
Simulation of High-Performance Memory Allocators

José L. Risco-Martín†, J. Manuel Colmenar‡, David Atienza*†, J. Ignacio Hidalgo†
†Dept. of Computer Architecture and Automation, Complutense University of Madrid, 28040 Madrid, Spain

{jlrisco, hidalgo}@dacya.ucm.es
‡C.E.S. Felipe II, Complutense University of Madrid, 28300 Aranjuez, Spain

jmcolmenar@cesfelipesegundo.com
*Embedded Systems Laboratory (ESL), EPFL, 1015 Lausanne, Switzerland

david.atienza@epfl.ch

Abstract—Current general-purpose memory allocators do not
provide sufficient speed or flexibility for modern high-
performance applications. To optimize metrics like performance,
memory usage and energy consumption, software engineers often
write custom allocators from scratch, which is a difficult and
error-prone process. In this paper, we present a flexible and
efficient simulator to study Dynamic Memory Managers (DMMs),
a composition of one or more memory allocators. This novel
approach allows programmers to simulate custom and general
DMMs, which can be composed without incurring any additional
runtime overhead or additional programming cost. We show that
this infrastructure simplifies DMM construction, mainly because
the target application does not need to be compiled every time a
new DMM must be evaluated. Within a search procedure, the
system designer can choose the "best" allocator by simulation for
a particular target application. In our evaluation, we show that
our scheme will deliver better performance, less memory usage
and less energy consumption than single memory allocators.

Keywords-dynamic memory manager; memory allocation;
embedded systems design; evolutionary computation; grammatical
evolution

I. INTRODUCTION AND RELATED WORK
Many general-purpose memory allocators implemented for

C and C++ provide good runtime and low memory usage for a
wide range of applications [1, 2]. However, using specialized
DMMs that take advantage of application-specific behavior can
dramatically improve application performance [3-5]. Three out
of the twelve integer benchmarks included in SPEC (parser,
gcc, and vpr [6]) and several server applications, use one or
more custom DMMs [7].

Current applications are developed using C++, where
dynamic memory is allocated via the operator new() and
deallocated by the operator delete(). Most compilers
simply map these operators directly to the malloc() and
free() functions of the standard C library.

On the one hand, studies have shown that dynamic memory
management can consume up to 38% of the execution time in
C++ applications [8]. Thus, the performance of dynamic
memory management can have a substantial effect on the
overall performance of C++ applications. On the other hand,

new embedded devices must rely on dynamic memory for a
very significant part of their functionality due to the inherent
unpredictability of the input data. These devices also integrate
multiple services such as multimedia and wireless network
communications. It heavily influences the global memory
usage of the system [9]. Finally, energy consumption has
become a real issue in overall system design (both embedded
and general-purpose) due to circuit reliability and packaging
costs [10]. Thus, the optimization of the dynamic memory
subsystem has three goals that cannot be seen independently:
performance, memory usage and energy consumption. There
cannot exist a memory allocator that delivers the best
performance and least memory usage for all programs;
however a custom memory allocator that works best for a
particular program can be developed [11].

To reach high performance, for instance, programmers
write their own ad hoc custom memory allocators as macros or
monolithic functions in order to avoid function call overhead.
This approach, implemented to improve application
performance, is enshrined in the best practices of skilled
computer programmers [12]. Nonetheless, this kind of code is
brittle and hard to maintain or reuse, and as the application
evolves, it can be difficult to adapt the memory allocator as the
application requirements vary. Moreover, writing these
memory allocators is both error-prone and difficult. Indeed
custom and efficient memory allocators are complicated pieces
of software that require a substantial engineering effort.

