Synthesizing Reversible Circuits for Irreversible Functions

D. Michael Miller!

Robert Wille2

Gerhard W. Dueck?®

IDepartment of Computer Science, University of Victoria, Canada
2Group for Computer Architecture (Prof. Rolf Drechsler), University of Bremen, Germany
3Faculty of Computer Science, University of New Brunswick, Canada
mmiller @uvic.ca, rwille@informatik.uni-bremen.de, gdueck@unb.ca

Abstract—Many reversible circuit synthesis procedures have
been proposed. A common feature of most methods is that the
initial specification must be a completely-specified reversible
function. However, often the desired functionality is a, possibly
incompletely-specified, irreversible function. In this paper, we
consider how to fully automate the process of synthesizing a
reversible function given an irreversible specification with par-
ticular emphasis on how to embed an irreversible function into
a reversible specification. Systematic procedures are presented
and results for benchmark problems show the methods produce
very good results compared to earlier methods.

I. INTRODUCTION

The synthesis of reversible circuits has received much
attention [1]-[17] due to the application of these techniques
in low-power design and emerging (e.g. quantum, optical,
DNA) computing technologies. These synthesis methods
generally take a completely-specified reversible function as
the starting point. Hence, to realize an irreversible function,
which is most often the objective, usually requires that the
function is embedded in a larger reversible specification.
Such an embedding is not unique and the choice of em-
bedding can have a very significant effect on the quality of
the resulting circuit.

The process of embedding an irreversible function into
a reversible specification requires the addition of constant
inputs and garbage outputs as well as the assignment of
don’t-cares (DC) to ensure reversibility. For small functions,
a good embedding can often be found manually based on
knowledge of the structure of the irreversible function. In
contrast, this becomes harder and often prohibitive as the
function size grows.

In this paper, we consider the synthesis of a reversible
circuit for an irreversible function to consist of three steps:

1) Embed the target irreversible function in a completely-
specified reversible function,

2) Synthesize a circuit for this reversible function, and

3) Perform post-synthesis optimization.

In particular, we consider the embedding issue and the
circuit synthesis as separate steps so that any of the previ-
ously presented reversible synthesis methods can be applied.
However, we also show how knowledge of the nature
of the embedding can be used to simplify the synthesis

process. Post-synthesis optimization is here restricted to the
application of templates as described in [8].

The embedding problem requires the addition of extra
lines and the assignment of DC conditions to achieve a
completely-specified reversible function. The first is straight-
forward and we add the minimal number of lines possible
[18]. Three methods for automatically assigning the DC are
described and compared.

Other approaches to DC assignment when embedding
an irreversible function in a reversible specification can be
found in [5], [12], [17]. The method in [5] requires a very
high number of garbage lines while the method in [12]
generates circuits using gates with a high number of controls.
The approach in [17] is of note in that it applies to both
reversible and certain types of quantum gates. However, it is
potentially computationally very expensive as it uses genetic
algorithms and results are presented only for small circuits.
A SAT-based approach providing exact solutions for small
circuits can be found in [19].

Both the embedding and the synthesis approaches employ
heuristics and it is not surprising that the results can be very
sensitive to the ordering of the function outputs relative to
the function inputs. For an n-output function there are n!
output permutations and it is thus not feasible to synthesize
a circuit for each of them. Therefore, we employ a method
based on the ‘sifting’ method used to find good variable
orderings in decision diagrams. This approach examines on
the order of n? output permutations.

The main contributions of this paper are the study of
embedding techniques and the effect of output permutation
including the new sifting-based output permutation algo-
rithm. Details of synthesizing a circuit from the reversible
specification are not the main focus, and for clarity we
consider algorithms employing multi-control Toffoli gates.
However, the methods discussed are equally applicable when
synthesis methods targeting other reversible gates are used.

After reviewing the necessary background in Section II,
we show how irreversible functions can be embedded into
reversible specifications in Section III. The DC assignment
problem is addressed in Section IV. Then, the synthesis
approaches employed in our work are briefly reviewed in
Section V. The output permutation via sifting is discussed

in Section VI. The paper ends with experimental results
in Section VII and conclusions and suggestion for further
research in the final section.

II. BACKGROUND

This section provides the necessary background for the
development in this paper. Readers wishing more in-depth
treatment should consult the references.

Definition 1:

1) An n-variable Boolean function f(X), X =

{x1,29,....,2n} is a mapping f : B™ — B with
B =1{0,1}.

2) An n-input, m-output Boolean function is a system
of Boolean functions y; = f;(X),1 < i < m, that
will be more compactly written as F(X). Such a
function is referred to as a multiple-output function.
For simplicity, we will term an n-input, m-output
function an n x m function.

3) The multiple-output function F(X) is completely-
specified if the value of every output is defined
for every assignment to the inputs, otherwise it is
incompletely-specified.

4) F(X) is a reversible function iff n = m, the function
is completely-specified and it maps each input assign-
ment to a unique output assignment. A function that
is not reversible is termed irreversible.

We denote the truth table for an n x m function F(X)
as F. This table has 2" rows Fg,Fy,..., corresponding
to the assignments to the variables of X ordered in the
conventional manner with z; as the most significant variable.
F; will denote the i‘" row of the table and F; ; the j' entry
in that row, i.e. the assignment to f;. We refer to Fy as the
first row in the table, and say that F; occurs earlier than F;
if 1 < j.

