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Abstract 

 
The exponential speed up of quantum algorithms 

and the fundamental limits of current CMOS process 
for future design technology have directed attentions 
toward quantum circuits. In this paper, the matrix 
specification of a broad category of quantum circuits, 
i.e. CNOT-based circuits, are investigated. We prove 
that the matrix elements of CNOT-based circuits can 
only be zeros or ones. In addition, the columns or rows 
of such a matrix have exactly one element with the 
value of 1.  

Furthermore, we show that these specifications can 
be used to synthesize CNOT-based quantum circuits. In 
other words, a new scheme is introduced to convert the 
matrix representation into its SOP equivalent using a 
novel quantum-based Karnaugh map extension. We 
then apply a search-based method to transform the 
obtained SOP into a CNOT-based circuit. 
Experimental results prove the correctness of the 
proposed concept. 

 

1. Introduction 
 
It has been predicted that current CMOS technology 

will reach its fundamental limits in the near future [1]. 
On the other hand, an enormous amount of processing 
power is required to run many existing applications 
such as computer animation, molecular biology 
analyses, global climate and economic modeling. The 
demands of these applications together with the 
limitations of CMOS technology for increasing the 
processing power in the coming years have led 
researchers to work on new computational models.  

Among various proposed computational models, 
quantum computing has the potential to increase the 
rate of advances in computing power drastically, at 

least for some problems  [2]. In other words, there are 
many applications that cannot be performed on a 
classical Turing machine as efficiently as a quantum 
computer  [3],  [4]. The promise of exponential speed up 
of quantum algorithms running on quantum computers 
has intensified the attempts for using quantum 
algorithms in real world problems  [3],  [4].  

On the other hand, a quantum algorithm needs a 
quantum circuit to attain its processing power. Among 
various quantum circuits, CNOT-based circuits have 
attracted more attentions in the literature (see for 
example  [13],  [5] and  [12]). Due to many applications 
of these circuits, in this paper, the characterization of 
matrix representation of CNOT-based circuits is 
considered to be used for quantum circuit synthesis.  

The rest of the paper is organized as follows: in 
Section  2, a brief introduction to quantum computation 
is presented. Previous work is reviewed in Section  3. 
The matrix specification of CNOT-based circuits is 
studied and used for quantum circuit synthesis in 
Section  4 and Section  5, respectively. Experimental 
results are reported in Section  6 and finally, Section  7 
concludes the paper.  

 

2. Preliminary 
 
Quantum computation uses quantum mechanics to 

perform a task. A quantum bit (or qubit) is typically 
derived from the state of a two-level quantum system 
such as the ground and excited states of an atom or the 
vertical and horizontal polarizations of a single photon. 
The common notation of a qubit denotes one of these 
states as |0〉 and the other as |1〉. A quantum system 
with a collection of n qubits is called a quantum 
register of size n. 



Unlike a classical bit which takes only one of the 
two pure values of 0 or 1, in quantum computation the 
state of a qubit can take not only two pure states |0〉 and 
|1〉, but also any linear combinations of these pure 
states, also called superposition, resulting in 
exponentially larger state space. In other words, the 
state of a qubit ψ can be written as ψ=α|0〉+β|1〉 where 
α and β are complex numbers and α2+β2=1. 

Although a qubit can take any arbitrary value, when 
a quantum system is measured, its state collapses into 
the basis, i.e. |0〉 and |1〉, with the probability of α2 and 
β2, respectively. Therefore, no information about 
previous superposition state remains. It is common to 
denote the state of a single qubit by a 2×1 vector as [α 
β]T. So, the state of a quantum register of size n can 
also be shown by an 2n×1 vector T

n ][
221 ααα K  

where each αi (i=1,2,..,2n) is a complex number and 
12

2
2

2
2

1 =++ nααα K . If only one αi (i=1,2,..,2n) is set to 
be one, a pure quantum state of size n is formed. 