Therefore, to design "optimal" memory allocators, flexible
and efficient infrastructures for building custom and general-
purpose memory allocators have been presented in the last
decade [7, 9, 13]. All the proposed methodologies are based on
high-level programming where C++ templates and object-
oriented programming techniques are used. It allows the
software engineer to compose several general-purpose or
custom memory allocator mechanisms. Thus, we define a
Dynamic Memory Manager (DMM) as a composition of one or
more memory allocators. The aforementioned methodologies
enable the implementation of custom DMMs from their basic
parts (e.g., de/allocation strategies, order within pools, splitting,
coalescing, etc.). In addition, [9] and [13] provide a way to
evaluate the memory usage and energy consumption, but at
system-level. However, all the mentioned approaches require

2010 13th Euromicro Conference on Digital System Design: Architectures, Methods and Tools

978-0-7695-4171-6/10 $26.00 © 2010 IEEE

DOI 10.1109/DSD.2010.44

275

the execution of the target application to evaluate every
candidate custom DMM, which is a very time-consuming task,
especially if the target application requires human input (like
video games). Thus, new approaches to measure performance,
memory usage and energy consumption are needed when
designing a custom or general-purpose DMM.

In this paper we present a flexible, stable and highly-
configurable DMM simulator. By profiling of the target
application, the proposed DMM simulator can receive offline
the dynamic behavior of the application and evaluate all the
aforementioned metrics. As a result, the simulator can be
integrated into a search mechanism in order to obtain optimum
DMMs.

The rest of the paper is organized as follows. First, Section
II describes the design space of memory allocators. Then,
Section III details the design and implementation of the DMM
simulator, as well as some configuration examples . Section IV
shows our experimental methodology, presenting the three
benchmarks selected, whereas Section V shows the results for
these benchmarks. Finally, Section VI draws conclusions and
future work.

II. DYNAMIC MEMORY MANAGEMENT
In this Section, we summarize the main characteristics of

dynamic memory management, as well as a classification of
memory allocators, which is later used in the implementation
of the simulator.

A. Dynamic Memory Management
Dynamic memory management basically consists of two

separate tasks, i.e., allocation and deallocation. Allocation is
the mechanism that searches for a memory block big enough to
satisfy the memory requirements of an object request in a given
application. Deallocation is the mechanism that returns a freed
memory block to the available memory of the system in order
to be reused subsequently. In current applications, the blocks
are requested and returned in any order. The amount of
memory used by the memory allocator grows up when the
memory storage space is used inefficiently, reducing the
storage capacity. This phenomenon is called fragmentation.
Internal fragmentation happens when requested objects are
allocated in blocks whose size is bigger than the size of the
object. External fragmentation occurs when no blocks are
found for a given object request despite enough free memory is
available. Hence, on top of memory de/allocation, the memory
allocator has to take care of memory usage issues. To avoid
these problems, some allocators include splitting (breaking
large blocks into smaller ones to allocate a larger number of
small objects) and coalescing (combining small blocks into
bigger ones to allocate objects for which there are no available
blocks of their size). However, these two algorithms usually
reduce performance, as well as consume more energy. To
support these mechanisms, additional data structures are built
to keep track of the free and used blocks.

B. Classification of memory allocators
Memory allocators are typically categorized by the

mechanisms that manages the lists of free blocks (free lists).

These mechanisms include segregated free lists, simple
segregated storage, segregated fit, exact segregated fit, strict
segregated fit, and buddy systems [5].

A Segregated free-list allocator divides the free list into
several subsets, according to the size of the free blocks. A freed
or coalesced block is placed on the appropriate list. An
allocation request is serviced from the appropriate list. This
class of mechanism usually implements a good fit or best fit
policy.

Simple segregated storage is segregated free-list allocation
mechanism, which divides the storage into pages or other
areas, and only allocates objects of a single size, or small range
of sizes, within each area. This approach makes allocation fast
and avoids headers, but may lead to high external
fragmentation, as unused parts of areas cannot be reused for
other object sizes.

Segregated fit is another variation of the segregated free-list
class of allocation mechanisms. There is an array of free lists,
each holding free blocks of a particular range of sizes. The
manager identifies the appropriate free list and allocates from it
(often using a first-fit policy). If this mechanism fails, a larger
block is taken from another list and split accordingly.

Exact segregated fit is a segregated fit allocator, which has
a separate free list for each possible block size. The array of
free lists may be represented sparsely. Large blocks may be
treated separately. The details of the mechanism depend on the
division of sizes between free lists.

Strict segregated fit is a segregated fit allocation
mechanism which has only one block size on each free list. A
requested block size is rounded up to the next provided size,
and the first block on that list is returned. The sizes must be
chosen so that any block of a larger size can be split into a
number of smaller sized blocks.

