
Cellflow: a Parallel Application Development Environment
with Run-Time Support for the Cell BE Processor

Martino Ruggiero, Michele Lombardi, Michela Milano and Luca Benini
University of Bologna, DEIS,

Viale Risorgimento, 2 - Bologna 40136 (Italy)

ABSTRACT
The Cell BE processor provides both scalable computation power
and flexibility, and it is already being adopted for many computa-
tional intensive applications. Despite of its merits, it also presents
many challenges, as it is now widely known that is very difficult to
program the Cell BE in an efficient manner. Hence, the creation of
an efficient software development framework is becoming the key
challenge for this computational platform.

We propose a novel software toolkit, called Cellflow, which en-
ables developers to quickly build multi-task applications for Cell-
based platform. We support programmers from the initial stage of
their work, through a development-time software infrastructure, to
the final stage of the application development, proposing a safe and
easy-to-use explicit parallel programming model.

Experimental results show that in Cellflow we reduced to min-
imum the abstraction gap between the optimization and develop-
ment phases.

1. INTRODUCTION
Cell is a heterogeneous multi-core architecture composed by a

standard general purpose microprocessor (called PPE), with eight
coprocessing units (called SPEs) integrated on the same chip. The
SPE is a processor designed for streaming workloads, featuring
a local memory, and a globally-coherent DMA engine. Cell has
already demonstrated impressive performance ratings in compu-
tationally intensive applications and kernels mainly thanks to its
innovative architectural features. The heterogeneity of its compu-
tational capability, the limited, explicitly-managed on-chip mem-
ory and the multiple options for exploiting hardware parallelism,
make efficient application design and implementation a major chal-
lenge. Efficiently programming requires to explicitly manage the
resources available to each SPE, as well the allocation and schedul-
ing of activities on them, the storage resources, the movement of
data and synchronizations, etc.

Moving from these considerations, the novelty of this work is
the creation of a framework, called Cellflow, that can help program-
mers in handling these complex and critical activities and decisions.
Our goal is to enable developers to quickly build multi-task applica-
tions using an explicit parallel programming model. Our key object
is to give developers access to the power of Cell multi-core archi-
tecture, but at a high level. We want to set programmers free from
the issue of managing allocation and scheduling tasks, so they can
focus on developing the core algorithms of the application.

Our toolkit is made of an off-line and an on-line components.
The off-line facility is a design-time software optimization infras-

tructure for the deployment of multi-task applications. It is made
up of:
- a generic customizable application template that helps software
developers to easily and quickly build their application skeleton
starting from a high level task and data flow graph,
- an allocation and scheduling support, featuring both a heuristic
suboptimal algorithm and an exact solver that finds the optimal
mapping and scheduling on the hardware architecture.

The software framework is targeted towards statically-configured
applications, where optimal allocation and scheduling settings are
precomputed at design time. As far as the mapping and scheduling
support is concerned, we have implemented two approaches: the
first is based on traditional list scheduling and round robin alloca-
tion, which are simple and scalable heuristics that do not provide
any optimality guarantee. The second is an exact optimization al-
gorithm providing optimal solutions. It has been extensively de-
scribed in [3] and it is based on a multi-stage decomposition. An
extensive set of experimental results confirm that the multi-stage
decomposition pays off in terms of efficiency w.r.t. a traditional
approach.

The on-line runtime support is composed by software libraries
and APIs which manage coordination issues, such as task allo-
cation and scheduling, as well as task-level issues, like inter-task
communication and synchronization. In this phase we tackle also
the problem of the limited memory size of the SPEs, optimizing
their utilization through overlaying.

With Cellflow, Cell programming becomes simpler, but at the
same time it achieves high efficiency thanks to the run-time sup-
port (which is tuned to the SPE harware) and to off-line optimal
allocation and scheduling.

2. RELATED WORK
The Cell architecture includes multiple, heterogeneous proces-

sor elements (PPE and SPEs) and Single-Instruction-Multiple-Data
(SIMD) units on all SPEs. This kind of platform supports a wide
range of heterogeneous parallelism levels. To our knowledge, prior
work is mainly focused on trying to exploit fine grain parallelism
of Cell, such as at instruction and function level, while our work is
one of the few approaches at task level.