An n-qubit quantum gate is a device which 
performs a specific unitary operation on selected qubits 
in a specific period of time. An n-qubit quantum gate 
has a unitary 2n×2n matrix, called quantum matrix 
(QMatrix) in this paper, describing its functionality. A 
matrix M is unitary if MM+=I where M+ is the 
conjugate transpose of M and I is the identity matrix.  

Previously, various quantum gates with different 
functionalities have been proposed  [5]. Among them, 
identity (I), NOT, CNOT, C2NOT and SWAP gates 
comprise an important class of quantum gates and 
often appear in the quantum computing literature  [13], 
 [5],  [12]. The library which contains these gates are 
commonly called "CNTS" library  [7],  [13]. The CNTS 
library gates are shown in Figure 1. In this figure, 
control, target and contact qubits are represented as •, 
⊕ and | symbols, respectively. These gates are defined 
as follows: 

• 1-qubit identity gate (I) with matrix MI which 
works as a horizontal wire and may be used to 
construct any other quantum gates using tensor 
product. 

• 1-qubit NOT gate with matrix MNOT that inverts the 
working qubit. 

• 2-qubit CNOT gate, also called Feynman gate, with 
matrix MCNOT which works as follows: if the control 
qubit is |1〉, the target qubit is inverted; otherwise it 
is left unchanged. 

• 2-qubit SWAP gate with matrix MSWAP that 
exchanges the values of its two qubits. 

• 3-qubit C2NOT gate, also called Toffoli gate, with 
matrix MC2NOT that works as follows: if both control 
qubits are |1〉, the target is inverted; otherwise it is 
left unchanged. 
 

Identity NOT

CNOT SWAP

C2NOT

 
Figure 1- Basic quantum gates used in this paper 
For a more detailed description of various quantum 

gates, interested readers can refer to  [5]. By using these 
gates and tensor product, any other related gates can be 
constructed. For example, in Figure 2, a new 
compound gate and its QMatrix are shown. Two or 
more quantum gates can also be cascaded to construct a 
quantum circuit. This operation is denoted by ◦ symbol 
in this paper. The QMatrix of a quantum circuit is 
derived from its gate QMatrices using matrix 
multiplication. For example, in Figure 3 a quantum 
circuit and its QMatrix are shown. 
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Figure 2- A compound gate constructed from an 

identity and a NOT gate. 
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Figure 3- Cascading quantum gates to construct 

a quantum circuit and its QMatrix 
Positive polarity Reed-Muller (PPRM) expansion 

 [6] in Boolean logic is used in the last part of this paper 
to synthesize a CNOT-based circuit. PPRM expansion 
is a canonical representation that uses only un-
complemented (or positive) variables as follows: 



In the following section, previous work on quantum 
circuit synthesis is reviewed. 

 

3. Previous work 
 
Several algorithms have recently been proposed to 

synthesize a quantum circuit. Toffoli in  [7] presented 
an algorithm to implement a function using CNTS 
library. As this algorithm uses many extra qubits, it 
cannot be used to synthesize a general quantum circuit 
efficiently. Some authors used transformation-based 
algorithms for quantum circuit synthesis  [8]- [10]. 
However, these algorithms usually use local 
transformations to optimize the results of other 
algorithms. Miller in  [11] considered the use of 
Rademacher-Walsh spectral techniques and two-place 
decompositions of Boolean functions to synthesize a 
reversible circuit. In  [12], a new incremental approach 
was presented which uses shared binary decision 
diagrams for representing a reversible function and 
measuring circuit complexity. The proposed algorithm 
selects reversible gates based on the complexity of the 
rest of logic.  

The authors of  [13] investigated a number of 
techniques to synthesize optimal and near-optimal 
reversible circuits that require little or no temporary 
storage. They also provided some properties about even 
and odd permutation functions. The authors of this 
paper  [14] proposed a search-based algorithm to find a 
CNOT-based implementation of a reversible functions 
based on PPRM expansion. In  [15], an approach to 
synthesize a quantum circuit was proposed which uses 
symbolic reachability analysis where the primary inputs 
are assumed to be purely binary. 