Buddy systems are special cases of strict segregated fit
allocators, which make splitting and coalescing fast by pairing
each block with a unique adjacent buddy block. To this end, an
array of free lists exists, namely, one for each allowable block
size. Allocation rounds up the requested size to an allowable
size and allocates from the corresponding free list. If the free
list is empty, a larger block is selected and split. A block may
only be split into a pair of buddies. A block may only be
coalesced with its buddy, and this is only possible if the buddy
has not been split into smaller blocks. Different sorts of buddy
system are distinguished by the available block sizes and the
method of splitting. They include binary buddies (the most
common type), Fibonacci buddies, weighted buddies, and
double buddies [5].

III. DMM SIMULATOR DESIGN AND IMPLEMENTATION
In this section we motivate and describe the proposed

approach as well as outline its design goals..

As introduced in Section I, there are currently several
libraries to implement general-purpose and custom DMMs.
However, exploration techniques cannot be easily applied.
Indeed, each custom design must be implemented, compiled
and validated against a target application; hence, even if the

276

DMM library is highly modular, this is a very time-consuming
process. Thus, a simulator can greatly help in such
optimization by being part of a higher optimization module that
allows system designers to evaluate (in terms of performance,
memory usage and energy consumption) the DMM for the
target application.

Thus, the desired design goals for the development of this
DMM exploration framework are:

• Efficiency: since the simulator needs to be
included into search algorithms, the DMM
simulator must improve the execution time of a
real DMM.

• Flexibility: software engineers must be able to
simulate any DMM as a composition of single
memory allocators. Thus, the parameters of each
allocator should be highly configurable.

Fig. 1 shows an illustrative example on how our proposed
methodology operates. The input is a profiling report, which
logs all the blocks that have been de/allocated. Our search
algorithm is based on grammatical evolution (details about its
implementation can be found in [11]). This algorithm is
constantly generating different DMM implementation
candidates. Hence, when a DMM is generated (DMM(j) in Fig.
1), it is received by the DMM simulator. Next, the DMM
simulator emulates the behavior of the application, debugging
every line in the profiling report. Such emulation does not
de/allocate memory from the computer like the real
application, but maintains useful information about how the
structure of the selected DMM evolves in time. After the
profiling report has been simulated, the simulator returns back
the fitness of the current DMM to the search algorithm. After a
given number of iterations, the search algorithm is able to find
a custom DMM optimized for the target application in terms of
performance, memory usage and energy consumption.

The global design of the simulator (available at [14])
architecture is shown in Fig. 2. First, the sim package
constitutes the DMM simulation library. As Fig. 3 depicts, it
includes: (1) a Dynamic Memory Manager class, which allows
us to simulate standard allocation operations like malloc()

or free(), (2) the Simulator class, which reads each line in
the profiling report and calls the corresponding function in the
DMM, and (3) the Fitness class, which evaluates the DMM in
terms of performance, memory usage and energy consumption.
The gui package in Fig. 2 includes Graphical User Interfaces
(GUIs) to facilitate some standard simulations (based on
general-purpose DMMs). The util package contains some
extra required functionalities: reading of the profiling report,
analysis of the current block sizes and frequency of use, and
other relevant parameters. The lib package implements the
simulation kernel, and it includes all the allocation mechanisms
described in Section II-B. Fig. 4 depicts all the allocators
implemented in the allocator package. We also have
implemented the Kingsley memory allocator [5]. Fig. 5 shows
the classes implemented in the freelist package. These
classes include all the functionality reserved to the list of free
blocks (allocation algorithms, policies and data structured
selected) and the block, which maintains information about its
size (including headers), time of creation and address in
memory.

In order to use the simulator, the software engineer must
start with a profiling of the application. To this end, it is
necessary to redefine/overload several functions (e.g. malloc
and free in the case of C, and new and delete in case of
C++). In the following, we illustrate how these functions can
be overloaded in C:
extern FILE* log;
void* myMalloc(size_t size) {
 void* p = malloc(size);
 fprintf(log,"%f new %d %d\n", time(),p,size);
 return p;
}
void myFree(void* ptr) {
 fprintf(log,"%f delete %d\n", time(), ptr);
 free(ptr);
}

Next, after running the application, a profiling report is
available and the system designer can test different DMMs
using the same profiling report. Thus, the application must be
executed just once during the whole study.

