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Abstract

Integrating design and verification becomes more and
more important due to the increasing complexity of today’s
circuits and systems. SystemVerilog is a description lan-
guage that embeds verification goals with the help of Sys-
temVerilog Assertions (SVAs). Often SVAs are used in sim-
ulation based verification. But in the recent past first appli-
cations in formal verification have been considered, too.

In this paper we present an approach to prove SVAs by
induction based Bounded Model Checking (BMC). Since
checking SVAs is computationally very complex, we define
a subset which is sufficient for many practical purposes. For
each restriction a rationale is given. The creation of the
BMC instance for this subset is explained in detail. Case
studies show the application of our approach.

1. Introduction

Steadily increasing complexity of circuit and system de-
sign demands a more and more elaborated design flow.
Within this flow ensuring functional correctness of a design
is one of the bottlenecks. One way to address this problem
is the tight integration of design and verification tasks. To
this end new description languages embed the verification
objectives in the design description.

One such case is assertion based verification [6]. As a
concrete example SystemVerilog [7] includes SystemVerilog
Assertions (SVAs). Often these assertions are used to cross-
check the behavior while a design is exercised. But relying
on simulation based verification approaches is inherently in-
complete. Only a few of the possible scenarios can be con-
sidered. In contrast model checking [2] proves the validity
of an assertion for any possible situation.

Model checking of SVAs is PSPACE-complete even for
a “simple subset” [3]. If more elaborated features, like
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intersection of regular expressions, the use of local vari-
ables, or instantiation of properties are used, the problem
becomes EXPSPACE-complete [3]. However, a number of
researchers considered synthesis of SVAs into finite state
machines [4, 8]. Once an assertion is synthesized model
checking can be formulated as a reachability analysis on the
product machine of design and assertion. This leads to the
above mentioned complexity issues.

Bounded Model Checking (BMC) [1] has been shown
to be much more efficient for practical verification prob-
lems. BMC reduces the verification problem to a problem
of Boolean Satisfiability (SAT) and then searches for coun-
terexamples in executions whose length is bounded. Espe-
cially induction proofs [11] for safety properties are very
efficient [12]. Therefore, proving SVA properties using in-
duction based BMC is considered in this work.

Checking SVAs is computationally very complex in gen-
eral while for practical purposes a subset is sufficient. In this
work we

1. identify a subset of SVAs which guarantees SAT in-
stances of acceptable size,

2. discuss the restrictions (i.e. give reasons why some
SVA operators are not supported), and

3. give a detailed description of the translation of SVAs
into a BMC instance.

Our approach handles safety properties that argue over
a bounded number of time steps. Liveness properties, the
use of local variables and infinite sequences are excluded.
Furthermore, a single clock signal is assumed.

First, the restrictions on SVAs are introduced and the ra-
tionale for each restriction is discussed. For the resulting
subset of SVAs the transformation into a SAT instance is ex-
plained in detail. This transformation is non-trivial since the
respective time information of the sequences has to be deter-
mined first. Some case studies at the end of this paper show,
that the defined subset can be used to prove useful properties
for a given design.

This paper is structured as follows: The basics of BMC
and SVAs are revisited in the next section. Here, also the in-
ternal representation of SVAs as used in this work is given.



In Section 3 the supported subset and restrictions on SVAs
are introduced. The construction of a BMC instance is de-
scribed in Section 4, i.e. the determination of the time infor-
mation as well as the encoding of some exemplary opera-
tions are introduced. Section 5 shows the application of our
approach in terms of some case studies. Finally, conclusions
are drawn.

2. Preliminaries

In this work we present the application of BMC to SVA
properties. To keep the paper self-contained the basics of
BMC and SVAs are given in this section. Afterwards the
internal representation of SVAs, which is used in this work,
is introduced.