Authors in [14] provide a software development platform which
allows to use standard C++ programming to create parallel applica-
tions, or extend existing applications to run on Cell. Some parallel
programming models have been implemented and ported on the
Cell processor [13, 16]. The authors in [16] have ported Streamit
and its run-time environment on Cell architecture. Streamit is based
on a dataflow programming language, but it needs its own compiler,
while in our case we are fully compatible with the standard C-based



development flow.
The authors in [17] propose a programming model based on

micro-tasks communicating through massage passing interface. The
micro-task represents a unit of computation that causes commu-
nication at its beginning and end. They tackle the mapping and
scheduling problem by a suboptimal heuristic solver. The work in
[18] describes a multicore streaming layer whose main goal is to
abstract away the architecture-specific details that complicate the
scheduling of computation and communication in a stream pro-
gram. They propose both dynamic and static scheduling facilities,
but without any requirements of optimality.

3. CELL BE HARDWARE ARCHITECTURE
In this section we give a brief overview of the Cell hardware ar-

chitecture, focusing on the features that are most relevant for our
programming enviroment. Cell is a non-homogeneous multi-core
processor [15] which includes a 64-bit PowerPC processor element
(PPE) and eight synergistic processor elements (SPEs), connected
by an internal high bandwidth Element Interconnect Bus (EIB)
[12]. Figure 1 shows a pictorial overview of the Cell Broadband
Engine Hardware Architecture. The PPE is dedicated to the oper-

Figure 1: Cell Broadband Engine Hardware Architecture.

ating system and acts as the master of the system, while the eight
synergistic processors are optimized for compute-intensive appli-
cations. The SPE is a compute-intensive coprocessor designed to
accelerate media and streaming workloads. Each SPE consists of
a synergistic processor unit (SPU) and a memory flow controller
(MFC). The MFC includes a DMA controller, a memory manage-
ment unit (MMU), a bus interface unit, and an atomic unit for syn-
chronization with other SPUs and the PPE.
Efficient SPE software should heavily optimize memory usage, since
the SPEs operate on a limited on-chip memory (only 256 KB local
store) that stores both instructions and data required by the pro-
gram. The local memory of the SPEs is not coherent with the PPE
main memory, and data transfers to and from the SPE local mem-
ories must be explicitly managed by using asynchronous coherent
DMA commands.

4. OFF-LINE DEVELOPMENT INFRASTRUC-
TURE

In this section, we describe the computational model supported
by our environment, and the off-line (development time) support
for the allocation and scheduling of parallel tasks on SPEs.

4.1 Application and task computational model
Our application model is a task graph with precedence constraints.

Nodes of the graph represent concurrent tasks while the arcs in-
dicate mutual dependencies due, for example, to communication

and/or synchronization. Tasks communicate through queues and
each task can handle several input/output queues.

Figure 2: Three phases behavior of Tasks.

Task execution is modeled and structured in three phases, as in-
dicated in Figure 2: all input communication queues are read (Input
Reading), task computation activity is performed (Task Execution)
and finally all output queues are written (Output Writing). Each
phase consists of an atomic activity. Each task also has 2 kinds of
associated memory requirements:
Program Data: storage locations are required for computation data
and for processor instructions;
Communication queues: the task needs queues to transmit and re-
ceive messages to/from other tasks, eventually mapped on different
SPEs.
Both these memory requirements can be allocated on the local stor-
age of each SPE or reside in the shared memory.

4.2 Customizable Application Template
We set up a generic customizable application template allowing

software developers to easily and quickly build their parallel appli-
cations starting from a high-level task and data flow graph spec-
ification compliant to the above mentioned model. Programmers
can at first think about their applications in terms of task depen-
dencies and quickly draw the task graphs, and then use our tools
and libraries to translate the abstract representation into C code.
This way, they can devote most of their effort to the functional-
ity of tasks rather than the implementation of their communication,
synchronization and scheduling mechanisms.

User can configure the Customizable Application Template via
XML file, which will be automatically translated into C-code.