Profiling
report

Grammatical
Evolution Algorithm

(GEA)
DMM Simulator

DMM(j)

Fitness(j)

Figure 1. DMM generation and evaluation process.
Figure 2. Package structure for DMM simulator.

277

Figure 3. Lib package class diagram

 compare(Allocator, Allocator): int

AllocatorComparatorByMaxSize

logger

 SegregatedFreeList(long, long, boolean, boolean)
 setup(DATA_STRUCTURE, ALLOCATION_MECHANISM, ALLOCATION_POLICY)
 malloc(long, Block): Block
 split(long, ArrayList<Block>): Block
 coalesce(long, ArrayList<Block>): Block
 whichFreeListCanManageThisAscending(int, long): FreeList
 whichAdmCanManageThisDescending(int, long): FreeList
 tryToCoalesceOrSplit(long): Block
 getAllFreeBlocksSorted(): ArrayList<Block>

SegregatedFreeListlogger

metrics

minSizeInB
maxSizeInB

freeLists

allowSplitting
allowCoalescing

 setMetrics(Metrics)

 getMinSizeInB(): long
 setMinSizeInB(long)
 getMaxSizeInB(): long
 setMaxSizeInB(long)

 getFreeLists(): ArrayList<FreeList>

 isAllowSplitting(): boolean
 isAllowCoalescing(): boolean
 Allocator(long, long, boolean, boolean)
 add(FreeList)
 canManage(long): boolean
 setup(DATA_STRUCTURE, ALLOCATION_MECHANISM, ALLOCATION_POLICY)
 malloc(long, Block): Block

Allocator

logger

 SegregatedFit(long, long, boolean, boolean)

SegregatedFit

logger
phi

type

baseIndex

 getType(): TYPE

 BuddySystem(TYPE, long, long, boolean, boolean)
 setup(DATA_STRUCTURE, ALLOCATION_MECHANISM, ALLOCATIO
 computeFreeListIndex(long): int
 fibonacci(int): long
 coalesce(long): Block
 split(long): Block

BINARY
FIBONACCI

 «enumeration »
TYPE

BuddySystem

 SimpleSegregatedStorage(long, long)
 setup(DATA_STRUCTURE, ALLOCATION_MECHANISM, ALLOCATION_POLICY)

SimpleSegregatedStorage

logger

 Kingsley(ALLOCATION_MECHANISM)
 Kingsley()
 computeFreeListIndex(long): int
 coalesce(long): Block
 split(long): Block

Kingsley logger

 StrictSegregatedFit(long, long, boolean, boolean)
 malloc(long, Block): Block
 tryToCoalesceOrSplit(long): Block
 computeFreeListIndex(long): int
 coalesce(long): Block
 split(long): Block

StrictSegregatedFit

logger

sizesInB

 ExactSegregatedFit(long, long, TreeSet<Long>)
 setup(DATA_STRUCTURE, ALLOCATION_MECHANISM, ALLOCATION_POLICY)

ExactSegregatedFit

Figure 4. Allocator package class diagram

 compare(Block, Block)

BlockConsistentComparatorByDataSize

freeList

 getTime()
 setTime(double)
 getPosition()
 setPosition(long)

 getFreeList()

 setFreeList(FreeList)

 getSizeInB()
 setSizeInB(long)
 Block(FreeList, long, long)

Block

metrics

allocationMechanism

dataStructure

allocationPolicy

freeBlocks

 setMetrics(Metrics)

 getIndex()
 setIndex(int)

 getAllocationMechanism()

 getDataStructure()

 getAllocationPolicy()

 getMinSizeInB()
 getMaxSizeInB()

 getFreeBlocks()

 FreeList(DATA_STRUCTURE, ALLOCATION_MECHANISM, ALLOCATION_POLICY, long, long)
 malloc(long, Block)
 free(Block)
 canManage(long)
 removeBlockByPosition(long)

FIRST
BEST
EXACT
FARTHEST

 «enumeration »
ALLOCATION_MECHANISM

SLL
DLL
BTREE

 «enumeration »
DATA_STRUCTURE

FIFO
LIFO

 «enumeration »
ALLOCATION_POLICY

FreeList

 compare(Block, Block)

BlockComparatorByPosition

 compare(FreeList, FreeList)

FreeListComparatorByMaxSize

Figure 5. Freelist package class diagram.

