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Abstract

This paper proposes an efficient implementation
of the H.264/AVC motion estimation algorithm in
hardware and software. Furthermore, a complete co-
design trajectory from the HW/SW partitioning to
the actual implementation on two different targets is
shown. A Leon 3 + FPGA and an ARM + Montium
implementation have been successfully realized. The
FPGA implementation shows a speed-up of 43.6x
whereas the Montium implementation shows a speed-
up of 22.0x, both compared to a software-only im-
plementation. Power consumption is 42.0 mW for the
FPGA and 60.2 mW for the Montium. A co-simulation
tool, CosiMate, is used to achieve both on target
implementations in just five weeks.

Keywords: H.264/AVC, motion estimation,
HW/SW co-design, co-simulation, implementation,
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1. Introduction

The H.264/Advanced Video Coding codec is widely
used for video applications, for example in HDTYV,
but also in mobile video and internet applications.
The increasing video resolutions and the increasing
demand for real-time encoding require the use of faster
processors. However, power consumption should be
kept to a minimum. Using profiling, we found that
the motion estimation algorithm is the most computa-
tionally intensive part of the encoder. We implement
this part efficiently on two different targets. In doing
this we show a complete co-design trajectory from the
partitioning to the actual implementation. Besides an
implementation on a FPGA, the Montium seems an
interesting target to compare to, based on the results
in [3]. Co-simulation is used to perform continuous
functional testing of the HW/SW co-design.
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Figure 1. lllustration of the H.264/AVC encoder

1.1. The H.264/AVC codec

H.264/AVC is an industry standard for compressing
video [1]. The H.264/AVC standard was first published
in 2003. It offers better compression efficiency and
greater flexibility in compressing, transmitting and
storing video. Compared with standards such as
MPEG-2 and MPEG-4 Visual, H.264/AVC can deliver
better image quality at the same compressed bitrate, or
deliver the same image quality at a lower bitrate. The
improved compression performance comes at the price
of increased computational cost [2].

The H.264/AVC encoder contains three steps: pre-
diction, transformation/quantization and entropy en-
coding. Motion estimation is part of the prediction step.

Figure 1 illustrates the H.264/AVC encoder. In the
top left corner the current frame for a video is shown.
A frame is divided in 16x16 pixel macroblocks.
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Although the entire frame is shown, we illustrate the
encoder only for the white macroblock. The motion
estimator has two inputs: a macroblock (MB) from
the current frame and a 48 x48 pixel search area (SA)
from the previous frame (shown in the bottom right of
figure 1). The motion estimator finds the best matching
block in the search area, requiring 1089 comparisons.
The H.264/AVC standard does not specify how this
should be implemented. A possible implementation is
shown in the following pseudocode:

for (MB=0; MB < 1089; MB++) {

for(pixel=0, SAD=0; pixel < 256; pixel++) {
SAD += abs(MB[pixel] — SA[pixell]);
}

if (SAD < bestSAD)
bestSAD = SAD;
}

Two nested loops are used to iterate over all possible
comparisons. The comparisons are evaluated by using
the sum of absolute differences (SAD). Encoding one
second of a 176x144 pixel QCIF video (99 mac-
roblocks per frame) at 25 frames per second requires
1089 x 256 x 99 x 25 = 689,990,400 SAD operations.
The vector between the position of the macroblock in
the current frame and the position of the best matching
block in the previous frame is called the motion vector.
The current macroblock and the best matching block
are subtracted, shown in the top right of figure 1. The
result is a residual, which is transformed, scaled and
quantized. The quantized transform coefficients and the
motion data are then stored or transmitted.

The H.264/AVC standard allows for seven modes
with variable block sizes: i.e. a 16x16 pixel mac-
roblock can be divided in smaller blocks to yield a
better compression efficiency.

1.2. Target platforms

Some algorithms perform best on fine-grain recon-
figurable architectures whereas others perform better
on coarse-grain reconfigurable tiles or general pur-
pose processors (GPPs). Our two target platforms are
Leon 3 + FPGA and ARM + Montium [3]. Both in-
corporate a GPP and a reconfigurable architecture. The
general purpose processors we use are an ARM and a
Leon 3. The Leon 3 is an open-source synthesizable
VHDL model of a 32-bit processor compliant with the
SPARC V8 architecture. Two types of reconfigurable
architectures are used: fine-grain (FPGA) and coarse-
grain (Montium).