Property 1: Since a p X p reversible function F' is a per-
mutation mapping 2% input patterns onto 2P output patterns,
F~1 always exists and is the inverse permutation.

A Boolean function f(X) can be expressed as a pos-
itive polarity Reed-Muller (PPRM) expansion f(X) =
@12;81 a;P; where a; € {0,1} and P; is the product term
containing those x; for which the 4" position in the binary
expansion of ¢ is 1. Since we only deal with the PPRM case
we will for brevity refer simply to RM.

The RM spectra of the size n identity function with
outputs yi, Y2, ...Yn has a single nonzero coefficient aqi—1
for each y; with all other coefficients 0.

Definition 2: The RM-distance of a reversible function
from the identity function is the total number of coefficients
for which its spectra differ from the spectra of the identity
function for the same number of variables.

A reversible function can be realized by a circuit com-
prised of a cascade of reversible gates with no fan-out or
feedback [20]. A reversible gate, itself realizes a reversible
function. Many reversible gates have been proposed [20]. We

Table I
MCT GATE QUANTUM COST.

m (n—m) > | cost m (n—m) > cost

1 1 8 5 62

2 1 8 1 100

3 5 8 0 253

4 13 9 6 74

5 2 26 9 1 128

5 0 29 9 0 509

6 3 38 10 7 36

6 1 52 10 1 152

6 0 61 10 0 1021

7 4 50 > 10 m — 3 12m — 34
7 1 80 > 10 1 24m — 88
7 0 125 > 10 0 2™ — 3

here consider circuits composed of multiple control Toffoli
gates which are defined as follows:

Definition 3: A multiple control Toffoli gate (MCT) with
target line x; and control lines {z; , x;,,..,x;, }, maps
(1,22, ., Tjy ooy Tn) 1O (T1, T2, ., Tiy Tiy - Tiy, B Ty ooy Tny)-
Note that all controls must be 1 for the target to be inverted.

An MCT gate with no controls always inverts the target
line and is thus the well-known NOT gate. An MCT gate
with a single control line is called a controlled-NOT gate.
The case of two control lines is the original Toffoli gate.

We follow the normal convention of using a € to indicate
the target line of an MCT gate and a @ to indicate the control
connections. We will use the notation M CT{Ct} where C
is the set of controls and ¢ is the target.

The number of gates in a circuit is a simple but not very
accurate measure of the circuit’s complexity. Here, we will
consider the quantum cost of a circuit which is taken as
the sum of the quantum costs of the individual gates with
no optimizations of neighboring gates. The quantum cost
of an MCT gate is given in Table I (using the calculations
introduced in [21] and further optimized in [18] and [22]).
In this table, m is the number of control and target lines for
the gate and n is the number of circuit lines.

A reversible circuit may have some number of constant
inputs and garbage outputs defined as follows:

Definition 4: An constant input is additional to the pri-
mary function inputs and is set to a fixed value for the circuit
to achieve the desired functionality.

Definition 5: A garbage output is additional to the pri-
mary function outputs and is thus a don’t-care output.

Example 1: Fig. 1 shows a cascade realizing the full
adder. This circuit consists of four MCT gates, one constant
input, two garbage outputs, and has a quantum cost of 12.

0 D D C
c & S
x P f g1
Yy — g2

Figure 1. Toffoli gate full adder.

Table II
EMBEDDING THE FULL ADDER INTO A REVERSIBLE FUNCTION.

acxy CSgg acxy CSgg
0000 00 - - 0000 | 0000
0001 01 - - 0001 0100
0010 OI - - 0010 | 0101
0011 10 - - 0011 1000
0100 Ol - - 0100 | 0110
0101 10 - - 0101 1001
0110 10 - - 0110 1010
0111 11 - - 0111 1100
1000 ---- 1000 | 0001
1001 - 1001 0010
1010 - 1010 | 0011
1011 - 1011 0111
1100 - 1100 1011
1101 - 1101 1101
1110 - 1110 1110
1111 - 1111 1111

() (b) (©)

III. EMBEDDING OF IRREVERSIBLE FUNCTIONS

In [18], it was shown that g = [loga(u1)] garbage outputs
are required to embed a completely-specified irreversible
function into a reversible function, where g is the maximum
number of times an output pattern is repeated in the truth
table of the irreversible function. For an n X m irreversible
function, this means the reversible function has m + ¢
outputs. Furthermore, ¢ constant inputs must be added such
that n+c=m+g.

Once the garbage outputs and constant inputs are added,
the critical issue is how to assign the DC in the expanded
truth table as shown in the following example.

Example 2: Consider the adder function shown in Ta-
ble II(a). This function has three inputs (the carry-in ¢ as well
as the two summands x and y) and two outputs (the carry-
out C and the sum S). This function is clearly irreversible
since the number of inputs differs from the number of
outputs. Since the output pattern 01 appears 3 times (as does
the output pattern 10) adding one additional output to the
function (leading to the same number of input and outputs)
can not make the function reversible. In fact, [loga2(3)] = 2
garbage outputs must be added and hence a constant input
must also be added. This is shown in Table II(b). Afterwards,
the DC must be assigned so that the resulting function is
reversible. One possible, albeit naive, embedding is shown
in Table II(c). This embedding was found by assigning the
garbage outputs to the patterns 00, 01, and 10 in order
for each of the output patterns in the top half of the table
and then completing the bottom half of the table using the
remaining available output patterns in numerical order.