We implemented also an Eclipse plug-in graphical interface to
make the configuration of the Customizable Application Template
easier and less error-prone. The user can compose his/her applica-
tion task graph simply dragging and dropping nodes (i.e. task) and
arrows (i.e. precedence constraints). Then, our plugin will pro-
duce the XML file corresponding to the Customizable Application
Template configuration.

After this configuration step, the programmer can only focus on
writing the algorithms that will run on the SPEs using standard C
code. Our infrastructure will automatically manage communica-
tion and synchronization between threads, exploiting at best Cell
architecture features. The kernel of our customizable application
template is made of a part running on PPE, that reads the configu-
ration files and sets up all the system structures, and a part running
on SPEs, that supports the run-time execution and communication.
Details on how the initialization phase works and how PPE and
SPE interact will be explained in section 5.1.

4.3 Allocation and Scheduling support
The problem of efficiently allocating and scheduling multi-task

applications on a multi-processor in a distributed system is very
challenging.

We have proposed two approaches for this task: a heuristic al-
gorithm that provides fast but sub-optimal mapping and scheduling
and an exact solver employing leading edge optimization technolo-
gies and an accurate application and platform model.



4.3.1 Heuristic approach
The suboptimal algorithm is based on a list scheduling heuristic

[11], which emphasizes speed and scalability at the price of op-
timality loss. List scheduling keeps a list of the ready tasks (the
ones whose all producers have already finished); that list is then
ordered according to a priority function, and the highest-priority
ready task is scheduled next. To assign priorities to tasks, ASAP
(As Soon As Possible) and ALAP (As Late As Possible) start times
are determined for each task, according to application task depen-
dencies, and task mobility is calculated as the difference ALAP-
ASAP. The highest mobility a task has, the highest priority it will
obtain. Once the scheduling is found, the tasks are mapped on the
SPEs according to a Round-Robin algorithm: proceeding in prior-
ity order, each task is mapped on a different SPE. In this way it
is possible to achieve a good load balancing between all the SPEs.
List scheduling and round-robin (R-R) allocation are simple and
scalable heuristics, but they do not provide any optimality guaran-
tee.

4.3.2 Exact approach
The second approach we use is aimed at producing an optimal

solution for the mapping and allocation problems that minimizes
the execution time of the overall application. The problem we have
to solve is a scheduling problem with alternative resources and al-
location dependent durations. A good way of facing these kind of
problems is via Benders Decomposition, and its Logic-based ex-
tension [6]. Previous papers have shown the effectiveness of the
method for similar problems. Hooker in [7] and [8] has shown how
to deal with several objective functions in problems where tasks
allocated on different machines are not linked by precedence con-
straints. Similar problems have been faced by Jain and Grossmann
[5], Bockmayr and Pisaruk [4] and Sadykov and Wolsey [9], the
latter comparing this approach and showing its superiority w.r.t. In-
teger Programming branch and cut and column generation. Many
of these approaches consider multipleindependent subproblems:
that is, once the master problem is solved, then many decoupled
subproblems result which can be solved in an independent fashion.

The allocation is in general effectively solved through Integer
Linear Programming, while scheduling is better faced via Con-
straint Programming. In our case, the scheduling problem can-
not be divided into disjoint single machine problems since we have
precedence constraints linking tasks allocated on different proces-
sors. We have implemented such an approach, called two-stage
decomposition into the Cellflow infrastructure, similarly to [1], [2],
and experimentally experienced a number of drawbacks. The main
problem is that for the problem at hand a two stage decomposition
produces two unbalanced components. The allocation part is ex-
tremely difficult to solve while the scheduling part is indeed easier.
This approach scales poorly.

We have experimented a multi-stage decomposition, which is
actually a recursive application of standard Logic based Benders’
Decomposition (LBD), that aims at obtaining balanced and lighter
components. The allocation part should be decomposed again in
two subproblems, each part being easily solvable.

In Figure 3 at level one the SPE assignment problem (SPE stage)
acts as the master problem, while memory device assignment and
scheduling as a whole are the subproblem. At level two (the dashed
box in Figure 3) the memory assignment (MEM stage) is the master
and the scheduling (SCHED stage) is the correspondent subprob-
lem. The first step of the solution process is the computation of a
task-to-SPE assignment; then, based on that assignment, allocation
choices for all memory requirements are taken. Deciding the allo-
cation of tasks and memory requirements univocally defines task

Figure 3: Solver architecture:
two level Logic based Ben-
ders’ Decomposition

Figure 4: Solver architecture
with schedulability test

durations. Finally, a scheduling problem with fixed resource as-
signments and fixed durations is solved.