278

The next step consists of: (a) performing an automatic
exploration as described in Fig. 1, or (b) selecting the best
design among a predefined set of DMM candidates.

As a consequence, the composition of a DMM candidate is
not complex process for the designer. For instance, one
common way of improving memory allocation performance is
allocating all objects from a highly-used class from a per-class
pool of memory. Because all these objects are of the same size,
memory can be managed by a simple singly-linked free-list.
Thus, programmers often implement these per-class allocators
in C++ by overloading the new and delete operators for the
class.

To evaluate the performance of the previous approach we
can analyze, on the one hand, the profiling report to check how
many different sizes appear in the target application. On the
other hand, we can study the different classes used in the
application as well as their sizes. Below we show how we can
use our library to compose such complex DMM.
ProfilingReport profReport = new ProfilingReport();
profReport.load("profile.mem");
ExactSegregatedFit exact = new ExactSegregatedFit(
 0,
 profReport.getMaxSizeInB(),
 profReport.getSizesInB());
exact.setup(
 FreeList.DATA_STRUCTURE.SLL,
 FreeList.ALLOCATION_MECHANISM.FIRST,
 FreeList.ALLOCATION_POLICY.FIFO);
DynamicMemoryManager manager =
 new DynamicMemoryManager(exact);

In this example, when we build the ExactSegregatedFit
allocator, we provide the constructor with the minimum block
size in bytes, the maximum block size in bytes and the different
sizes supported by this allocator. In the example above, the last
two parameters are given by the profiling report, but they can
be set manually. After that, we configure the allocator defining
the data structure to be used (singly-linked list) the allocation
mechanism (first-fit) and the allocation policy (first in, first
out). Finally, we build the corresponding DMM. As defined
before, a DMM may contain of one or more allocators in our
case.

Finally, the simulator is invoked, and after a few seconds
we obtain all the metrics needed to evaluate the current DMM:
Simulator simulator =
 new Simulator(profReport, manager);
simulator.start();
simulator.join();

At the same time that the simulation runs, several relevant
metrics are computed, such us. number of de/allocations,
splittings, coalescings, performance, memory usage, memory
accesses, etc. All the previous parameters except the execution
time can be calculated accurately. However, since the system is
using simulation time instead of real time, the total execution
time is calculated as the computational complexity or time
complexity [15]. Finally, the energy is computed using the
execution time, memory usage and memory accesses,
following the model described in [11]. The following code
snippet shows an illustrative example of how this task is
performed in the proposed DMM optimization framework:

void firstFit(long sizeInB) {
// ...
 while(iterator.hasNext()) {
 counterForMetrics++;
 currentBlock = iterator.next();
 if(currentBlock.sizeInB>=sizeInB) {
 block = currentBlock;
 iterator.remove();
 break;
 }
 }

 metrics.addExecutionTime(counterForMetrics);
 metrics.addMemoryAccesses(2*counterForMetrics);
 // ...
}

The previous code excerpt shows a portion of the first-fit
algorithm inside the simulator (FreeList class in Fig. 5). The
main loop looks for the first block big enough to allocate the
requested size. We count the number of iterations in the loop,
and after that, both the execution time and memory accesses
are updated accordingly (+1 for each cycle in the loop to
compute the computational time and +2 for each cycle to count
two accesses in the actual allocator: one to the current node in
the free-list and another one to compute the size, i.e.,
subtraction of two pointers).

As Fig. 6 shows, to facilitate the use of the simulator, we
have developed a GUI to test some general-purpose memory
allocators, as well as to perform an automatic exploration of
DMMs for the target application. Given a profiling report, the
interface simulates the selected allocator, giving its “map” and
some of the metrics computed. In any case, all the metrics are
saved in external files.

Figure 6. Simulation interface.

279

IV. EXPERIMENTAL METHODOLOGY
In this section, we study the performance, memory usage

and energy consumption implications of building general-
purpose and custom allocators using the simulator. The custom
DMM is obtained using the simulator and a grammatical
evolution algorithm. Details about how the evolutionary
algorithm is implemented can be found in [11].

TABLE I. STATISTICS FOR THE MEMORY-INTENSIVE BENCHMARKS
USED IN THIS PAPER

Memory-Intensive Benchmark Statistics
Statistics Boxed-sim GCBench Espresso
Objects 229983 843969 4395491

Total memory (bytes) 2576780 2003382000 2078856900
Max in use (bytes) 339072 32800952 430752

Average size (bytes) 11.20 2373.76 472.95
Memory ops 453822 1687938 8790549

To evaluate each allocator runtime performance, memory
usage and energy consumption, we use a number of memory-
intensive programs, listed in Table I.

First, Boxed-sim is a graphics application that simulates
spheres bouncing in a box [16]. The application represents a
physical experiment where gravity is turned off, thus there is
zero friction and no energy loss at each collision.
Consequently, each sphere is given a random initial position,
orientation and velocity, and zero initial angular velocity. Each
run simulates a given amount of virtual time. Second,
GCBench is an artificial garbage collector benchmark that
allocates and drops complete binary trees of various sizes [17].
It maintains some permanent live data structures and reports
time information for those operations. This benchmark appears
to have been used by a number of vendors to aid in Java VM
development. That probably makes it less desirable as a means
to compare VMs. (It also has some know deficiencies, e.g. the
allocation pattern is too regular, and it leaves too few "holes"
between live objects.) It has been recently proposed as the most
useful sanity test to be used by garbage collector developers.
Finally, Espresso is an optimization algorithm for PLAs that
minimizes boolean functions [6]. It takes as input a boolean
function and produces a logically equivalent function, possibly
with fewer terms. Both the input and output functions are
represented as truth tables. The benchmark performs set
operations such as union, intersect and difference. In particular,
the sets are implemented as arrays of unsigned integers and set
membership is indicated by a particular bit being on or off.
These data structures are instantiated using dynamic memory.

To perform the profiling of the applications, we redefined
the malloc() and free() functions (new() and
delete() in the case of GCBench), as described in Section
III. Then, all the applications were compiled with Visual
Studio 2008 and run on an Intel Core 2 Quad processor Q8300
system with 4 GB of RAM, under Windows 7. This task must
be performed just once within the whole DMM exploration
process.

Table I includes the number of objects allocated and their
average size. The applications’ memory usages range from just
331.125 KB (for boxed-sim) to over 31.28 MB (for GCBench).

For all the programs, the ratio between total allocated the
maximum amount of memory in use is large, and memory
operations account for a significant portion of the runtime of all
the considered applications. The next step consists of
simulating the proposed general-purpose allocators, as well as
performing an automatic exploration of feasible DMMs using a
search algorithm (i.e., grammatical evolution in our case).

V. RESULTS
We simulated the benchmarks in Table I with the Kingsley

allocator (labeled as KNG in the following figures), a buddy
system based on the Fibonacci allocation algorithm (labeled as
FIB), a list of 10 segregated free-lists (S10), and an exact
segregated free list allocator (EXA). Finally, we compare all
the three benchmarks with the general-purpose allocators
mentioned vs. the custom DMM obtained with our proposed
automatic exploration process (GE).

In Fig. 7 we present a comparison of the execution time
(computational complexity) of our benchmark applications
normalized to the Kingsley allocator (i.e., greater than 1 is
better). The best results in this case are obtained by Kingsley
and the custom DMM. Only in the case of GCBench, the
custom DMM is 0.98% worst than Kingsley, which is not
relevant as Kingsley is an allocator highly optimized for
performance, while tends to perform much worse than other
managers regarding memory footprint and energy consumption
[9]. Then, the Fibonacci-based buddy allocator, Segregated list
and Exact fit, on the contrary, have different behaviors in
function of the application, and these three allocators are worst
than the Kingsley allocator and custom DMM in all conditions.