The Montium Tile Processor (TP) is a 16-bit word
level reconfigurable architecture that obtains significant
lower energy consumption than DSPs for fixed-point
digital signal processing algorithms. The Montium
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TP targets computationally intensive algorithm kernels
that are dominant in both power consumption and
execution time. In contrast to a conventional DSP,
the Montium TP does not have a fixed instruction
set, but is configured with the functionality required
by the algorithm at hand. The Montiums performance
and energy efficiency are comparable to ASIC. The
Montium TP has a low silicon cost, as the core is
very small. For instance, the silicon area of a single
Montium TP with 10 KB of embedded SRAM is
2.4 mm? in 0.13 yum CMOS technology. A Montium
TP consists of five identical ALUs to exploit spatial
concurrency in order to enhance performance [3].

The rest of this paper is organized as follows.
Section 2 gives a brief overview of the related work on
motion estimation and co-simulation. Analysis results
are presented in section 3. Our proposed solution is
divided in two parts, a virtual prototype and multiple
target implementations, and can be found in section 4.
Results are presented in section 5. In section 6 we
present the conclusions and finally section 7 gives
suggestions for future work.

2. Related work

According to [4] and [5] motion estimation is
the most computationally intensive part in a typical
video encoder. In recent years many architectures have
been proposed for more efficient motion estimation in
H.264/AVC, where HW/SW co-design is used to move
the motion estimation algorithm to parallel hardware.
Song et al. [6] focus on the algorithm itself, whereas
other papers implement their proposed solution in
hardware. Different hardware architectures have been
proposed, such as ASIC, GPU and FPGA. The focus
is on achieving the highest data reuse and minimal
operation redundancy to achieve highly efficient mo-
tion estimation. While the objective in [5] and [7] is
to outperform a software-only implementation, Ou et
al. [4] aim at meeting the real time requirements of
new video applications at the lowest possible clock
speed. In [8] the main goal is to achieve low power
consumption. The characteristics of these works are
summarized in table 2. In this table the values for
‘Max. fps QCIF’ represent the maximum number of
QCIF frames that can be processed at the specified
clock frequency. The ‘MHz 30 QCIF’ values give the
minimum clock frequency needed for processing QCIF
at 30 fps.

In figure 2 two co-design approaches are identified.
The first co-design approach is to develop both the
software and hardware separately. Verification does not
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Figure 2. Co-design approaches

take place until the design is deployed to a specific
hardware platform. This can lead to late detection
of mistakes in the HW/SW partitioning and imple-
mentation. This traditional approach is visualized in
figure 2a.

In the second approach all subsystems are verified in
one environment. However, this is a difficult task [9].
There are currently three methods to verify heteroge-
neous systems [9]. One is to represent all systems in
one HDL, which can involve model degradation. The
second method is to use a simulator that supports all
different HDLs used and the third method is to use
different simulators for each system and verify the
integrated system using co-simulation. According to
Vicente et al. [10], co-simulation is useful in HW/SW
co-design. The co-simulation design approach is de-
picted in figure 2b.

Co-simulation can be done by either connecting two
simulators, known as direct coupling, or by the use of a
co-simulation backplane. Furukawa et al. [11] propose
a backplane tool and perform a case study in which
an MPEG encoder/decoder using multiple processors
is designed. However considerable drawbacks such
as a performance bottleneck caused by centralized
communication have been identified [9].

Groothuis et al. [12] show that the issues encoun-
tered in HW/SW co-design, such as late integration and
testing, apply as well for mechatronic system design.
Besides a hardware and software view, here also the
mechanics view and the control view need to be
integrated. A generic tool-independent co-simulation
framework is needed to allow for testing and verifica-
tion between views.

3. Analysis

We use the reference C code for the H.264/AVC
encoder (JM 8.6) from ISO [13] as a basis for our own
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Table 1. Profiling results

Foreman Husky
Function Samples % Samples %
FPBlockMotionSearch 203,685 32 464,592 45
dct_luma 69,365 11 73,475 7
biari_encode_symbol 45,455 8 93,972 9

(a) Fixed Block Size Motion Estimation (Mode 1)

Foreman Husky
Function Samples % Samples %
FPBlockMotionSearch 1,364,340 64 3,044,848 73
SATD 111,033 5 121,831 3
UMVLineX 86,373 4 233,444 6

(b) Variable Block Size Motion Estimation (Modes 1-7)

C code. To find a computationally intensive function,
profiling is performed using OProfile [14]. The results
are summarized in table 1 and are in accordance
with [5]. The profiling results indicate that the motion
estimation function takes up to 45% of the CPU power
when the first mode, a fixed block size of 16x16, is
used.

The reference code contains optimizations to break
out of the loops shown in the pseudo code, which
reduces the computational intensity.