When the SCHED problem is solved (no matter if a solution has
been found), one or more cuts (labeled A) are generated to forbid
(at least) the current memory device allocation and the process is
restarted from the MEM stage; in addition, if the scheduling prob-
lem is feasible, an upper bound on the value of the next solution is
also posted. When the MEM & SCHED subproblem ends (either
successfully or not), more cuts (labeled B) are generated to forbid
the current task-to-SPE assignment. When the SPE stage becomes
infeasible the process is over converging to the optimal solution for
the problem overall.

We found that quite often SPE allocation choices are by them-
selves very relevant: in particular, a bad SPE assignment is some-
times sufficient to make the scheduling problem infeasible. Thus,
after the task to processor allocation, we can perform a first schedu-
lability test as depicted in Figure 4. In practice, if the given alloca-
tion with minimal durations is already infeasible for the scheduling
component, then it is useless to complete it with the memory as-
signment that cannot lead to any feasible solution overall.

A detailed description of the models employed at various levels
can be found in [3].

5. ON-LINE RUNTIME SUPPORT
The runtime support takes care of the task scheduling and data

handling between the different cores.

5.1 SPE task allocator and scheduler
Once the target application has been implemented using our generic

customizable template, tasks, program data and communication
queues are allocated to the proper hardware resources (SPEs or
memory resources). This is done through the init task of our tem-
plate which allocates and launches all the activities at booting time.
More specifically, during boot the PPE creates a global configura-
tion table that contains information about queue buffers and where
to allocate local data. The table is arranged so that each table entry
contains information related to a task. To populate that table, the
PPE reads the configuration files (that contain allocation informa-
tion) and interacts with SPEs to know the physical addresses of all
structures of queues.

This interaction between PPE and SPEs uses a specific mailbox-
based protocol, that supports:
- allocating local SPE data;
- allocating buffers;
- initializing semaphores;
- starting the execution (once the table is completed).
The PPE gathers information from configuration files and SPEs,
and builds the global application table. When a task is scheduled,
its code overlay is loaded and the task’s entry from the global ta-
ble is received. This means a very dynamic and memory-efficient



(for both code and data) local storage management to cope with its
limited size. In order to reproduce the desired scheduling behav-
ior, we implemented a scheduling support middleware. Using this
facility, programmers only have to specify the desired scheduling
for every SPE, which is handled accordingly by our middleware in
a transparent way. To overcome the capacity limitations of local
storage, we support SPE overlay: every time a new task has to be
scheduled, it is loaded into local storage by our middleware through
overlay. In an overlay structure the local storage is divided into a
root segment, which resides always in storage, and one or more
overlay regions, where overlay segments are loaded when needed.
In our framework, a scheduler is implemented on each SPE and
its code is stored in the root segment of the local storage. Han-
dling the scheduling on the SPE itself avoids additive overhead due
to communication and synchronization with PPE. Our scheduling
policy is non-preemptive, since the context of an SPE task is too
large (it includes SPE registers, LS image, and outstanding DMA
commands residing in the DMA queue) to achieve a quick context
switch.

5.2 SPE Communication and Synchronization
support

Software support for efficient messaging is also provided by our
set of high-level APIs. The communication and synchronization
library abstracts low level architectural details to the programmer,
such as memory maps or explicit management of hardware semaphores
or interrupt signaling. The infrastructure for the communication
between a producer/consumer pair is composed by a data queue,
two counters and a series of semaphores. The data queue is com-
posed by several data slots. The data queue can be allocated ei-
ther in shared memory or in local memory of SPE. A couple of
semaphores associated to each slot by means of synchronization be-
tween producer/consumer pairs is implemented. Semaphores and
counters are distributed and allocated in local storage to SPEs. When
a producer task generates a message, it locally checks the private
counter which contains the identifier of the free slot in the queue
and starts to poll the slot’s semaphore. When producer acquires
the semaphore, it starts writing the message. If the data queue is
allocated remotely (either in shared memory or in local memory to
consumer) a DMA transfer is issued. When the message is ready,
the producer signals this by releasing consumer’s semaphore. If
producer and consumer reside on different SPEs, this is the only
bus access for the entire synchronization process. We set up a
communication and synchronization library abstracting away low
level architectural details to programmers, such as memory maps
or explicit management of semaphores, DMA transfers and shared
memory.