Next Fig. 8 shows the memory usage for the same
benchmarks, normalized to the Kingsley allocator. We define
memory usage as the high-water mark of memory requested
from the virtual memory. In this case, we can observe that
Kingsley is not the best allocator, as it suffers from a high level
of internal fragmentation which in turn results in a larger
memory utilization. As a notorious result, the exact segregated-
fit allocator performs well in the case of Boxed-sim, but it
presents the worst behavior in the case of espresso. It is
because the last benchmark allocates a big amount of memory

0.00

0.20

0.40

0.60

0.80

1.00

1.20

Boxed-Sim GCBench Espresso

N
or

m
al

iz
ed

 e
xe

cu
ti

on
 t

im
e

Benchmark

KNG FIB S10 EXA GE

Figure 7. Execution time normalized to the Kingsley allocator (greater than
1 is better).

280

at the beginning of the application, and when the free blocks
can be reused, they are too big for the new requests. It induces
both internal and external fragmentation. Once more, the
custom DMM is the best choice, 58% better than Kingsley in
the case of Boxed-sim and 75% and 11% better than Kingsley
in the case of GCBench and Espresso, respectively.

Finally, Fig. 9 shows the energy consumed by the four
allocators. Since energy depends on execution time, the map of
the energy consumption is quite equivalent to the execution
time depicted in Fig. 7. However, energy consumed may vary
greatly in function of the data structure used (singly-linked list,
doubly-linked list, binary search tree, etc.), because it heavily
influences in the number of memory accesses and thus, in
energy. In this case, all the four allocators (included the custom
DMM) use simple data structures (based on lists), so the
energy is equivalent to the execution time. However, it is not a
necessary condition, so the energy consumption is an
independent metric and must be studied separately. In this case,
both Kingsley and the custom DMM are good candidates for
all the three benchmark problems. However, the custom DMM
requires a lot less memory than the Kingsley allocator. As a
result, the custom DMM is the best choice.

As a conclusion, we can state the exact fit allocation, a
common practice among object-oriented applications, is not the
best choice, especially for the Espresso benchmark. We can
also observe the benefits of using our proposed DMM
simulator in the memory exploration process, because it
enables to compile and run the three applications just once to
study the four different allocation mechanisms, which enables
large savings in the dynamic memory optimization exploration.

Finally, we present the custom DMM obtained by our
search algorithm for the Boxed-sim benchmark in Table II. The
Boxed-sim benchmark includes 35 different block sizes,
varying from 4 to 147456 bytes (144 KB). The automatically-
obtained custom DMM presents 3 different internal allocators,
all of them without splitting or coalescing. The first one is a
binary buddy, where all the five free-lists are implemented as
doubly-linked lists with exact allocation and LIFO policy. The
allowed range by each free list is depicted in the last column of
Table II. The second and third allocators follow a simple
segregated storage mechanism and contain just one free-list.
The first of them is implemented as a doubly-linked list with a

first-fit allocation algorithm with FIFO policy. The second one,
varying from 256 B to 144 KB is implemented as a singly-
linked list, first-fit allocation algorithm and LIFO policy.
According to the output of the simulator, the most requested
block sizes are 4 and 16 bytes (111971 and 112069 times,
respectively). Thus, that the best approach is managing the first
region of block sizes using a binary buddy allocation, which
prevents high internal fragmentation while being very fast in
the allocation function.

TABLE II. CUSTOM DMM MAP FOR THE BOXED-SIM BENCHMARK.

Binary buddy (No splitting, No coalescing)
DLL EXACT LIFO (0..1]
DLL EXACT LIFO (1..2]
DLL EXACT LIFO (2..4]
DLL EXACT LIFO (4..8]
DLL EXACT LIFO (8..16]
Simple Segregated Storage (No splitting, No coalescing)
DLL FIRST FIFO (16..256]
Simple Segregated Storage (No splitting, No coalescing)
SLL FIRST LIFO (256..147456]

VI. CONCLUSION AND FUTURE WORK
Dynamic memory management continues to be a critical

part of many recent applications in embedded systems for
which performance, memory usage and energy consumption is
crucial. Programmers, in an effort to avoid the overhead of
general-purpose allocation algorithms, write their own custom
allocation implementations trying to achieve (mainly) a better
performance level. Because both general-purpose and custom
allocators are monolithic designs, very little code reuse occurs
between allocator implementations. In fact, memory allocator
are hard to maintain and, as a certain application evolves, it
becomes very complex to adapt the memory allocator to the
changing needs of each application. In addition, writing custom
memory allocators is both error-prone and difficult. Overall,
efficient multi-objective (performance, memory footprint and
energy efficient) memory allocators are complicated pieces of
software that require a substantial engineering and maintaining
effort.