To appreciate the complexity of choosing a DC assign-
ment, consider Table II(b). There are 4, 4, 3, 4, 2, 3, 2, and
4 choices for completing the DC in the top 8 rows of the
table, respectively for a total of 9,216 choices. The bottom 8
rows of the table can then be completed in 8! ways. Lastly,
the outputs can be permuted in 4! = 24 ways. Combining
these yields 9216 x 40320 x 24 = 8,918, 138, 880 possible

embeddings for this small example. Since the respective
embedding may have a significant effect on the synthesis
results (as will be shown in Section IV-D below), finding a
‘good’ assignment is an important non-trivial task.

IV. DC ASSIGNMENT

In this section, we present three novel methods for DC as-
signment to complete a reversible specification. We assume
that if the irreversible function is incompletely-specified,
then the DC in each truth table row will be preassigned
to minimize the Hamming distance between the input and
the output patterns. We always add the minimal number of
garbage outputs and constant inputs to achieve a reversible
specification. Lastly, all constant inputs are assigned the
value 0 and are always added as the most significant inputs
in the truth table. This leads to significant computational
advantage as shown below and results in a circuit overhead
of at most one NOT gate per constant input.

A. A Greedy Algorithm

The first two methods introduced here for assigning the
DC are motivated by the basic operation of transformation
based synthesis algorithms (see Section V-A). Those algo-
rithms choose gates to map each row of the truth table
to match the corresponding input pattern so that when all
rows have been considered the table represents the identity
function. It is thus reasonable to conjecture that assigning the
DC to minimize the Hamming distance of the output patterns
to the corresponding input patterns should help reduce the
number of gates required. The first method proposed uses a
simple greedy approach.

Algorithm 1: Greedy DC Assignment
Working from the top of the truth table downward:

1) For each distinct output assignment in the irreversible func-
tion, identify the target set of rows of the table containing
that pattern. Then, determine the set of output assignments
which are found by assigning the DC in all possible ways.
The candidates are arranged in ascending numerical order.

2) For each row in the target set in turn, choose the first
remaining candidate assignment with minimal Hamming
distance to the input assignment for that row.

B. Using the Hungarian Algorithm

Let S be the set of truth table rows sharing a common
output pattern in the irreversible function and let 7" be the
set of possible assignments to the DC to complete those
rows. |T| = 29 where ¢ is the number of garbage lines
added to permit the embedding of the irreversible function
into a reversible one. The DC assignment problem is to
associate each element of S with a unique element from 7.
Let K (.S;, T;) be the ‘cost’ of associating the DC assignment
T; with S;. K(S;,T;) is the Hamming distance between
the completely-specified truth table output pattern and the
corresponding input pattern when S; is completed using T}.
This formulation can be expressed in tabular form with a row
for each \S; and a column for each T with each K (S;,T}) in

Table III
REVERSIBLE EMBEDDINGS FOR THE FULL ADDER.

Greedy | XOR | Naive Greedy | XOR | Naive
acxy CSgg CSgg CSgg acxy CSgg CSgg CSgg
0000 0000 0000 0000 1000 1000 1000 0001
0001 0101 0111 0100 1001 0001 1111 0010
0010 0110 0110 0101 1010 0010 1110 0011
0011 1011 1001 1000 1011 0011 0001 0111
0100 0100 0100 0110 1100 1100 1100 1011
0101 1001 1011 1001 1101 1101 0011 1101
0110 1010 1010 1010 1110 1110 0010 1110
0111 1111 1101 1100 1111 0111 0101 1111

the corresponding table entry. Assigning the DC to minimize
the total Hamming distance is then a matter of choosing one
entry in each row such that those entries appear in unique
columns and such that the sum of the chosen entries is
minimal. This is a standard assignment problem.

The Hungarian algorithm (also known as the Kuhn-
Munkres and Munkres assignment algorithms) is a well-
known method [23] for solving the assignment problem in
polynomial time. We have implemented this algorithms and
results are reported below. The only issue of note here is
that storing the potentially very large assignment matrix
is avoided since Hamming distance is easily computed as
needed — in fact more quickly than a matrix access.

C. An XOR Based Method

The third method we consider for DC assignment is
based on the observation that for many functions a good
embedding of an irreversible function into a reversible one is
based upon setting the garbage outputs to XOR combinations
of the primary inputs. This is often the case for arithmetic
functions.

Algorithm 2: XOR-based DC Assignment
For 0 <1 < 2™:

1) Setk =i.

2) Setp=0,q=0.

3) For0<j < n:

a) If f; is a garbage output set ¢ = ¢ @ k;, and then set

pj =4q.
b) Otherwise set p; = Fj;.
4) If p represents an already assigned output pattern, increment
k and repeat from Step 2.
5) Set F; = p.

D. Example

Table III shows embeddings for the full adder using the
greedy and the XOR based methods as well as the naive
assignment from Table II(c). In this case, the assignment
produced by the Hungarian Algorithm method is the same
as the assignment for the Greedy method. The circuits
for each assignment found using the transformation-based
synthesis method [8] (see Section V-A) are shown in Fig. 2.
These circuits clearly show the importance of a good DC
assignment. The XOR-based method yields a circuit with
quantum costs of only 13 while the others yield costs of 27
and 44.

0 PV van C 0 DD C
x DD oD S z & S
Y D¢ g1 Y @ D¢ g1
c g2 c - g2

(a) Greedy assignment: (b) XOR assignment:
7 gates, quantum cost = 27 5 gates, quantum cost = 13

0 D Py D JaR) C
& R TANZA é e STl @ S
y Ll ER BTN S A i
c D4d bbbt »

(c) Naive assignment: 20 gates, quantum cost = 44

Figure 2. Circuits for the Embeddings in Table III.

V. SYNTHESIS AFTER DC ASSIGNMENT

After applying one of the above methods, or an alternative,
for DC assignment to embed an irreversible function into
a completely-specified reversible function, any reversible
circuit synthesis method can be applied. We briefly outline
two approaches used in the experimental evaluation later in
this paper. Furthermore, a combined approach as well as a
simplified synthesis method are proposed.

A. Transformation Based Synthesis

Transformation based synthesis for reversible functions
was introduced in [7]. The basic idea is to traverse the truth
table row by row beginning at the top (the 0*") row. At each
step gates are selected to transform the output assignment
to match the input assignment. These gates are chosen so
that they don’t alter rows earlier in the table. After all
rows are processed the table represents the identity function
and the sequence of gates identified in reverse order is a
circuit implementing the given reversible function. The order
of gates is reversed because the transformation of output
patterns to match input patterns is identifying gates from
the output side of the circuit.

Two improvements are possible based on the fact a
completely-specified function always has an inverse. First,
gates can be chosen to transform an input pattern to match an
output pattern if that is cheaper than the other way round.
Details can be found in [7]. The second improvement is
based on the following result:

Theorem 1: [24] If the cascade of MCT gates
G1,Go,...Gy realizes a reversible function F', then the
reverse cascade Gy, ..., Go, G realizes the inverse function
FL

Thus, the transformation based approach can be applied
to the inverse of the given function. Since heuristics are
used, there can be a significant difference in circuit cost for
a function and its inverse. This transformation method was
adapted to use the Reed-Muller (RM) spectra of a totally-
specified reversible function in [8], [9].

B. Reed-Muller Based Search Algorithm

A second approach introduced in [8] is a very simple
search method. At each step, by exhaustive enumeration, it
selects the Toffoli gate whose application to the function
specification results in the largest decrease of the RM-
distance to the identity function (see Definition 2). If no
gate application decreases the RM-distance to the identity,
a gate is chosen that results in the minimal increase in the
RM-distance. In both cases, if there is a tie between two or
more gates, the gate with the smallest control set is chosen.
If there is a tie based on the number of controls, the method
selects the first gate in lexicographic order. The work in [8],
[9] showed using RM spectra to be more effective than the
Walsh spectrum, used in [25].

This simple search approach has two major drawbacks.
First, the algorithm is not guaranteed to converge. Second,
the number of possible MCT gates at each stage of the search
can be prohibitive.

C. A Combined Algorithm

In [8], the non convergence issue was addressed by first
applying the transformation based algorithm and to use the
circuit produced as a bound when the search procedure
is applied. A more effective alternative is outlined in the
following algorithm:

Algorithm 3: Combined Synthesis Algorithm

1) Set size=1.

2) Consider all MCT gates with size—1 controls applied to the

function specification, i.e. at the output side of the circuit.
3) Choose a gate which most reduces the RM-distance to the
identity function. If there is a tie the first one encountered
is used. Apply the gate. If the function has been mapped to
the identity, stop; otherwise go back to Step 1.

4) If no gate can be found that decreases the RM-distance,
increment size. If size > maxSize go to Step 5, otherwise
go to Step 2.

5) Apply the RM spectra-based transformation synthesis algo-

rithm to complete the circuit.

This algorithm incorporates the advantages of the two
basic approaches. Using searching first often identifies gates
with few controls to begin the circuit that have a strong
influence across the function specification. The control value
size tends to limit the amount of searching required. We
have found that setting sizeLimit = 5 yields good results.
Resorting to the transformation based approach when search-
ing fails guarantees that a solution is found. The algorithm
can be extended by applying bi-directional techniques in
both the search and transformation based phases and can
be applied to the function and its inverse.

D. Simplified Synthesis

As noted above, we require that all constant inputs take
the value 0 and are always the most significant inputs in
the truth table. This means that the rows of the irreversible
function truth table are always embedded in the first rows of
the reversible function truth table while the remaining rows

are total DC. In particular, if the reversible function has
n primary inputs and c constant inputs we care about the
output for the first 2" rows of the truth table. The remaining
(2¢ — 1)2™ rows can be ignored.

Clearly, given the above construction, a transformation
based synthesis method that works row by row from the
top of the truth table can stop after transforming 2™ rows.
Because of this, it is not necessary to complete a DC
assignment beyond the (27)!" row.

It is not so obvious that this simplification also applies to
both the RM transformation and RM search methods.

1) RM Transformation Synthesis: RM transformation
synthesis can stop after the first 2 rows as described above
since, as was shown in [9], if the first p rows of the spectra
match the spectra of the identity, then the first p rows in the
truth table also match the identity.

2) RM Search Synthesis: Since we only care about the
first 2" rows, we can restrict the gate application to those
rows. Furthermore, the RM-distance metric need only be
computed over those rows. What goes on below them simply
does not matter and has no affect on the first 2" rows.