2.1. Bounded Model Checking

In the original formulation, BMC starts from the ini-
tial state and searches for counterexamples of increasing
length [1]. A property is finally proven if the state space
diameter is reached. In contrast induction based BMC can
prove the validity of a safety property using a significant
smaller problem instance [11]. The proof becomes even
more simple if the initial state for a property is not restricted
at all. Theoretically this may cause “false negatives”: the
property fails in an unreachable state. But in practice a ver-
ification engineer can usually supply an assumption to de-
fine a valid state. The property is then checked under this
assumption. Similar approaches have been applied to com-
mercial designs [12]. This type of properties is considered
here.

More formally, the design is unrolled for tbnd cycles and
the property is attached to the unrolled design. The symbol
f tbnd

δ denotes the propositional formula describing the de-
sign δ unrolled for tbnd time steps. A second propositional
formula fP describes the property P . This formula is sat-
isfiable iff the property holds under a certain assignment.
Thus, the verification problem is reduced to proving the un-
satisfiability of fP ∧ f tbnd

δ , i.e. there does not exist an input
and state assignment to the design such that the property is
violated.

Finding a satisfying assignment yields a counterexample,
i.e. a trace x0 . . . xtbnd of length tbnd that provides values for
the primary inputs x of δ at each time step.

2.2. Assertions in SystemVerilog

SystemVerilog provides two kinds of assertions: Immedi-
ate assertions, which check if an expression in a procedural
block is true at a given instance of time, and concurrent as-
sertions, which check a behavior of the design over a period
of time. Handling immediate assertions is straight forward;
therefore we concentrate on concurrent assertions in the fol-
lowing.

A concurrent assertion P – also called SVA property – is
checked each time when a clock event clkevent as spec-
ified in the assertion occurs:

always assert property (@(clkevent) P)
The occurrence of the clock event also triggers the proceed-
ing of time.

The atoms of concurrent assertions are so called se-
quences. A sequence R is a regular expression that describes
the behavior of signals over time. The semantics is defined
with respect to traces. On a given trace a sequence either
matches or does not match. All SVA sequences can be de-
scribed using the abstract syntax

R ::= b|(1, v = e)|(R)|(R ##1 R)|(R ##0 R)|
(R or R)|(R intersect R)|first match(R)|
R [∗0]|R [∗1 : $],

where R denotes a sequence, b denotes a Boolean expres-
sion, v denotes a local variable name, and e denotes an ex-
pression.

An SVA property P is composed of sequences, i.e.

P ::= R|(P )| not P |(P or P )|(P and P )|
(R |− > P )|disable iff(b)P.

Additionally, recursive properties may be defined using
instantiation. The semantics of sequences and properties is
explained in more detail in [7].

2.3. Internal Representation of SVAs

In the following we assume that properties are given by a
graphical structure similar to the parse tree.

A terminal is a signal of the circuit which is considered
by an SVA. In the following all terminals of an assertion are
stored in the set T .

The set O contains the operations of SVA properties and
sequences. Besides the basic operators given in the abstract
syntax above, derived operators (e.g. and for sequences) are
also in O to directly translate them into the BMC instance.

An SVA property is represented by a Directed Acyclic
Graph (DAG) G = (V,E). For each operation of the asser-
tion (i.e. each subexpression) a vertex v ∈ V exists, which
has one or two predecessors first(v), second(v) ∈ V (the
operands). The leaves of the DAG represent the terminals
of the assertion.

The function operation : V → O ∪ T maps each vertex
v ∈ V to its respective operation op ∈ O or – if v is a leaf –
to its respective terminal t ∈ T .

3. Supported Subset of SVAs

The aim of this work is to apply induction based BMC
to SVAs within acceptable run times and moderate memory
requirements. To this end a subset of SVAs is defined and
some further restrictions are applied:

• Reachability analysis is not applied. Reachability anal-
ysis is typically very expensive, while often a valid
state with respect to a property can be described by a
designer.



• The problem instance to check a property must be
within an acceptable size. For that reason the length of
traces that have to be considered is restricted to a fixed
upper bound that does not depend on the design but
only on the property. This restriction is acceptable for
most designs since they typically respond to requests
within a bounded time.

The case study in Section 5 shows, that the supported subset
of SVAs is powerful enough to define useful properties. In
the following, the restrictions applied to the different layers
of SVAs are discussed.

3.1. Clock Events

The clock event that triggers a property might be a com-
plex description. To decide whether a clock event oc-
curs, corresponds to checking a Linear Temporal Logic
(LTL) [10] property of the form GF (clkevent). On the
other hand a circuit design often has an intrinsic notion of
time defined by a dedicated clock signal clk. Thinking in
terms of properties related to clk-ticks is natural to the de-
signer and verification engineer.

Therefore we assume a single clock signal clk for the de-
sign under verification and that all assertions and registers
are triggered by the rising edge of this signal, i.e. the prop-
erty has the form
always assert property(@(posedge clk)P).

As a result the occurrence of the clock event does not
have to be checked, but is guaranteed. Assuming this re-
striction, we remove the clock event from the description of
a property in the following and simply write P .

3.2. Sequence Layer

Most operators of the sequence layer are supported. Ex-
ceptions are the [∗1 : $]-operator, the first match-operator
and local variables.

The operator [∗1 : $] describes a sequence with an un-
specified upper bound. To decide whether all traces of a
design match (or do not match) such a sequence, the de-
sign may have be unrolled to up to its sequential depth1.
As a result the size of the problem instance depends on the
design and may be proportional to the number of states of
the design. Therefore the operator [∗1 : $] is currently not
supported. This guarantees that a sequence argues over a
bounded number tbnd of time steps.

The first match-operator triggers a property only once
after the initial state. Similar to the previous consideration
this first match depends on the design: to decide that the
match never occurs, the design has to be unrolled up to its
sequential depth. Therefore this operator is also excluded
from the supported subset.

Moreover, local variables are excluded from consider-
ation. It has been proven that supporting local variables
makes the model checking problem EXPSPACE-complete
[3] in general. One approach which addresses this problem

1The sequential depth is the longest trace where any state only occurs
once.

has been introduced in [8]. Investigating whether local vari-
ables can be supported within our restricted subset is left for
future work.

This leads to the following syntax for the supported sub-
set of sequences:

R ::= b|(R)|(R ##1 R)|(R ##0 R)|(R or R)|
(R intersect R)|R [∗0]|R

3.3. Property Layer

Further restrictions apply to the property layer. The indi-
vidual operators and whether they can be supported safely is
discussed in the following.

Assume that for a given sequence R a Boolean formula
fR is available that is satisfiable iff the design may produce
a trace x0 . . . xtbnd that matches R (the creation of fR is ex-
plained in Section 4). Now, given an SVA property P , a
Boolean formula fP is created that is unsatisfiable iff the
property holds in all states and under all traces. Iff the un-
derlying SAT problem is satisfiable, the property fails and a
counterexample can be derived from the solution.

The most simple property is a sequence: P = R. A
counterexample is a trace of the design where R does not
match. This property is encoded as the formula fP = fR ∧
f tbnd

δ , i.e. the design is unrolled for tbnd time steps and the
sequence is not matched. Thus, a property consisting of a
single sequence is supported, if the sequence conforms to
the subset defined above.

Given a property P ′, a new property P = not P ′ can
be derived. Assume, for any given trace of length tbnd the
validity of P ′ can be decided using fP ′ . Thus the validity
of P on any trace is known. Therefore the formula fP =
fP ′ ∧ f tbnd

δ is satisfiable, iff there exists a trace of length
tbnd such that P does not hold. Note, that here the bounded
length is necessary to decide whether P holds or not. This
guarantees that this decision is never pending due to future
obligations formulated in the property.

Composed properties using the operators or and and can
be handled similarly, if both operands are supported.

An implication P = R |− > P ′ holds iff P ′ holds each
time after R matches, i.e. the following formula is satisfi-
able, iff P does not hold: fP = (fR ∧ fP ′) ∧ f tbnd

δ . Thus,
implications are supported, if P ′ and R can be handled.

The operator disable iff disables checking a property af-
ter a certain condition has been met. This operator is not
supported for similar reasons as the first match-operator.

This leads to the following syntax for the supported sub-
set of SVA properties:

P ::= R|(P )|not R|(P or P )|(P and P )|(R|− > P )

Recursive properties are not considered as they may be
of unbounded length as the following example shows:

property P(a);
a and (1’b1 |=> P(a));
endproperty

The previous observations rely on the assumption that a
sequence R can be translated into a formula fR. This step is
explained in the next section.



Figure 1. Different possibilities

4. Matching Sequences

Sequences can be seen as the atoms of SVAs. Therefore
we show how to decide whether an unrolled design may pro-
duce a trace that matches a given sequence or not. The se-
quences considered here are of bounded length tbnd. This
length is determined in a first stage. Moreover, for each se-
quence the earliest time step for the evaluation and the latest
time step are determined. Based on this information, the se-
quence is unrolled in the second stage. Before explaining
the algorithm, a motivating example shows some of the dif-
ficulties during this process.

4.1. Motivating Example

Attaching a simple sequence to the appropriate signals
in the unrolled design is straight forward. For example, the
sequence a ##1 b refers to signal a in the initial time step
and to b in the next time step. If multiple sequences are
joined by operators, the referenced time step depends on the
evaluation of previous operations of the sequence and thus is
not fixed. Consider the sequence (R1 and R2) ##1 R3)2.
By definition, R3 is evaluated one time step after the first
part (R1 and R2) is matched. The first part is matched after
R1 and R2 are matched. As a result the time step to start
matching R3 depends on the evaluation of the first part.

Example 1 Consider the sequence3

((a ##[2..3] b) and (c ##[1..4] d)) ##1 e.

The time steps for the consideration of signals a, b, c and d
are directly given. To match e, first of all the result of the
and -operation has to be known. Thus, the sequence above
may be described by the formula4

(((a0∧b2)∨(a0∧b3))∧((c0∧d1)∨· · ·∨(c0∧d4)))∧e1+x,

where the concrete time step, in which signal e is considered,
is unknown (denoted by e1+x).

2The sequence-operator and is a derived operator [7].
3The interval operator ##[a..b] is derived from the basic operators

##1 and or .
4A signal is considered in the time step denoted by the index.

Figure 1 shows four of the possible combinations (the
shortest and the longest one) which match the complete se-
quence. Signal e has to be considered at time step 3 at the
earliest and at time step 5 at the latest. Furthermore, the
whole sequence holds e.g. at time step 3 only if signal a and
c hold in time step 0, signal b holds in time step 2 and sig-
nal d holds in time step 1 or 2, respectively. That is, the
sequence is unrolled to the following propositional formula:

(((a0 ∧ b2) ∧ ((c0 ∧ d1) ∨ (c0 ∧ d2))) ∧ e3)
∨ ((((a0 ∧ b2) ∨ (a0 ∧ b3))

∧((c0 ∧ d1) ∨ (c0 ∧ d2) ∨ (c0 ∧ d3))) ∧ e4)
∨ ((((a0 ∧ b2) ∨ (a0 ∧ b3)) ∧ (c0 ∧ d4)) ∧ e5)

Thus, the time steps at which signals (or operations of a se-
quence) have to be considered are not fixed but depend on
the evaluation of previous operations. Since concrete time
steps are needed to unroll a property, these time spans have
to be calculated.

4.2. Determining Time Information

As shown in Example 1, each operator and terminal have
to be considered at multiple time steps. For this purpose we
use the following definition:

Definition 1 The time span, during which an operation or
a terminal of a sequence has to be considered, is denoted by
an interval I , i.e. a closed bounded set of positive integers
I = [l..h] = {x | l ≤ x ≤ h}. Furthermore, the maximum
of two intervals I1 and I2 is defined by

max(I1, I2) = [max(l1, l2)..max(h1, h2)].

The sum of two intervals I1 and I2 is defined by

I1 + I2 = [(l1 + l2)..(h1 + h2)].

Based on the internal representation of SVA properties
(see Section 2.3) and the previous definition we provide an
algorithm that

1. calculates the time spans for each subsequence and

2. unrolls the sequence for the formal proof.

The calculation of the time spans is done by a depth-first
search over all operations of the sequence, i.e. over all ver-
tices of the DAG starting from the root vertex. For each
operation (i.e. for each v ∈ V ) a function calcTimeInfo is re-
cursively called. The pseudo-code of this function is shown
in Figure 2. The algorithm starts at the root vertex with the
argument I = [0..0]. Then, the calculation proceeds in four
steps for the current vertex:

(a) Calculating the time span I1st for the first operand
(lines 4-8),

(b) if necessary, modifying I depending on the operation
(lines 10-15),



(1) calcTimeInfo (I)
(2) // I is the time information from already

considered operations or initial [0..0]
(3) – Step (a) ——————————-
(4) pred = first(v);
(5) if (operation(pred) ∈ T )
(6) I1st = I;
(7) else
(8) I1st = pred.calcTimeInfo(I);
(9) – Step (b) ——————————-

(10) if (operation(v) == int)
(11) I = I1st + Iint;
(12) if (operation(v) == | =>)
(13) I = I1st + [1..1];
(14) else if (. . . )
(15) // similar for other operations

(16) – Step (c) ——————————-
(17) pred = second(v);
(18) if (operation(pred) ∈ T )
(19) I2nd = I;
(20) else
(21) I2nd = pred.calcTimeInfo(I);
(22) – Step (d) ——————————-
(23) if (operation(v) == and)
(24) Iv = max(I1st, I2nd);
(25) else if (operation(v) == int)
(26) Iv = I2nd;
(27) else if (. . . )
(28) // similar for other operations
(29) return Iv;

Figure 2. Determining time information for vertex v ∈ V

(c) calculating the time span I2nd for the second operand
(lines 17-21), and

(d) determining the time span Iv for the current operation
(lines 23-28).

Steps (a) and (c) are done by recursive calls of calcTime-
Info. First, the respective operand is acquired (line 4/17). If
this operand is a terminal of the sequence (i.e. a signal of the
circuit), the current value of I is still the time span in which
this operand (i.e. this signal) becomes relevant (line 6/19).
Otherwise, the operand is another operation and calcTime-
Info is recursively called to determine the time span of this
operation (line 8/21).

In some cases the interval I has to be adjusted before the
second operand is considered. This is done in step (b). De-
pending on the current operation the value of I is changed
(lines 10-15). For example if an SVA interval operator [a : b]
is considered, the interval Iint = [##a..b] of this sequence
is added to I1st resulting in the time span, in which the
second operand starts to evaluate. Note, for some opera-
tions (e.g. and ) this modification is not necessary, since both
operands are evaluated independently of each other.

Finally, in step (d) the time span Iv for the current opera-
tion is determined and returned. Again, this depends on the
type of the operation. For example, sequences are evaluated
at the same time step as the second operand (i.e. Iv = I2nd).
In contrast e.g. for an and -operation both operands can be
within independent time spans. Since both operands have
to be evaluated to perform an and , the maximum of both
intervals is calculated (i.e. Iv = max(I1st, I2nd)).

Example 2 The following sequence is used to illustrate the
algorithm in more detail:

f ##[1..2] (((a##[2..3] b) and (c##[1..4] d))##1 e)

Figure 3 shows the resulting time spans for this sequence.
Each operation (vertex) of the sequence is represented by a
box. Within the boxes the calculated time spans I1st and

Figure 3. Example for time information

I2nd for the operands (first and second row) as well as Iv

for the operation itself (last row) are shown. Furthermore,
the respective parameter I and the return values of the re-
cursive calls (equal to Iv of the last operation) are annotated
at the respective edges. As mentioned above each depth-first
search starts with the initial interval I = [0..0].

The sequence ##[1..2] is considered first. Here, the first
operand is a terminal of the sequence. Thus, this operand
becomes relevant at time step 0 only (I1st = I = [0..0]).
Since the interval has to be considered, the second operand
(and all subordinate operations) matches one or two time
steps later. Thus, calcTimeInfo is recursively called with
I = [0..0] + [1..2] = [1..2] for the second operand. The
base case of this recursion is reached at operation ##[2..3].
Here, both operands are terminals resulting in I1st = I and
I2nd = I , while between these assignments I is modified be-
cause of the interval (i.e. I = [1..2] + [2..3] = [3..5]). This
also applies to the interval ##[1..4] which is considered next
(because of the and -operation this is done independently
from interval ##[2..3]). In doing so, for both operands of
the and -operation the time span is known (I1st = [3..5] and
I2nd = [2..6]). Since both operands have to be considered



to perform the and , the earliest time step, in which this can
be done is max(3, 2) = 3; the latest is max(5, 6) = 6.
Thus, the and -operation is evaluated within the time span
Iv = [3..6]. In the same way, the time spans of the remain-
ing operations are calculated.

Overall, when all recursive calls of calcTimeInfo termi-
nate the following information is available: (1) the num-
ber of time frames tbnd the sequence needs to evaluate and
(2) for each vertex v the time span Iv within the subsequence
rooted at v has to be evaluated. While (1) provides the num-
ber of time steps the design has to be unrolled, the time spans
are needed to unroll the sequence.

4.3. Unrolling Sequences

If the time spans of all operations are known, the se-
quence can be encoded as a Boolean formula fR. In the
following an abstract description of this transformation is
given for the whole formula at first. A more detailed de-
scription for some concrete operations follows.

The subsequence rooted at a vertex v ∈ V has to be eval-
uated for each time step i ∈ Iv . The corresponding con-
straints are denoted by cv

i . Whether all constraints in cv
i are

met, is stored by an auxiliary variable av
i :

cv
i ⇔ av

i

Remark 1 Since a terminal (represented by v ∈ V ) can be
encoded as a single variable the auxiliary variable av

i can
be omitted and instead cv

i can be used directly. However,
to simplify the notation av

i is used to represent terminals as
well.

Using this notation, the conjunction of all constraints
av

i ⇔ cv
i encodes the sequence (i.e. the whole formula fR):

fR =
∧

v∈V

h∧
i=l

av
i ⇔ cv

i , with Iv = [l..h]

Example 3 Again, the sequence defined in Section 4.2 is
considered. All the operations are encoded with respect to
their time span as constraints c

##[2:3]
3 , . . . , c

##[2:3]
5 ,cand

3 ,
. . . , cand

6 and so on. The Boolean formula fR representing
the whole sequence is:

fR = a##[2:3]
3 ⇔ c

##[2:3]
3 ∧ · · · ∧ a##[2:3]

5 ⇔ c
##[2:3]
5

∧aand
3 ⇔ cand

3 ∧ · · · ∧ aand
6 ⇔ cand

6 ∧ . . .

Now, the encoding for two selected operations is de-
scribed in more detail. Here, the encoding of the respective
constraints cv

i depends on the type of the operation (i.e. on
operation(v)) and on the time step i to be represented.

First, the interval operation (represented by vint) is con-
sidered. Here, the interval (e.g. ##[2..3]) may not be appli-
cable in all time steps since this contradicts the determined
intervals of the operands (i.e. the time steps when operands
match). The following example illustrates the problem.

Example 4 The constraints to encode the operation
a ##[2..3] b of the sequence defined in Section 4.2 are cre-
ated. The second operand (signal b) is considered in the
same time step as the whole subsequence matches. The first
operand (signal a) is considered two or three time steps ear-
lier. Thus, when considering time step 3, one may expect
that signal a is considered within time steps [0..1]. But since
this contradicts Ia = [1..2], signal a is considered at time
step 1 only.

Thus, the operation A ##[l..h] B represented by vint

with A (B) is represented by a = first(v) (b = second(v))
and Ia = [la..ha] is encoded for time step i ∈ Ivint by cvint

i
as follows:

ab
i ∧ (

min(i−l,ha)∨
j=max(i−h,la)

aa
j )

As a second example, the and -operation (represented
by vand) is considered. Here, both operands are evaluated
starting from the same initial state but may argue over differ-
ent time spans. However, the and -operation does not match
until both operands match. Thus, if this operation is evalu-
ated at a time step i ∈ Ivand

one operand has to be evaluated
at this time step, too, while the other has to be evaluated at
the same or an earlier time step. Since again, the determined
time spans I1st and I2nd of the respective operands have
to be considered, this results in three different cases: The
first operand evaluates at a time step greater than the higher
bound of the time span of the other operand or vice versa or
both operands evaluate at the same time step.

More formally, consider the operation A and B repre-
sented by vertex vand. A is represented by vertex a =
first(v) with Ia = [la..ha] and B is represented by ver-
tex b = second(v) with Ib = [lb..hb]. Then, the constraint
cvand
i encodes A and B for time step i ∈ Ivand

as follows:

aa
i ∧ (ab

hb
∨ · · · ∨ ab

lb
) , if hb < i ≤ ha

ab
i ∧ (aa

ha
∨ · · · ∨ aa

la) , if hA < i ≤ hb

(aa
i ∧ (ab

i−1 ∨ · · · ∨ ab
lb

))

∨(ab
i ∧ (aa

i−1 ∨ · · · ∨ aa
la)) , if i ≤ ha, hb

Example 5 The constraint representing the operation
opand = (a ##[2..3] b) and (c ##[1..4] d) in the 6th time
step of the sequence defined in Section 4.2 is:

copand

6 ⇔ v
op##[1..4]
6 ∧ (vop##[2..3]

5 ∨ · · · ∨ v
op##[2..3]
3 )

Besides these two encodings, the constraints cv
i for all

other operations (represented by v ∈ V ) are encoded in
a similar way5. In total no more than O(|V | · tbnd) vari-
ables are needed to encode the SystemVerilog sequence as a
propositional formula (i.e. linear in the number of operations
and the maximal number tbnd of time steps). Moreover, in
many cases this number is smaller, since many operations
are only considered over a smaller time span than [0..tbnd].

5Due due page limitation we will not describe the remaining ones.



Using this transformation of a sequence R into a propo-
sitional formula fR and the time information to determine
tbnd, a property P can be verified as explained in Sec-
tion 3. Some case studies using this encoding for proving
SVA properties are given in the next section.

5. Case Studies

The proposed algorithms have been implemented in C++.
MiniSat [5] is used as the underlying SAT solver. In the
following we show in some case studies how the defined
subset can be used to prove useful properties for a given
design. Therefore, we consider a scalable arbiter in more
detail. Furthermore, we provide further results for a counter
and an ALU. All experiments have been carried out on an
AMD64 4200+ with 2GB of main memory.

5.1. Arbiter

We tested our approach with an arbiter as described
in [9]. The arbiter is a scalable design that handles the ac-
cess of n clients to a resource. Usually priority scheduling
is used to serve the clients. In the case that there are too
many requests the arbiter switches to a round robin scheme.
This guarantees that all clients can access the resource after
at most 2n time steps. The arbiter is implemented by a com-
position of n cells. Cell i (1 ≤ i ≤ n) is connected to the
client with id i by a request input reqi and an acknowledge
output acki. The client with the lowest id has the highest
priority. If a client signals a request, the client waits for at
most 2n clock cycles before it is served regardless of other
client’s requests.

Two properties are discussed in the following: (1) A
safety property, guaranteeing that no two clients access the
resource at the same time, and (2) a liveness property, prov-
ing the access to the resource within 2n clock cycles.

The SVA code for the safety property (1) and n = 3 is
composed of several parts:

• Assumption – only a single token is present:
property sumToken;
(t1 + t2 + t3) == 1;
endproperty;

• Proof objective – at most one ack-signal is 1:
property sumAck;
(ack1 + ack2 + ack3) <= 1;
endproperty;

• Complete property:
assert property (@ (posedge clk)
not (sumToken ) or sumAck);

For this property one time step is considered. The size of the
problem instance is proportional to the number of clients n.

To check the liveness property (2), the property has to be
formulated as a safety property, saying that client i is always
served within 2n clock cycles, if it keeps the reqi until acki

is granted. Again, the property is composed of several parts.
The SVA code for n = 3 and a client with id 3 is:

• Assumption – sumToken (as above).

• Assumption – client 3 keeps req3 until granted ack3:
property keepReq;
req3 and
( !ack3 |=> req3) and
( !ack3 ##1 !ack3 |=> req3) and
. . .
( !ack3 ##1 . . . ##1 !ack3 |=> req3);
endproperty;

• Proof objective – within 2n cycles ack3 is granted:
property ackWithin2n;
not ( !ack3 ##1 !ack3 . . . ##1 !ack3);
endproperty;

• Complete property:
assert property (@ (posedge clk)
not (sumToken and keepReq) or
ackWithin2n);

To check these properties, both the SVA as well as the
design have been encoded into a BMC instance as described
in Section 4. For different values of n, the size of the re-
spective instances (in terms of number of variables) and the
run time needed to solve the properties are given in Figure 4
and Figure 5, respectively.

As expected, the size of the instance for the safety prop-
erty (1) is proportional to the number of clients. In contrast,
the liveness property (2) has quadratic size. Here, not only
the design grows with increasing n but also the number of
considered time steps (i.e. 2n).

Regarding run time, similar effects can be observed.
Proving the second property (arguing over 2n clock cycles)
takes significantly more run time than proving the first one
(arguing over one time step)6. However, both properties can
be checked efficiently. Further experimental evaluation is
documented in the next section.

5.2. Counter and ALU

The proposed approach has been applied to two more de-
signs: a counter and a simple Arithmetic Logic Unit (ALU).
The counter is a finite state machine with eight states rep-
resenting binary encodings of the natural numbers from 0
to 7. The finite state machine steps through the states in
increasing order and wraps around after state 7. The ALU
performs a set of operations as e.g. addition, multiplication
and division. On these circuits a set of (failing and holding)
properties – given in SVAs – are checked.

The results are summarized in Table 1. Column ASSER-
TION lists the properties with the result (holds or fails). The
number of time steps tbnd the design has been unrolled are
given in column tbnd. The following two columns give the
number of variables and the number of clauses of the SAT
instances, respectively. Finally, the run time of the BMC
check (in CPU seconds) is given in the last column. All
checks are performed within a short run time.

6Note the logarithmic scale of the y-axis.
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Figure 5. Run-times to check SVAs

6. Conclusion

In this paper we presented an approach to prove SVA
properties using induction based BMC. To handle the com-
plexity we defined a subset, which is powerful enough for
practical purposes. The reasons for restricting SVAs have
been discussed in detail. Furthermore, the algorithm which
handles SVA sequences with different matching times has
been explained. Experiments on different designs show, that
the restricted subset is powerful enough to describe useful
properties that are efficiently checked by our approach.
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