In this paper, we have described a simulation framework in
which custom and general-purpose allocators can be effectively
constructed and evaluated. Our framework allows system

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

Boxed-sim GCBench Espresso

N
or

m
al

iz
ed

 m
em

or
y

us
ag

e

Benchmark

KNG FIB S10 EXA GE

Figure 8. Space (memory usage) normalized to the Kingsley allocator
(greater than 1 is better)

0.00

0.20

0.40

0.60

0.80

1.00

1.20

Boxed-sim GCBench Espresso

N
or

m
al

iz
ed

 e
ne

rg
y

co
ns

um
pt

io
n

Benchmark

KNG FIB S10 EXA GE

Figure 9. Energy consumption normalized to the Kingsley allocator (greater
than 1 is better)

281

designers to rapidly build and simulate high-performance
allocators, both general and custom ones, while overcoming the
tedious task of multiple profiling steps for each allocator
instance within a target application. In particular, the proposed
methodology avoids the compilation and execution of the
target application in a case-by-case basis. Thus, the design of a
custom DMM is quickly and free of (initial) implementation
errors.

In addition to the proposed one-time DMM simulation
approach, we have developed a complete search procedure to
automatically find optimized custom DMMs for the application
in study. Using this methodology, we have designed custom
DMMs for three different benchmark applications, which
important energy and memory footprint savings with respect to
state-of-the-art memory allocation solutions.

ACKNOWLEDGMENT
This work has been supported by Spanish Government

grants TIN2008-00508 and MEC Consolider Ingenio CSD00C-
07-20811 of the Spanish Council of Science and Technology,
and partially supported by the Swiss National Science
Foundation (SNF) grant 200021-127282.

REFERENCES

[1] M. S. Johnstone, and P. R. Wilson, “The memory fragmentation
problem: solved?,” SIGPLAN Not., vol. 34, no. 3, pp. 26-36, 1999.

[2] "Doug Lea. A memory allocator.,"
http://g.oswego.edu/dl/html/malloc.html.

[3] D. A. Barrett, and B. G. Zorn, “Using lifetime predictors to improve
memory allocation performance,” SIGPLAN Not., vol. 28, no. 6, pp.
187-196, 1993.

[4] D. Grunwald, and B. Zorn, “CustoMalloc: efficient synthesized
memory allocators,” Softw. Pract. Exper., vol. 23, no. 8, pp. 851-869,
1993.

[5] P. R. Wilson, M. S. Johnstone, M. Neely et al., “Dynamic Storage
Allocation: A Survey and Critical Review,” in Proceedings of the
International Workshop on Memory Management, 1995.

[6] SPEC. "Standard Performance Evaluation Corporation,"
http://www.spec.org.

[7] E. D. Berger, B. G. Zorn, and K. S. McKinley, “Composing high-
performance memory allocators,” in Proceedings of the ACM
SIGPLAN 2001 conference on Programming language design and
implementation, Snowbird, Utah, United States, 2001.

[8] B. Calder, D. Grunwald, and B. Zorn, “Quantifying behavioral
differences between C and C++ programs,” Journal of Programming
Languages, vol. 2, pp. 313–351, 1995.

[9] D. Atienza, J. M. Mendias, S. Mamagkakis et al., “Systematic dynamic
memory management design methodology for reduced memory
footprint,” ACM Trans. Des. Autom. Electron. Syst., vol. 11, no. 2, pp.
465-489, 2006.

[10] N. Vijaykrishnan, M. Kandemir, M. J. Irwin et al., “Evaluating
Integrated Hardware-Software Optimizations Using a Unified Energy
Estimation Framework,” IEEE Trans. Comput., vol. 52, no. 1, pp. 59-
76, 2003.

[11] J. L. Risco-Martín, D. Atienza, R. Gonzalo et al., “Optimization of
dynamic memory managers for embedded systems using grammatical
evolution,” in Proceedings of the 11th Annual conference on Genetic
and evolutionary computation, Montreal, Québec, