redundancies that are much harder  to find manually or by a 
program. Any logic synthesis procedure that changes the 



original circuit's structure locally (like SPFDs or don't care 
based optimizations)  can easily get trapped in a local 
minimum. Note that only for smaller values of C, C1 and 
C2, it is possible to build ROBDDs. For the experiments in 
Table 1, we  set the threshold of R* at 10 as explained in 
sections 5.1 and 4.2.1 i.e. R* contained only 10 (out of a 
huge number of) toggles to be removed. The reason why the 
TEP procedure worked  so well with such a small subset R* 
was that by adding an AND gate to remove a toggle of R* 
explicitly, we may implicitly remove a huge number of 
toggles that were “skipped”  in R*. 
 
The first column in Table 1 represents the expression being 
simplified, while the second column represents the word 
size. Columns 3 and 4 represent the runtime and number of 
gates returned by script.rugged. Columns 5 and 6 represent 
the runtime and number of gates returned by collapse 
followed by script.rugged. The corresponding results for 
TEP are provided in Columns 7 and 8, while Column 9 
represents the time taken to build a ROBDD (using the 
nanotrav package in CUDD). The notation ''Mem'' indicates 
a memory out condition. In all cases, the number of gates 
refers to the number of gates required after optimization 
and decomposition using AND2 and inverter gates. 
 
We observe that the script.rugged requires significantly 
more gates than TEP. This is because script.rugged 
performs only local changes of the circuit and so  SIS gets 
stuck in a local minimum. TEP, on the other hand, uses  
only the functionality of the circuit and so produces a 
dramatically smaller circuit.  We may run collapse before 
script.rugged,  to allow SIS to re-structure the logic better. 
However for all but the smallest word widths, collapse fails. 
Similarly, the ROBDD computation fails for large word 
widths, while TEP optimizes these circuits with less than 66 
gates.  Interestingly, the arithmetic expressions we used  
turned out to have “ local redundancies”  (however, in 
general, global redundancy of a circuit does not “ translate”  
into local redundancies). So redundancy removal in SIS [9] 
can optimize them with comparable results by taking about 
two orders of magnitude more time than the TEP 
procedure. 
 
Table 2 shows  the results of running a commercial tool 
(CT) on circuits produced by script.rugged and the TEP 
procedure. We used single-output circuits extracted from 
MCNC benchmarks. The objective of the experiment was 
to show that even for very small circuits, TEP  can achieve 
better optimization. (The other reason for targeting small 
subcircuits is that  in LS_TE, the TEP procedure is used for 
optimizing subcircuits N i of circuit N that are assumed to 
be small.) The first column of Table 2 shows names of 
circuits and the output number (in parentheses). The second 
column provides the number of inputs in the single output 
circuits. Columns 3 and 4 provide the mapped area and 

delay for the output of script.rugged mapped by CT, while 
Columns 5 and 6 provide these numbers for the TEP output 
mapped by CT. The standard cell library had 38 gates, 
implemented in a 0.18µ process.  The licensing agreement 
for CT requires us not to identify its name.  The results of 
Table 2 indicate that TEP based circuits, after mapping,  
result in a 12.5% area improvement, and a 1.6% delay 
penalty over circuits optimized with script.rugged before 
mapping with CT. The TEP results improve on the 
script.rugged results for 85% of the examples in terms of 
area, and for 45% of the examples in terms of delay.  
 
The objective of the experiment summarized in Table 3 was 
to provide  a brief demonstration of the ability  of LS_TE. 
The LS_TE method was used to optimize two-stage 
circuits. Both stages correspond to standard benchmark 
circuits, with the second stage being a single output circuit. 
The outputs  of the first stage are inputs to the second. 
MCNC benchmarks rd84 and squar5 were used as the first 
stage circuits. The second stage circuits are single-output 
circuits extracted from MCNC benchmarks (second 
column). Columns 3 through 6 give the number of gates in 
optimized circuits and runtimes for optimization by 
script.rugged and LS_TE. 

 
Table 2. Optimization of single-output circuits  

script.rugged→CT TEP→CT Circuits #in-
puts area delay(ps) area delay(ps)  

b12(3)  4  83.635  77  62.727  73   
i5(37)  5  130.679 75  114.999 106   

s_opt(6)  3  151.589 102  151.588 87   
pm1(10)  8  182.952 120  156.815 109   
squar5(1)  5  250.905 118  156.815 105   

misex2(15) 5  177.725 128  156.816 113   
x4(34)  8  224.771 124  172.497 142   
x3(64)  5  250.906 110  224.769 121   
5xp1(5)  4  308.405 163  229.996 164   

squar5(3)  5  491.356 169  235.223 143   
i7(10)  5  282.268 126  235.224 146   

apex7(35) 8  360.675 149  245.678 165   
b9(1)  7  282.270 134  245.679 150   
ttt2(7)  5  224.769 131  250.905 121   

apex1(43) 8  266.587 110  256.134 129   
apex6(51) 7  392.040 178  277.042 183   

ttt2(4)  6  266.586 136  297.950 127   
i7(28)  6  444.312 161  308.405 142   

qpcle(4)  8  392.040 160  423.402 139   
sqrt8ml(3) 8  3183.35 652  2299.96 584   

By combining two different circuits in this manner we 
simulated the situation when a circuit comprises of blocks  
designed independently. When optimizing a circuit N of 
Table, TEP is used twice.  We first replace the stage 1 
circuit N1 with its toggle equivalent counterpart N*