In  [16], Shende et al. presented a top-down structure 
based on Cosine-Sine decomposition to introduce 
quantum multiplexer and used it to propose a synthesis 
algorithm in terms of quantum multiplexers. In  [17], a 
recursive synthesis method for ternary quantum circuits 
based on the Cosine-Sine unitary matrix decomposition 
was presented. The authors of  [18] and  [19] presented 
an algorithm to decompose the matrix of a quantum 
circuit into the unitary matrices of elementary quantum 
gates. However, these methods are not practical to 
synthesize a general quantum circuit of arbitrary size. 
Abdollahi and Pedram  [20] presented a quantum 

decision diagram structure and used it to synthesize 
quantum circuits using Rx(θ) rotation gates.  

In order to reduce the CPU time of synthesis 
algorithms, some researchers used an evolutionary 
synthesis algorithm  [21]. Some authors used 
mathematical methods to put a lower bound on the 
number of quantum gates required to synthesize a 
quantum circuit  [22]. The authors of  [23] proposed an 
approach to optimally synthesize 3-qubit quantum 
circuits by group theory where the primary inputs are 
assumed to be binary states.  

As the size of a quantum circuit increases 
drastically, a practical algorithm for quantum circuit 
synthesis becomes extremely difficult. As will be 
shown in Section  5, we use matrix specifications to 
propose a systematic methodology for CNOT-based 
quantum circuit synthesis. 

 

4. Matrix characterizations 
 
In this section, we introduce several notations and 

theorems to study the matrix characterizations of 
CNOT-based quantum circuits. 

 
Notation 1: A 3-qubit C2NOT gate is denoted as 

C2NOT3(1,2,3) where two first qubits are control qubits 
and the last one is the target.  

Notation 2: An n-qubit quantum gate consisting of 
a C2NOT gate and n-3 identity gates is denoted as 
C2NOTn(i,j,k) where i, j and k are nonadjacent qubits. If 
i, j and k are adjacent, a C2NOTn(i,i+1,i+2) gate is 
formed. 

Notation 3: An n-qubit SWAP gate containing n-2 
identity gates and a 2-qubit SWAP gate is denoted as 
SWAPn(i,i+1) where i and i+1 are two adjacent qubits. 

Notation 4: Let U be any arbitrary quantum gate. 
We use the notation U⊗n to show n parallel executions 
of U gate on n adjacent qubits. The similar notation is 
used for its QMatrix representation. 

Definition 1: The QMatrix of an n-qubit quantum 
circuit is well-formed if it has the following two 
conditions: 

1. Matrix elements can only be zeros or ones. 
2. Each column or row has exactly one element 

with a value of 1. 
Observation 1: The QMatrix of C2NOT3(1,2,3) is 

well-formed. 
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Proof: The gate C2NOT3(1,2,3) has a 23×23 QMatrix 
with the following specification  [5]. 

Therefore, it is well-formed.    □ 
Observation 2: The QMatrix of SWAP2(1,2) is 

well-formed. 
Proof: The gate SWAP2(1,2) has a 22×22 QMatrix 

with the following specification  [5].  

Therefore, it is well-formed.   □ 
Theorem 1: The set of well-formed matrices is 

closed under tensor product (⊗) operation. 
Proof: Let two well-formed matrices A and B be of 

dimensions DA×DA and DB×DB, respectively. 
Furthermore, suppose that a matrix C is defined as 
C=A⊗B. Therefore, C is a (DA*DB) ×  (DA*DB) matrix. 
The elements of A, B and C are represented as a i,j, bi,j 
and ci,j, respectively. Based on the definition of tensor 
product, we have:  

Since A is a well-formed matrix, each of its 
elements can only be 0 or 1. If a i,j is zero, ci,j becomes 
zero, otherwise it becomes 

BB DqjDpib )1(,)1( −−−−
 which also 

gets 0 or 1 (recall that B is well-formed). Therefore, 
condition 1 of Definition 1 holds. On the other hand, 
Equation (5) shows the elements of the Ith row of 
matrix C.  

Since each row of matrix A has exactly one element 
with a value of 1, it can be seen that a1,q (0≤q≤DA) is 
one for exactly one q. Therefore, Equation (5) is 
reduced to Equation (6).  

Alternatively, 
BDkjIb )1(, −−  shows the elements of 

the Ith row of matrix B for BB DkjDk **)1( ≤<− . 
As B is well-formed, only one of these elements is 1. 
Thus 

BDkjIb )1(, −−  is 1 for an arbitrary value of j, such 
as J. Therefore, among the elements of the Ith row of 
matrix C, only cI,J is equal to 1.   □ 

Corollary 1: The QMatrix of C2NOTn(i,i+1,i+2) is 
well-formed. 

Proof: Based on Notation 2 and Notation 4, we 
have:  

Therefore, its QMatrix can be written as Equation 
(8)  

It can be seen that the QMatrix of an n-qubit 
identity gate is a 2n×2n identity matrix. Therefore, I⊗(i-1) 
and I⊗(n-i-2) gates have identity matrices of sizes 2i-1×2i-1 
and 2n-i-2×2n-i-2, respectively. Based on Theorem 1 and 
Observation 1, it can be seen that the matrix 
( ))2(

3
2 )2,1,( −−⊗⊗

++ inIiiiNOTC MM  is well-formed. Similar 

results can be obtained for 
)2,1,(2 ++ iiiNOTC n

M .  □ 

Corollary 2: The QMatrix of SWAPn(i,i+1) is well-
formed. 

Proof: Based on Notation 3 and Notation 4, we 
have:  

Therefore, the QMatrix of this gate can be written as 

Since each matrix of Equation (10) is well-formed, 
Theorem 1 directly results in the corollary.  □ 

Theorem 2: The set of well-formed matrices is 
closed under matrix multiplication. 

Proof: Assume that two n×n matrices A and B are 
well-formed. Furthermore, let matrix C be C=A*B. The 
elements of A, B and C are represented as a i,j, bi,j, and 
ci,j, respectively. As ci,j=∑a i,kbk,j, specifically for the Jth 
column, ci,J=a i,1b1,J+ a i,2b2,J+…+ a i,nbn,J. Since B is 



 ====≤=≤

=
otherwise

jiorjiorji
mij 0

)7,8()8,7()61(1  (2)  



















=

1000
0010
0100
0001

SWAPM  (3)  

ABB

BB

DqjDpiqpji

DqpqDjDq
pDiDp

bac
BB

≤≤≤<−
≤<−

= −−−−

,0,)1(
,)1(

* )1(,)1(,,
 (4)  

ABB

DqjDpIqpjI
DqpqDjDq

bac
BB

≤≤≤<−
= −−−−

,0,)1(
* )1(,)1(,,  (5)  

0*
**)1(

,)1(,,1, ==
≤<−

−− jIDkjIkjI

BB
celsebac

thenDkjDkif
B

 (6)  

)2(
3

2)1(

2

)2,1,(
)2,1,(

−−⊗−⊗ ⊗++⊗
=++

ini
n

IiiiNOTCI
iiiNOTC  (7)  

( ))2(
3

2)1(

2

)2,1,(

)2,1,(

−−⊗−⊗ ⊗⊗

=

++

++

ini

n

IiiiNOTCI

iiiNOTC

MMM

M
 (8)  

)1(
2

)1( )1,(

)1,(
−−⊗−⊗ ⊗+⊗

=+
ini

n

IiiSWAPI
iiSWAP

 (9)  

( ))1(
2

)1( )1,(

)1,(

−−⊗−⊗ ⊗⊗

=

+

+

ini

n

IiiSWAPI

iiSWAP

MMM
M

 (10)  



well-formed, only one of the elements of the Jth column 
is one. Therefore, it can be said that ciJ=a iJ which gets 
only two possible values 0 and 1. In Other words, 
condition 1 of Definition 1 holds. 

In order to show the correctness of condition 2, 
consider the Jth column of matrix C 

As B is well-formed (i.e. bIJ is 1 and the other 
elements are zero), Equation (11) is reduced to 
equation (12)  

Therefore, exactly one of the elements of Jth column 
is 1.□ 

Lemma 1: Gate C2NOTn(i,j,k) can be written as a 
sequence of three gates SWAPn(i,i+1), C2NOTn(i+1,j,k) 
and SWAPn(i+1,i) if j≠i+1.  

where symbol ◦ shows the sequence of time. 
Proof: As gate SWAPn(i,i+1) exchanges the values 

of qubits i and i+1, and gate SWAPn(i+1,i) retrieves 
them back to their original values, qubits i and i+1 are 
left unchanged. In addition, the C2NOT gate is used to 
get qubits i+1 and j as the controls to work on qubit k 
as the target while qubit i+1 takes the value of qubit i. 
Figure 4 shows these two equivalent circuits. □ 

Theorem 3: The QMatrix of C2NOTn(i,j,k) is well-
formed. 

Proof: Based on the previous lemma, the following 
equations can be approved: 
C2NOT(t,j,k)=SWAPn(t,t+1)◦C2NOT(t+1,j,k)◦SWAPn(t
+1,t) for∀ t∈[i,j-2]  and  
C2NOT(j-1,j,t)=SWAPn(t-1,t)◦C2NOT(j-1,j,t-1)◦ 
SWAPn(t,t-1) for∀ t∈[k,j+2] .  

 
Figure 4- Gate C2NOTn(i,j,k) and its equivalent 

circuit 

Therefore, we have:  

Direct using of Equation (14), Corollary 1, 
Corollary 2 and Theorem 2 proves Theorem 3. □ 

Corollary 3: The QMatrix of a circuit containing 
only C2NOTn(i,j,k) gates is well-formed. 

Proof: Direct using of Theorem 1, Theorem 2 and 
Theorem 3 proves Corollary 3.    □ 

Theorem 4: If an input pure quantum state is used 
for a circuit with a well-formed matrix, then the 
produced output state is also a pure state. 

Proof: Let the input state be U= [u1 u2 … un]T and 
the produced output state be denoted as Ψ= [ψ1 ψ2 … 
ψn]T. If the QMatrix of the circuit is denoted as 
A= [a i,j]; each element of Ψ can be written as 
ψi=∑ka i,kuk. Since U is a pure state, only one ui is 1 (i.e. 
uK) and therefore, ψi=a i,K. Similarly, as each column of 
A has exactly one 1, a i,k will be 1 for only one i (0≤i≤n) 
and therefore, ψI is 1 for only one i. Thus, the produced 
output state is a pure state.    □ 

Fact 1: C2NOTn(i,j,k) gate is a universal reversible 
logic gate, which means that any reversible circuit can 
be constructed by C2NOTn(i,j,k) gates  [7]. 

Corollary 4: The QMatrix of a reversible circuit is 
well-formed. 

Proof: Direct using of Fact 1 and previous theorems 
leads to Corollary 4.     □ 

We proved that a broad type of circuits (including 
reversible circuits) can be described by a matrix 
containing only zero and one elements. Furthermore, 
we showed that this matrix contains exactly a one in 
each column or row. In the rest of the paper, we use 
these results to transform a QMatrix into a CNOT-
based quantum circuit. 

 

5. Quantum circuit synthesis 
 
As designing a large quantum circuit cannot be done 

manually and it requires a systematic methodology to 
cover various design stages, working on automatic 
synthesis methods for quantum circuit synthesis has 
received significant attention recently  [8]- [23]. 
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However, unlike Boolean logic circuits, quantum 
information processing is in preliminary state and no 
mature synthesis method for quantum circuit synthesis 
has been proposed yet. In order to address the problem, 
in the rest of this paper, we use the proposed 
characterizations to introduce a systematic 
methodology for quantum circuit synthesis. 

Roughly speaking, we are interested in a quantum 
circuit design methodology similar to that used in 
conventional Boolean logic circuit designs in the sense 
that a higher level description is progressively 
converted to the final implementation. In the 
conventional methodology, a textual description may 
be converted into its equivalent truth table. Then, a 
canonical SOP (or POS) representation is built and 
optimized based on various parameters using a 
technology-independent optimization algorithm. In the 
following paragraphs, we first introduce a quantum 
Karnaugh map (QKmap) concept to transform a 
QMatrix into its SOP representation, and then use a 
search-based method to convert an SOP representation 
into a CNOT-based circuit. 

Definition 2: A quantum Karnaugh map (QKmap) 
is a table to represent an n-qubit quantum circuit. The 
rows and columns of a QKmap are labeled using n-
qubit pure quantum register values. The rules of 
classical Karnaugh map can be used to simplify a 
quantum circuit using QKmap. Figure 5 shows the 
QKmap for a CNOT gate. 

As shown in Figure 5, the QMatrix of a CNOT gate 
is used to produce a pure output quantum state form a 
pure input quantum state. Using the QKmap, we can 
extract the SOPs of a CNOT gate (a, a⊕b).  

0 1

0

1

0 1

0

1

00

01

10

11

00
01

11
10

 
Figure 5- QKmap for CNOT gate 

Our algorithm for QMatrix to SOP transformation is 
shown in Figure 6. As shown in this figure, a well-
formed matrix can be transformed into its equivalent 
SOP. We then use this SOP to find its CNOT-based 
implementation. 

Until now, we transformed a matrix description into 
an SOP representation using the method presented in 
the previous sections. Consequently, by using an 
optimization algorithm such as  [24], an EXOR-Sum-
of-Products (ESOP) representation can be obtained. 

Then, the ESOP description will be transformed into 
the PPRM format by replacing a' with a⊕1 for each 
complemented variable a and finally, a search-based 
method (such as  [14]) is used to find a CNOT-based 
circuit for the constructed PPRM expansions (see 
Figure 7 for more details). 

 
Matrix to SOP Transformation Algorithm

Input of the algorithm: A well-formed matrix representing a 
quantum circuit.
Outputs of the algorithm: An SOP representations of the 
input matrix in terms of working qubits.

1- As the input matrix is well-formed, it produces pure 
quantum states for pure input states. So, construct an 
intermediate table containing input and output pure states 
for the input matrix.
2- Using the produced intermediate table, fill the quantum 
Karnaugh map (QKmap).
3- By using the rules of classical Karnaugh map, simplify 
the QKmap.
4- Extract an SOP form for each qubit using the simplified 
QKmap.

 
Figure 6- QMatrix to SOP transformation 

 
Figure 7- QMatrix to CNOT-based circuit 

transformation 
It is worthwhile to note that the proposed 

characterizations together with the suggested flow lead 
to a systematic methodology for CNOT-based quantum 
circuit synthesis which transforms a higher level 
description (i.e. matrix level) into a lower level 
representation (i.e. gate level). In the following section, 
we show several examples to prove the proposed 
concept. 

 

6. Experimental results 
 
In this section, our experimental results for quantum 

circuit synthesis are presented. We use the following 
notation for an n×n QMatrix representation: 

Notation 5: The QMatrix A is denoted as 
A(x1,x2,…,xn) where xi (i∈[1,n] ) is the column number 
of an element with a value of 1 in the ith row. For 
example, the QMatrix MCNOT is represented as 
CNOT(1,2,4,3).  

Example 1: Consider a 2-qubit comparator with 
two inputs / two outputs where the first output is the 



result of the comparison and the second one is a 
garbage output. Since, a 2-input comparator is an 
irreversible function, one garbage output is added to 
make it reversible. A possible truth table for this 
reversible comparator is shown in Figure 8(a). Based 
on this figure, the QMatrix of this circuit is (3,2,1,4). 
Therefore, its SOP and ESOP representations are 
(a’b’+ab,b) , (1⊕a⊕b,b), respectively. Figure 8(b) 
shows the circuit. 

 
Figure 8- A possible truth table for a 2-qubit 
comparator (a) and its implementation (b) 

Example 2: Consider a 3-qubit Control-Inverter-
Wire (CIW) gate which flips the second qubit based on 
the state of the first one. The truth table of this gate is 
shown in Figure 9(a). The QMatrix of this gate and its 
SOP (ESOP) representations are CIW(1,2,3,4,7,8,5,6) 
and (a,a⊕b,c), respectively. It is easy to check that 
Figure 9(b) describes the circuit. 

 
Figure 9- The truth table of a CIW gate (a) and 

its CNOT-based implementation (b) 
Example 3: Consider a 3-qubit full-adder with three 

inputs (cin, b, a) and three outputs (g1, g2, s) where the 
first two outputs (i.e. g1 and g2) are garbage and the last 
one is the result. Figure 10(a) shows a possible truth 
table for this function. Using this truth table will lead 
to the following QMatrix: (1,8,6,7,2,3,5,4). Therefore, 
its SOP and ESOP representations are (Cin’b+ab’, b, 
Cin⊕a⊕b) and (a⊕b⊕ab⊕bCin,b,Cin⊕a⊕b), 
respectively. The circuit diagram of this example is 
shown in Figure 10(b). 

Example 4: A 3-qubit majority gate outputs a 1 as 
its first output when two or more inputs are 1; 
otherwise it outputs 0. In order to make it reversible, 
two garbage outputs are added to this gate. Figure 11(a) 
shows the truth table of this gate. The QMatrix of this 

gate and its SOP representations are (1,2,3,5,4,6,7,8), 
(ab+bc+ac, ab+bc’+ ac’, ac’+b’c), respectively. Figure 
11(b) shows the circuit of this example. 

a bcin

0 0 0 0 0 0
0 0 1 1 1 1
0 1 0 1 0 1
0 1 1 1 1 0
1 0 0 0 0 1
1 0 1 0 1 0
1 1 0 1 0 0
1 1 1 0 1 1

sg1 g2

(b)(a)

a

b
c

 
Figure 10- A possible truth table for a 3-qubit 

full-adder (a) and its implementation (b) 
b ca

0 0 0 0 0
0 0 1 0 1
0 1 0 1 0
0 1 1 0 0
1 0 0 1 1
1 0 1 0 1
1 1 0 1 0
1 1 1 1 1

ca b

0
0
0
1
0
1
1
1

a

b
c

(a) (b)  
Figure 11- The truth table of a 3-qubit majority 

gate (a) and its CNOT-based implementation (b) 
Example 5: Consider a 4-qubit swap gate with 

QMatrix (1,3,2,4,9,11,10,12,5,7,6,8,13,15,14,16). The 
SOP representations of this gate are (b,a,d,c). Figure 12 
shows the circuit of this example. 

 
Figure 12- The CNOT-based implementation of a 

4-qubit swap gate 
Example 6: Consider a random 4-qubit reversible 

gate with QMatrix (12,4,10,3,8,14,16,15,9,2,5,11,1,13, 
7,6). The proposed algorithm results in the following 
SOP representations: 
(a’b’d’+c’d’b’+c’db+a’bc+ab’cd,a’b+bd+cd’a,a’b’c’+ 
c’d’a’+a’cd+b’cd+bcd’, a’c’+a’d’+c’db’+abcd) 

Figure 13 shows the circuit of this example. 

 
Figure 13- The CNOT-based implementations of 

Example 6  



7. Conclusions and future works 
 
Quantum information processing is in the 

pioneering stage and there is no fully optimized 
method for quantum circuit synthesis. In this paper, we 
studied the specification of CNOT-based matrices to 
propose a new systematic methodology for quantum 
circuit synthesis. In other words, by using the proposed 
specifications and the quantum Karnaugh map concept, 
we introduced an algorithm for matrix to SOP 
transformation. Furthermore, we used a search-based 
method to transform the constructed SOP into a 
quantum circuit. 
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