As previously mentioned, all the information about queues (i.e.
structure physical addresses, ids, etc.) are stored in the task ta-
ble which is filled at boot time: this brings to more efficient both
communication and syncronization since the hand-shaking address
negotiations are done only once and not every time a task is sched-
uled.

6. EXPERIMENTAL RESULTS

6.1 Case study
In this section we show an example of how to use Cellflow to

build a parallel application. The selected case study is an instance
of a software radio application. A software radio receives its input
from a data source (the digitized antenna output), while its output is
connected to a digital audio output device. As Figure 5 shows, the
main dataflow is a pipeline with a band-pass filter for the desired

Figure 5: Data flow graph for a software FM radio

frequency, a demodulator, and an equalizer. The most intuitive and
quick way to translate this data-flow into code using Cellflow is to
map every node in the chart to a task. From the developer prespec-
tive, he/she will just implement the kernel code of these functional
nodes and configure the application template to build the overall
task graph (i.e. to specify to the run-time environment both com-
munication and synchronization constraints between tasks). Figure
6 gives a simple view of the flow-graph and of the final implemen-
tation of the target software radio application.

Figure 6: Simple dataflow graph of a software FM radio versus
C code.

The above described pipeline implementation of the software ra-
dio application is the simplest way to map the data-flow graph into
code. In order to increase the parallelism, the same benchmarch
can be implemented splitting tasks in several sub-tasks, making
the data-flow graph parallelism more explicit. More in detail, the
equalizer task can be viewed as a more complex sub-graph com-
posed by different filters: it is made up of a split-join, where each
child adjusts the gain over a particular frequency range, followed
by a filter that adds together the outputs of each of the bands. As
Figure 7 shows, the equalizer is composed by a series of band-pass
filters running in parallel, with their outputs added together. The
band-pass filter can be viewed in turn as the subtraction between
two low-pass filters which work at different frequency, with the
overall result feeded to an amplifier. In the overall implementa-
tion through Cellflow (see Figure 8(a)), the translation of this more
complex data-flow graph will only reflect a different configuration
of the application template (i.e. with more tasks and a different
communication and synchronization tree) and the implementation
of more fine-grained kernel tasks (i.e. for the implemetation of the
low-pass filter, the subtracer block and the amplifier).



Figure 7: Flow graph for an equalizer.

6.2 Performance Analysis
In this section we analyize the speedup achieved by Cellflow on

of three real-life applications, namely Mat-mult, FFT and Software
Radio.

Mat-mult is a block matrix multiplication: each task executes a
matrix multiplication between an input matrix and a private operand
matrix, and then feeds its output to the following task. The platform
receives a continuous flow of input matrices and produces a contin-
uous flow of output matrices. This benchmark is representative of
a wider class of applications for embedded systems with high data
parallelism, like image and sound filters. The FFT benchmark is an
implementation of the Fast Fourier Transform. Conceptually it is a
single pipeline, but the main path is duplicated into a split-join to
expose parallelism (see Figure 8(b))

Figure 8: (a)Complex data-flow graph for the Software Radio.
(b)FFT-benchmark flow graph.

The Software Radio implementation has been described in sec-
tion 6.1.

Figure 9: Benchmark results. Speedup is normalized against
the execution with 1 SPE.

We carried on our analysis on a Sony PlayStation 3, which repre-
sents an inexpensive solution to work with Cell processor. The per-
formance results for the three examples are shown in Figure 9. The

figure presents the performance results obtained when running an
increasing number of SPEs scaled to the case when 1 SPE is used.
The Mat-mult benchmark scales almost perfectly w.r.t. the theo-
retical speed-up limit, thus proving the efficiency of our run-time
environment and its almost negligible overhead. Also in the case of
FFT an increasing number of SPEs brings to perceptible speed-ups.
The software radio benchmark instead shows good speedup until
only three SPEs: there is a path in the graph which duration bounds
the speed up. More performance improvement can be reached in
this case using software pipeline optimization.