To analyze the performance of the implementation
two short videos, ‘Foreman’ and ‘Husky’, are used.
Four characteristic macroblocks are selected from
these videos: ‘Foreman low’, ‘Foreman avg’, ‘Foreman
high’ and ‘Husky avg’. The macroblocks represent low,
average and high computational intensity.

4. Proposed solution

Our proposed solution is to first develop a fully
functional virtual prototype which is verified by means
of co-simulation. Using this virtual prototype two
target implementations can be implemented and tested.

4.1. Virtual prototype

In the reference code a video file is read from disk,
encoding is performed and the result is written to disk.
Instead of executing the motion estimation function
on the host CPU we want to offload this function to
dedicated hardware.

For the virtual prototype VHDL is used to describe
this hardware. A co-simulation with our C code is
used to perform functional verification of the integrated
design. The co-simulation environment which is used
for this verification is shown in figure 3. The VHDL
code is developed in such a way that it has the same
behavior as the reference code, while exploiting the
parallel architecture available in the target platforms.
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Figure 3. The co-simulation environment
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Figure 4. The co-simulation connection diagram

A state machine is designed that keeps track of the var-
ious states of the algorithm: initializing data (reading
macroblock and reference frame), performing the SAD
calculations (four SADs are calculated in parallel) and
returning the result. For every macroblock and search
area provided to the VHDL code the motion data is
returned. The two optimizations to reduce the number
of loop iterations are also included.

The co-simulation connection diagram is shown in
figure 4. The connection diagram provides insight in
the data that is transferred between C and VHDL. This
is useful to map the connection diagram on any bus on
any target.

4.2. Multiple target implementations

Using the virtual prototype a stripped version of the
C code is created, while leaving the VHDL unchanged.
The stripped C code only contains the part relevant
for performance analysis. A parallel effort is started
to implement the stripped version on two targets: the
Leon 3 + FPGA and the ARM + Montium platforms.

For the Leon 3 + FPGA implementation the VHDL
motion estimation code from the virtual prototype can
again be used without alteration, while the interface
with the co-simulation backplane has to be mapped
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Figure 5. Multiple target implementations

to the actual AMBA APB bus. Figure 5a gives an
overview of this target platform.

For the ARM + Montium implementation the trans-
lation from VHDL to Montium code is made by
hand. The algorithm on the Montium simultaneously
calculates four SADs on four ALUs. A fifth ALU
keeps track of the motion data, for which it uses
the intermediate outputs of the first four ALUs. An
exhaustive motion search algorithm is implemented in
which all possible motion vectors are evaluated one
by one. The optimizations implemented in VHDL, and
thus on the FPGA, are designed for, but due to time
reasons not yet implemented on the Montium.

The mapping from the co-simulation backplane to
the AMBA AHB bus between the ARM and the
Montium is simplified by using the features available
in an operating system running on the ARM. Figure 5b
gives an overview of this target platform.

5. Results and discussion

We use co-simulation to gain insight in the operation
of the reference code. Bit by bit parts of the motion
estimation algorithm are transferred from C to VHDL.
The co-simulation allows for designing in many short
iterations while verifying functional behavior. The re-
sult is a fully functional virtual prototype.

This virtual prototype is given to a Montium expert
while we worked on the Leon 3 + FPGA implemen-
tation in parallel. Knowing that the virtual prototype
has been verified allows for easier localization of
errors introduced by the implementation process. The
connection diagram in figure 4, which is part of the
virtual prototype, is used to provide insight in the
dataflow.

5.1. Implementation results

The FPGA target platform is an Altera Cy-
clone III EP3C25 FPGA. The FPGA clock frequency
is 100 MHz, both for the Leon 3 softcore and our
synchronous hardware. The number of QCIF frames
processed per second depends on the amount of mo-
tion in the source video. In the analysis we found
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Table 2. Overview of related work and this work

[41 [81 [71 [51 [16] This work
Type ASIC ASIC ASIC GPU FPGA FPGA Montium
Tech. [um] 0.18 025 0.18 0.11 022 0.065 0.13
Search range  16x16 16x16 16x16 16x16 16x16 16x16 16x16
Block sizes All 16x16 All 16x16 All 16x16 16x16
Gate count 597k 35k 88k - 7381V 339D 392k
Freq. [MHz] 200 290 290 400 120 100 100
Max. fps QCIF 7,895 481 706 54 296 205 116
MHz 30 QCIF 0.76 18.07 12.32 222.55 12.17 1463 2584

1) For FPGA this number is the number of Logic Elements

Table 3. Number of clock cycles (x1000) on different
target platforms

Foreman Husky
Platform Low Avg High Avg
Leon 3 910 1100 2515 2150
Leon 3 + FPGA 5.0 22 63 49
ARM 100 840 2390 1870

ARM + Montium 85 85 85 85
ARM + Montium® 6.1 27 77 60
2) Estimation for non-exhaustive search

four characteristic macroblocks. Of these character-
istic maroblocks, two were simulated on the Leon 3
(without offloading) in ModelSim: ‘Foreman low’ and
‘Husky avg’. From this simulation the number of
clockcycles needed to process these macroblocks is
found. Based on these numbers the number of clock-
cycles for ‘Foreman avg’ and ‘Foreman high’ were
estimated. All four macroblocks were also simulated
on the Leon 3 + FPGA in ModelSim. The results,
which do not include the number of clockcycles re-
quired for data transfer, can be found in table 3. From
these numbers the speed-up gained by implementing
a HW/SW partitioning can be determined. The total
(static and dynamic) power consumption for executing
the motion estimation algorithm on the FPGA has
been estimated by using the Altera Cyclone PowerPlay
Early Power Estimator worksheet [15]. The speed-
up and power consumption figures can be found in
table 4. With regard to the bus usage sending all
data to the FPGA takes 11,543 clock cycles while
receiving the motion data takes 18 clock cycles. Table 2
shows the characteristics of related work and this work.
The maximum number of QCIF frames processed per
second and the minimum clock frequency needed to
process QCIF frames at 30 fps have been determined
based on ‘Husky avg’.

The Montium target platform consists of an
ARMO946E-S and a Xilinx Virtex XC2V8000 FPGA
containing the Montium TP. The clock frequency is
100 MHz, both for the ARM and the Montium. The
ARM uses the same optimizations present in the
Leon 3 and Leon 3 + VHDL implementations. The
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Table 4. Speed-up factors and power consumption

Foreman Husky
Platform Metric Low Avg High Avg
FPGA Speed-up 181 503 39.8 43.6
Power [mW] 420 420 42.0 42.0
Montium Speed-up 1.17 9.88 28.1 22.0
Power [mW] 60.2 60.2 60.2 60.2
Montium? Speed-up 164 31.1 31.0 31.2
Power [mW] 43 19.1 545 42.5

ARM + Montium implementation uses an exhaustive
search instead. Therefore the number of clockcycles
needed to process a macroblock is always the same.
For the case that the ARM + Montium implementation
includes these optimizations we have estimated the
number of clockcycles. The results can be found in
table 3. From these numbers the speed-up gained
by implementing a HW/SW partitioning can be de-
termined. The power consumption for executing the
motion estimation algorithm on the Montium has been
determined by using the power numbers found in [17].
In [17] a FFT-512 algorithm has been implemented
on the Montium which resembles our algorithm. The
static and dynamic power consumption add up to
60.2 mW at 100 MHz. The speed-up and power
consumption figures can be found in table 4. With
regard to the bus usage sending all data to the Montium
takes 18,945 clock cycles whereas receiving the motion
data takes 16,384 clock cycles. The high bus overhead
is mainly caused by the operating system running on
the ARM.

6. Conclusions

The Leon 3 + FPGA implementation shows a speed-
up of 43.6x and a power consumption of 42.0 mW.
The ARM + Montium implementation shows a speed-
up of 22.0x and a power consumption of 60.2 mW.
When we compare both implementations we see that
the Leon 3 + FPGA outperforms the ARM + Mon-
tium, with respect to power consumption as well as
performance.

We accomplished a full HW/SW co-design trajec-
tory, including two target implementations, in five
weeks. Co-simulation, using CosiMate, proved to be
essential in achieving this. The two main advantages
of co-simulation are: enabling short design iterations
and providing insight in the dataflow through the
connection diagram.

Translation of the virtual prototype to two target
platforms was successful. Considering the short de-
velopment time, our implementations show significant
speed-ups.
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7. Future work

The resulting architectures are outperformed by the
related work, but there is room for improvements.
For the current partitioning loop unrolling can be
employed to increase the encoding speed. For further
improvements a different HW/SW partitioning should
be investigated, which is facilitated by our virtual
prototyping approach. Also the design can be extended
to include all seven modes of blocksizes to further
improve encoder efficiency and quality.

Regarding the data transfer between hardware and
software two optimizations are possible: using a better
bus and re-using data. In the current approach the com-
plete search area is transmitted for each macroblock
while a high correlation between consecutive search
areas may be expected.

Our current implementation is not yet a fully func-
tional encoder. For a real-life application the full en-
coder needs to be implemented. The virtual prototype
can be used as a starting point in this effort.

Finally, regarding this virtual prototype, an effort can
be made to incorporate a more realistic bus into the co-
simulation in order to facilitate the mapping from the
co-simulation connection diagram to the actual bus.
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