Note that when these simplifications are employed, bidi-
rectional synthesis methods can not be applied because we
are in fact not working with a completely-specified function
and thus have no definition of its inverse. Our experiments
show that stopping the synthesis after 2" rows and avoiding
circuitry to align DC rows outweighs the disadvantage of
not being able to apply bidirectional techniques.

VI. OPTIMIZATIONS
A. Template Matching

The application of templates to simplify a reversible
circuit was introduced in [7] based on the work on circuit
transformation rules in [26]. The approach has since been
significantly refined [8], [27]. Basically, template matching
searches a circuit for a set of gates that either occur together
or can be moved to occur together, and then replaces
those gates with a less costly set of gates with the same
functionality. We here use the templates reported in [8] and
use quantum cost as the metric.

Without going into detail, it should be clear that template
application can be very computationally expensive due to the
amount of searching required including finding appropriate
gate repositionings. For that reason, we use a basic set of
14 templates. If the best possible circuit is sought, Dueck
and Maslov’s [28] 220 templates can be used.

B. Output Permutation

Assuming the correspondence between the inputs and
outputs is not fixed a less costly circuit can often be
found by reordering the outputs in the specification and
resynthesizing. It is not practical to try all p! possibilities
for a problem with p outputs. We instead employ sifting
as suggested in [29]. A significant new idea here is that

rather than using sifting to position the outputs one by one
in the order specified, we use the extent to which an output
contributes to the RM-distance as a metric to order the sifting
of the outputs. The following outlines the basic output sifting
approach omitting specific detail on optimization and the
avoidance of resynthesizing the same specification.

Algorithm 4: Output Sifting
For a specification with p outputs (including garbage outputs):

1) Assign the DC using one of the methods above. Only the
first 2" rows need be assigned where n is the number of
non-constant inputs.

2) Repeat the following p times:

a) Choose an as yet unsifted output y; that most con-
tributes to the RM-distance between the specification
and the identity function.

b) Reorder the specification p times placing yy in each of
the p possible positions leaving the relative ordering of
the other outputs unchanged. Resynthesize the circuit
for each of these repositionings and keep track of
the position of y;, that gives the lowest quantum cost
circuit.

¢) Put ys into its best position and record the correspond-
ing circuit as the best seen to date.

3) Report the best circuit found throughout the sifting process.

This algorithm considers p? of the p! output orderings
so p? synthesis attempts are required. Hence the method
is expensive to apply for functions with a large number of
outputs but it is feasible for p up to 14. Results presented
below show it is quite effective.

VII. EXPERIMENTAL RESULTS

Table IV presents results for the incompletely-
specified benchmark functions available in RevLib
[30] (www.revlib.org). The number at the end of each
benchmark name is a unique identifier of the pla-files
from RevLib. Results are given for two synthesis methods
(combined and transformation based) and for each of the
DC assignment methods: greedy, Hungarian algorithm
based, and XOR based. The MCT gate count and quantum
cost are shown for each circuit. Furthermore, for each
benchmark, the best results in terms of quantum cost are
highlighted in bold. An AMD Athlon 3500+ with 1 GB
of memory was used for our experiments. Every circuit in
Table IV was found in less than 0.25 CPU seconds.

The results show no DC assignment method and synthesis
method pair is consistently the best. However, since the
execution times are relatively short, it is feasible to run
all combinations and choose the best circuit obtained. As
can be clearly seen, this leads to significant reductions.
For example, the synthesis results for function rd73_69
ranges from quantum cost of 1112 to quantum cost of
184 depending on the DC assignment method applied. An
improvement of nearly one order of magnitude is achieved.

Table V shows the effect of the sifting based output
permutation method described in Section VI-B followed
by template matching from [8]. The benchmark functions
from Table IV as well as a number of completely-specified

reversible benchmark functions from RevLib are considered.
The results labeled ‘Initial Synthesis’ are for the combined
synthesis approach with XOR-based DC assignment used
when needed. The section ‘Output Permutation (sifting)’
shows the results for the same synthesis approach when
sifting is employed. The percentage improvement in the
circuit quantum cost is shown with a blank entry indicating
no improvement.

The section labeled ‘“Template Matching” shows the result
of applying template matching (with 14 templates) to the
best circuit found by sifting. Again the improvement shown
is with respect to the circuit quantum cost.

The CPU seconds required for the initial synthesis, for
output permutation optimization, and for template matching
are shown with blank entries indicating the CPU time was
less than 0.01 CPU seconds. The time is quite reasonable
even for the larger circuits but the results indicate that
the time will grow significantly as the number of circuit
lines increases. This is largely due to the fact that our
current implementation uses truth tables. As anticipated, the
CPU requirement for synthesis is roughly n x n times the
time required for the initial synthesis. Template matching is
reasonably efficient but the time is significant for the circuits
with a large number of gates. However, recall that we here
use a set of 14 templates. The time is much higher if a large
set of templates is used.

Table V also compares the circuits after template match-
ing with prior results. Those marked with an asterisk are
from [8], the others are the best MCT result from the RevLib
web site as of March 2009. The quantum cost of our result is
shown as a percentage of the cost of the prior result for each
function. These comparisons show that the combination of
methods described here produce very good results. Indeed
there are some cases, where larger circuits are obtained, but
recall, that we are comparing the results of our synthesis
approach with the best ones obtained by various methods.
Furthermore, the circuits quoted from RevLib sometimes
uses more lines than the minimal which is what our methods
use. If we add these lines and apply some transformations,
our results come very close to the RevLib results and in
some instances are better.

VIII. CONCLUSIONS AND FUTURE RESEARCH

The first contribution of this paper is the presentation
of systematic and complete procedures to determine a re-
versible circuit for an irreversible function. The second
contribution is showing that by assigning the constant inputs
to 0 and placing them in the high order variable positions
in the truth table, both the DC assignment and the synthesis
tasks can be substantially simplified. The third contribution
is a sifting method for finding a good output permutation
which use the RM-distance metric to determine the order in
which the outputs are sifted.

The presented results show that the methods discussed can
be quite effective. However, as is often the case in complex

Table IV
COMPARISON OF DC ASSIGNMENT METHODS FOR TWO SYNTHESIS ALGORITHMS

Combined Synthesis Algorithm Transformation Synthesis Algorithm
Benchmark Greedy Hungarian XOR-based Greedy Hungarian XOR-based
n c g gates cost gates cost gates cost gates cost gates cost gates cost

decod24_10 4 2 0 7 11 7 11 7 11 7 11 7 11 7 11
rd32_19 4 1 2 5 13 5 13 5 13 5 17 5 17 5 17
4gt10_22 5 1 4 3 47 3 47 4 40 3 47 3 47 3 47
4gtl1_23 5 1 4 1 5 1 5 4 12 1 5 1 5 1 5
4gt12_24 5 1 4 3 55 3 55 6 62 3 55 3 55 3 55
4gt13_25 5 1 4 1 13 1 13 3 27 1 13 1 13 1 13
4gtd_20 5 1 4 6 58 6 58 9 65 7 79 7 79 7 79
4gt5_21 5 1 4 3 19 3 19 6 30 3 19 3 19 3 19
4mod5_8 5 1 4 7 19 7 19 5 9 9 25 9 25 9 25
4mod7_26 5 1 2 21 65 21 65 21 65 15 55 15 55 15 55
alu_9 5 0 4 9 65 16 72 28 224 12 64 16 68 32 252
mini-alu_84 5 1 3 22 110 26 114 25 125 22 98 28 108 22 110
one-two-three_27 5 2 2 9 33 9 33 9 33 9 33 9 33 9 33
decod24-enable_32 6 3 2 15 39 11 35 14 42 15 39 13 37 15 39
rd53_68 7 2 4 27 228 27 228 22 137 22 187 22 187 22 187
sym6_63 7 1 6 36 485 36 485 17 133 36 777 36 777 36 777
rd73_69 9 2 6 80 1112 80 1112 40 184 100 2187 100 2187 100 2187
sym9_71 10 1 9 76 1047 76 1047 51 573 210 4368 210 4368 210 4368
rd84_70 11 3 7 104 1823 104 1823 47 446 111 2100 111 2100 111 2100

design problems and when heuristics are employed, no
single method, or combination of methods, is universally the
best. In practice, it is necessary to try different approaches.
This can be costly since, while the DC assignment and syn-
thesis methods are themselves relatively fast, the application
of output permutation by sifting and template matching can
be very costly consuming many minutes of CPU time. We
are studying the benchmarks presented here and others to
see if there exist properties that will predict which approach
would be best for particular types of functions.

Our current implementations are limited as they store the
truth tables and the RM spectra as integer vectors. We are
in the process of migrating the methods to decision diagram
implementations to improve both the efficiency and the size
of problem that can be considered. Also, our implementation
of sifting for output permutation is very simplistic.

We are investigating how to handle DC in the target
irreversible function. One approach [5] is to use a minimizer
to assign the DC but that tends to increase the output
multiplicity and the number of garbage outputs and constant
inputs that must be added. Our current approach is to assign
the irreversible function DC to minimize the Hamming
distance between the input and output patterns in each truth
table row. Future research will consider other alternatives.

REFERENCES

[1] V. V. Shende, A. K. Prasad, I. L. Markov, and J. P. Hayes, “Reversible
logic circuit synthesis,” in Proc. Int’l Conf. on CAD, 2002, pp. 125—
132.

[2] A. Agrawal and N. Jha, “Reversible logic synthesis,” in Proc. Design,
Automation and Test in Europe, 2004, pp. 1384-1385.

[3] J. Donald and N. K. Jha, “Reversible logic synthesis with Fredkin
and Peres gates,” J. Emergin Technology Computing Systems, vol. 4,

no. 1, pp. 1-19, 2008.
[4] P. Gupta, A. Agrawal, and N. K. Jha, “An algorithm for synthesis of

reversible logic circuits,” IEEE Trans. on CAD, vol. 25, no. 11, pp.
2317-2330, Nov. 2006.

[5] Z. Guan, X. Qin, Z. Ge, and Y. Zhang, “Reversible synthesis with
minimum logic function,” in Proc. Conf. on Computational Intelli-
gence and Security, vol. 2, 2006, pp. 968-971.

[6] P. Kerntopf, “A new heuristic algorithm for reversible logic synthesis,”
in Proc. Design Automation Conf., 2004, pp. 834-837.

[7] D. M. Miller, D. Maslov, and G. W. Dueck, “A transformation based
algorithm for reversible logic synthesis,” in Proc. Design Automation
Conf., 2003, pp. 318-323.

[8] D. Maslov, G. W. Dueck, and D. M. Miller, “Techniques for the
synthesis of reversible Toffoli networks,” ACM Trans. Des. Autom.
Electron. Syst., vol. 12, no. 4, pp. 42.1-42.28, 2007.

[9] D. Maslov and D. M. Miller, “Reed-Muller spectra based synthesis of
reversible circuits using a quantum cost metric,” in 7th International
Symposium on Representations and Methodology of Future Comput-
ing Technologies (RM), 2005.

[10] M. Saeedi, M. Sedighi, and M. S. Zamani, “A novel synthesis
algorithm for reversible circuits,” in Proc. Int’l Conf. on CAD, 2007,
pp. 65-68.

[11] M. Saeedi, M. S. Zamani, and M. Sedighi, “On the behavior of
substitution-based reversible circuit synthesis algorithms: Investiga-
tion and improvement,” in Proc. IEEE Computer Society Symp. on
VLSI, 2007, pp. 428-436.

[12] K. Fazel, M. Thornton, and J. E. Rice, “ESOP-based Toffoli gate
cascade generation,” in Proceedings IEEE Pacific Rim Conference on
Communications, Computers and Signal Processing (PACRIM), 2007,
pp- 206-209.

[13] Z. Sasanian, M. Saeedi, M. Sedighi, and M. Zamani, “A cycle-
based synthesis algorithm for reversible logic,” in Proc. ASP Design
Automation Conf., 2009, pp. 745-750.

[14] Y. Zheng and C. Huang, “A novel Toffoli network synthesis algorithm
for reversible logic,” in Proc. ASP Design Automation Conf., 2009,
pp. 739-744.

[15] M. Saeedi, M. S. Zamani, and M. Sedighi, “Algebraic characterization
of CNOT-baed quantum circuits with its application to logic synthe-
sis,” in Proc. European Conf. on Digital Systems Design, 2007, pp.
339-346.

[16] D. Yuan, B. Yan, L. WenTao, and G. Yi, “Research and implemen-
tation of reversible logic synthesis algorithm in digital system,” in
Proc. Computer-Aided Indust. Design and Conceptual Design, 2006,
pp. 1-7.

[17] M. Mohammadi and M. Eshghi, “Heuristic methods to use don’t-
cares in automated design of reversible and quantum logic circuits,”
Quantum Information Processing, vol. 7, pp. 175-192, 2008.

Table V
EFFECT OF OUTPUT PERMUTATION BY SIFTING FOLLOWED BY TEMPLATE MATCHING

Benchmark Initial Synthesis Output Permutation (sifting) Template Matching Prior Results
n gates cost CPU gates cost % CPU gates cost % CPU gates cost %
3_17_6 3 6 14 6 14 6 14 6 14* 100.0%
ex-1_82 3 4 8 4 8 4 8 4 9 88.9%
fredkin_3 3 3 7 3 7 3 7 3 15 46.7%
ham3_28 3 5 9 3 7 22.2% 3 7 5 9%* 77.8%
miller_5 3 5 9 5 9 5 9 5 17 52.9%
peres_4 3 2 6 2 6 2 6 2 6 100.0%
toffoli_1 3 1 5 1 5 1 5 1 5 100.0%
4.49_7 4 22 54 16 36 33.3% 0.01 16 36 0.03 12 16 225.0%
aj-el1_81 4 14 34 13 33 2.9% 13 33 0.02 10 30 110.0%
decod24-enable_32 4 14 42 10 34 19.0% 9 33 2.9% 0.01 9 9 366.7%
hwb4_12 4 17 29 12 28 3.4% 0.01 11 23 17.9% 0.02 11 23% 100.0%
rd32_19 4 5 13 5 13 6 10 23.1% 4 12 83.3%
toffoli_double_2 4 2 10 4 8 20.0% 4 8 2 10 80.0%
4gt10_22 5 4 40 4 40 5 37 7.5% 5 37 100.0%
4gtl1_23 5 4 12 1 5 58.3% 1 5 4 8 62.5%
4gt12_24 5 6 62 4 36 41.9% 4 36 5 41 87.8%
4gt13_25 5 3 27 1 13 51.9% 1 13 3 15 86.7%
4gt4_20 5 9 65 14 46 29.2% 13 45 2.2% 0.03 6 54 83.3%
4gt5_21 5 6 30 4 16 46.7% 4 16 5 21 76.2%
4mod5_8 5 5 9 5 9 5 9 5 13* 69.2%
4mod7_26 5 21 65 18 62 4.6% 17 57 8.1% 0.06 6 38 150.0%
alu_9 5 28 224 22 110 50.9% 23 107 2.7% 0.08 6 14 764.3%
hwb5_13 5 39 179 48 136 24.0% 0.07 46 126 7.4% 0.26 24 114* 110.5%
mini-alu_84 5 25 125 21 97 22.4% 21 93 4.1% 0.07 6 62 150.0%
mod5d1_16 5 7 15 7 15 0.02 7 11 26.7% 0.01 7 11 100.0%
mod5d2_17 5 8 16 9 13 18.8% 0.02 9 13 0.01 8 16 81.3%
modSmils_18 5 5 13 5 13 0.02 6 10 23.1% 5 13 76.9%
one-two-three_27 5 9 33 7 27 18.2% 7 27 0.01 8 40 67.5%
decod24_10 6 7 11 6 10 9.1% 6 10 0.01 9 21 47.6%
graycode6_11 6 5 5 5 5 0.05 5 5 5 5 100.0%
hwb6_14 6 169 1129 0.01 101 657 41.8% 0.40 104 556 15.4% 0.88 42 150* 370.7%
mod5adder_66 6 21 121 0.01 21 121 0.32 18 110 9.1% 0.06 17 77 142.9%
ham7_29 7 26 90 0.02 24 72 20.0% 1.06 27 55 23.6% 0.11 25 49% 112.2%
hwb7_15 7 319 3189 0.03 299 2731 14.4% 1.59 299 2450 10.3% 3.40 331 2609* 93.9%
mod10_86 7 33 110 27 88 20.0% 0.03 27 84 4.5% 0.12 7 43 195.3%
rd53_68 7 22 137 23 64 53.3% 0.03 22 59 7.8% 0.10 16 67* 88.1%
sym6_63 7 17 133 16 107 19.5% 0.04 18 93 13.1% 0.06 15 62 150.0%
hwb8_64 8 705 8489 0.10 375 5121 39.7% 6.41 385 4516 11.8% 5.46 748 6197* 72.9%
urf2_73 8 894 10117 0.19 906 9283 8.2% 11.73 900 8843 4.7% 18.11 620 16152 54.7%
hwb9_65 9 2023 | 23740 0.34 1709 | 21996 7.3% 24.76 1677 | 20933 4.8% 57.94 1959 | 20378* | 102.7%
rd73_69 9 40 184 0.01 31 112 39.1% 0.56 29 90 19.6% 0.15 20 76 118.4%
urfl_72 9 2019 | 24674 0.77 1992 | 23471 4.9% 62.44 1934 | 22703 3.3% 76.97 1487 45855 49.5%
urf5_76 9 929 19811 0.39 893 16082 18.8% 37.12 913 14297 11.1% 20.24 499 24253 58.9%
sym9_71 10 51 573 0.03 38 324 43.5% 2.95 39 229 29.3% 0.24 21 94 243.6%
urf3_75 10 3999 | 59719 2.38 4053 | 59325 0.7% 255.51 3937 | 57365 3.3% 340.37 2674 121716 47.1%
rd84_70 11 47 446 0.05 42 441 1.1% 5.86 50 280 36.5% 0.47 15 112 250.0%
cycle10_2_61 12 44 3423 4.86 34 1570 54.1% 563.93 29 1212 22.8% 0.18 19 1206* 100.5%
plus63mod4096_79 12 26 4875 3.26 26 4875 441.04 26 4875 0.12 429 32539 15.0%
plus127mod8192_78 | 13 27 9133 10.40 27 9133 1673.83 27 9133 0.12 910 73357 12.5%
plus63mod8192_80 13 30 9185 10.42 30 9185 1664.73 30 9185 0.13 492 45025 20.4%

[18]
[19]
[20]

[21]

[22]

[23]
[24]

[25]

D. Maslov and G. W. Dueck, “Reversible cascades with minimal
garbage.” IEEE Trans. on CAD, vol. 23, no. 11, pp. 1497-1509, 2004.
R. Wille and D. GroBle, “Fast exact Toffoli network synthesis of
reversible logic,” in Proc. Int’l Conf. on CAD, 2007, pp. 60-64.

M. Nielsen and I. Chuang, Quantum Computation and Quantum
Information. Cambridge Univ. Press, 2000.

A. Barenco, C. Bennett, R. Cleve, D. DiVinchenzo, N. Margolus,
P. Shor, T. Sleator, J. Smolin, and H. Weinfurter, “Elementary gates
for quantum computation,” Physical Review A, vol. 52, pp. 3457
3467, 1995.

D. Maslov, C. Young, D. M. Miller, and G. W. Dueck, “Quantum
circuit simplification using templates,” in Proc. Design, Automation
and Test in Europe, 2005, pp. 1208-1213.

F. S. Hillier and G. J. Lieberman, Introduction to Operations Re-
search. McGraw-Hill Professional, 2005.

D. Maslov, “Reversible logic synthesis,” Ph.D. dissertation, University
of New Brunswick, 2003.

D. M. Miller and G. W. Dueck, “Spectral techniques for reversible

[26]

[27]

[28]

[29]

[30]

logic synthesis,” in 6th Int. Symp. on Representations and Methodol-
ogy of Future Computing Technologies, 2003, pp. 56-62.

K. Iwama, Y. Kambayashi, and S. Yamashita, “Transformation rules
for designing CNOT-based quantum circuits,” in Proc. Design Au-
tomation Conf., 2002, pp. 419-424.

D. Maslov, G. W. Dueck, and D. M. Miller, “Fredkin/Toffoli templates
for reversible logic synthesis,” in Proc. Int’l Conf. on CAD, 2003, pp.
256-261.

G. W. Dueck and D. Maslov, “Generation of multiple-control Toffoli
network templates,” in Proc. Int’l Workshop on Logic Synthesis, 2007,
pp. 39-44.

R. Wille, D. GroBe, G. W. Dueck, and R. Drechsler, “Reversible
logic synthesis with output permutation,” in Proc. Int’l Conf. on VLSI
Design, 2009, pp. 189-194.

R. Wille, D. GroBle, L. Teuber, G. W. Dueck, and R. Drechsler,
“RevLib: An online resource for reversible functions and reversible
circuits,” in Int’l Symp. on Multi-Valued Logic, 2008, pp. 220-225,
RevLib is available at www.revlib.org.