6.3 Validation of optimizer solutions
To analyze the quality of our optimizer allocator, we performed

experiments on a large set of synthetically generated task graphs.
A task-graph generator has been implemented, so that it is possible
to obtain a large number of pseudo-random test cases. To explore
applications with different characteristics, the generator can be con-
figured to produce task graphs with specific features, such as:
- Number of tasks;
- Average number of communication arcs between tasks;
- Average queue buffer size;
- Buffer and program data location;
- Average task execution time.
For test purposes, we produced three sets of task graphs: one with
15-task instances, one with 25-task instances and one with 30 tasks
per instance. The test instances have then been processed by both
our optimal and heuristic (list scheduling algorithm and Round-
Robin allocator) solvers.

At this point, we had to profile the behaviour of applications (we
were mainly interested in task execution times). Application pro-
filing can be easily done running the applications on IBM Full-
System Simulator, or using the profiling tool that comes with the
Cell SDK, but the slowness of the former and the inaccuracy of
the latter would prevent to run computationally intensive and pre-
cise tests. The best choice was to run the code on real hardware.
Thus, all our experimental tests have been conducted using all the
available SPEs (i.e. six for PlayStation 3): this is the worst case in
terms of synchronization, communication and bus usage, as well as
complexity of scheduling and allocation problem.

We compared for each instance the heuristic allocation and schedul-
ing with the optimal ones. Figure 10 shows the percentage differ-

Figure 10: Histogram of the optimality gap on 100 instances.

ence (normalized on 100 instances) of heuristic solutions with re-
spect to the optimal ones. For the 37% of the instances, the heuris-
tic and the exact solutions matched, for the remaining instances the
heuristic optimizer produced sub-optimal results, with up to a 35%
optimality gap.

Figure 11 represents the average performance (application exe-
cution time) for each set of tests (15, 25 and 30 tasks). This proves
that the error does not grow too rapidly with the number of tasks,



Figure 11: Comparison of average application execution times.

but remains around 15%. These experiments confirm that the op-
timal solver achieves significant better results, but also that the list
scheduler with round-robin allocator provides resonable solutions
for critical or very large instances.

6.4 Detailed comparison between optimal and
heuristic approaches

In this section we perform a detailed comparison, on a mean-
ingful case study, of the solution generated by the complete solver
with that provided by the heuristic one. Figure12 shows the task
graph of the selected instance. It is a complex graph, composed by
25 tasks, connected through 63 communication edges. The Gantt
charts depicted in Figure13 shows a pictural overview of the solu-
tions found by the optimal (top) and the heuristic (bottom) solvers

Created with aiSee V2.2 (ERP-Version) (c) AbsInt Angewandte Informatik GmbH. Commercial use prohibited!

Figure 12: Task graph of the case study bench.

The heuristic solver finds a significantly slower solution than the
complete solver, with a 20% optimality gap. There are two main
reasons for this results, originating from sub-optimal choices in
both scheduling and allocation:
- the list scheduling algorithm gives low priority to task 10, there-
fore it can not start very soon as done in the optimal solution. This

Figure 13: Comparison between optimal (top) and heuristic
(bottom) schedule.

forces 24 to end later, since tasks 24, 23, 19 and 10 are dependant
from each other.
- the Round-Robin allocation algorithm tries to load balance the
number of tasks per SPE, so it allocates task 16, 21 and 22 on SPEs
3, 4 and 5, without exploiting the opportunity to use SPEs with
lower utilization.

7. CONCLUSIONS
We propose a complete framework, called Cellflow, to help pro-

grammers in software implementation on the Cell Broadband En-
gine processor. Cellflow is composed by an off-line development
framework and an on-line runtime support, and experimental re-
sults demonstrate the efficiency and viability of our solution.

8. ACKNOWLEDGEMENT
The work described in this publication was supported by the

PREDATOR Project funded by the European Community’s 7th Frame-
work Programme, Contract FP7-ICT-216008.