1, using 
TEP. After this  the correlation function relating outputs of 
N1 and N*

1 is computed  as described in [4]. (One needs to 
compute the correlation function because N1 is a multi-



output circuit.) Using the correlation function, the second 
stage circuit N2 is replaced with a toggle equivalent 
counterpart N*

2, using TEP a second time. The composition 
of circuits  N*

1 and N*
2 form a circuit  N* functionally 

equivalent to N modulo negation.   Since we assume that N1 
and N2 were designed independently, any output encoding 
for N1 is in a sense as good as the original one. So the 
heuristics of TEP (that aim at finding a toggle equivalent 
counterpart of  N1 that is as small as possible) make sense. 
 
Note that the number of gates resulting from TEP 
optimization is significantly smaller than for SIS. In fact, on 
average, TEP requires 50.5% fewer gates than 
script.rugged.  Our current TEP implementation is 
unoptimized, and we have efforts underway to improve the 
runtimes of TEP.  
 

 

Table 3. Optimization of two-stage circuits by LS_TE 

script.rugged TEP stage 1 stage 2 

# 
gates  

time(s) # 
gates  

time(s)  

rd84  5xp1(5 138  0.8  53  62   
rd84  alu2(5) 78  0.5  47  62   
rd84  b12(3) 101  0.6  37  62   

squar5 alu4(1) 43  0.1  23  3.4   
squar5 b12(2) 42  0.1  20  2.7   
squar5 c8(11)  28  0.1  17  2.2   

 

7. CONCLUSIONS 
We have presented a new toggle equivalence preservation 
based procedure (TEP) for logic synthesis. This TEP 
procedure can be used in the scenario shown in Figure 1. 
The idea is to re-synthesize a circuit N (consisting of 
subcircuits Ni), in a manner that the high-level partitioning 
structure of N is retained. Each subcircuit Ni is re-
synthesized into a design N*

i , using the TEP procedure. 
This re-synthesis  explores a huge optimization flexibility 
since the outputs of Ni are re-encoded by TEP. This TEP 
procedure was formulated for multi-output circuits. The 
TEP procedure is structure-agnostic, unlike existing logic 
optimization procedures. Also, it is able to explore all 
possible output encodings efficiently during synthesis. For 
single-output circuits, toggle equivalence is the same as 
functional equivalence  modulo negation. Therefore, we 
tested TEP on single-output circuits, to enable a fair 
comparison with existing synthesis approaches, although 
the full power of TEP is exhibited for multi-output circuits. 
The preliminary implementation of TEP is done in SIS, 
using a SAT-based computation. Initial results show 
encouraging improvements over script.rugged of SIS When 

the full power of TEP is utilized (for multi-output circuits) 
we expect yet further improvements.. 

8. REFERENCES 
[1] R.Brayton, “ Understanding SPFDs: A new method for 

specifying flexibility” . In Proc. of IWLS (Tahoe City, 
CA), May 1997. 

[2] R.Brayton, C.McMullen. “ The Decomposition and 
Factorization of Boolean Expressions” . In Proc. IEEE 
International Symposium on Circuits and Systems, 
pp.49-54, May. 1982. 

[3] R.Bryant. Graph-Based Algorithms for Boolean 
Function Manipulation. IEEE Trans. on Computers, 
Vol. C - 35, No. 8, August, 1986, pp. 677 - 691. 

[4] E.Goldberg. “ On equivalence checking and logic 
synthesis of circuits with a common specification.”  
GLSVLSI, Chicago, April 17-19, 2005,pp.102-107  
http://eigold.tripod.com/papers/glsvlsi-2005.pdf. 

[5] E.Goldberg Escaping Local Minima in Logic Synthesis 
(and some other problems of logic synthesis preserving 
specification). Technical Report CDNL-TR-2007-
0123, January 2007, http://eigold.tripod.com/papers/ 
loc_min.pdf. 

[6] H. Savoj, R.Brayton “The Use of Observability and 
External Don’ t Cares for the Simplification of Multi-
Level Networks” , DAC,1990, pp.297-301. 

[7] H. Savoj, R.Brayton, H.Touati. “Extracting Local 
Don’ t Cares for Network Optimization” , ICCAD,1991, 
pp.514-517. 

[8] H.Savoj. “Don’ t Cares in Multi-Level Network 
Optimization”  PhD thesis, University of California 
Berkeley, Electronics research laboratory, May 1992. 

[9] E.M. Sentovich et. al. SIS: A system for sequential 
circuit synthesis. Technical report, University of 
California at Berkeley, 1992. Memorandum No. 
UCB/ERL M92/41. 

[10] S.Sinha, R.Brayton. Implementation and use of SPFDs 
in optimizing Boolean networks. ICCAD, 1998, pp. 
103-110. 

[11] J.Vasudevamurthy, J.Rajski. “A Method for 
Concurrent Decomposition and Factorization of 
Boolean Expressions” , ICCAD,1990, pp.510-513. 

[12] S.Yamashita, H.Sawada, A.Nagoya. A new method to 
express functional permissibilities for LUT based 
FPGAs and its applications.  ICCAD,1996, pp.254-
261. 

 

 

 