9. REFERENCES
[1] Benini, L., Bertozzi, D., Guerri, A., Milano, M.: Allocation and scheduling for MPSOCs via decomposition

and no-good generation. In: Proc. of the Int.l Conference inPrinciples and Practice of Constraint
Programming (CP 2005).

[2] Benini, L., Bertozzi, D., Guerri, A., Milano, M.: Allocation, Scheduling and Voltage Scaling on Energy Aware
MPSoCs. In: Proc. of the Int.l Conference on Integration of Artificial Intelligence and Operations Research
techniques in Constraint Programming (CPAIOR 2006).

[3] L.Benini, M. Lombardi, M. Mantovani, M. Milano and M. Ruggiero Multi-stage Benders Decomposition for
Optimizing Multicore Architectures. In: Proc. of the Int.l Conference on Integration of Artificial Intelligence
and Operations Research techniques in Constraint Programming (CPAIOR 2008), to appear.

[4] Bockmayr, A., N. Pisaruk. Detecting infeasibility and generating cuts for MIP using CP. Int. Workshop
Integration AI OR Techniques Constraint Programming Combin. Optim. Problems CP-AI-OR03, Montreal,
Canada, 2003.

[5] I. E. Grossmann and V. Jain. Algorithms for hybrid milp/cp models for a class of optimization problems.
INFORMS Journal on Computing, 13:258–276, 2001.

[6] Hooker, J.N., Ottosson, G.: Logic-based benders decomposition. Mathematical Programming 96 (2003) 33–60

[7] J. N. Hooker. A hybrid method for planning and scheduling. In: Proc. of the 10th Intern. Conference on
Principles and Practice of Constraint Programming - CP 2004, pages 305–316, Toronto, Canada, Sept. 2004.
Springer.

[8] J. N. Hooker. Planning and scheduling to minimize tardiness. In: Proc. of the 11th Intern. Conference on
Principles and Practice of Constraint Programming - CP 2005, pages 314–327, Sites, Spain, Sept. 2005.
Springer.

[9] R. Sadykov, L.A. Wolsey. Integer Programming and Constraint Programming in Solving a Multimachine
Assignment Scheduling Problem with Deadlines and Release Dates. INFORMS Journal on Computing Vol.
18, No. 2, 2006, pp.209-217.

[10] A. Eichenberger and et al. Optimizing compiler for the cell processor. InPACT ’05: Proceedings of the 14th
International Conference on Parallel Architectures and Compilation Techniques, pages 161–172, Washington,
DC, USA, 2005. IEEE Computer Society.

[11] H. El-Rewini, H. H. Ali, and T. Lewis. Task scheduling inmultiprocessing systems.Computer, 28(12):27–37,
1995.

[12] M. Kistler, M. Perrone, and F. Petrini. Cell multiprocessor communication network: Built for speed.IEEE
Micro, 26(3):10–23, 2006.

[13] D. Kunzman, G. Zheng, E. Bohm, and L. V. Kale. Charm++, offload api, and the cell processor. In
Proceedings of PMUP Workshop at PACT’06, 2006.

[14] M. D. McCool. Data-parallel programming on the cell be andthe gpu using the rapidmind development
platform. InGSPx Multicore Applications Conference, 2006.

[15] D. Pham and et al. The design and implementation of a first-generation cell processor.IEEE International
Solid-State Circuits Conference ISSCC. 2005, pages 184–592 Vol. 1, 2005.

[16] X. D. Zhang, Q. J. Li, R. Rabbah, and S. Amarasinghe. A lightweight streaming layer for multicore execution.
In Workshop on Design, Architecture and Simulation of Chip Multi-Processors, 2007.

[17] M. Ohara, H. Inoue, Y. Sohda, H. Komatsu, T. Nakatani MPI microtask for programming the Cell Broadband
Engine processor InIBM System Journal, vol 45, N. 1, 2006

[18] D. Zhang, Q. J. Li, R. Rabbah, S. Amarasinghe A Lightweight Streaming Layer for Multicore Execution In
Proceedings of Workshop on Design, Architecture and Simulation of Chip Multi-Processors, dasCMP 2007


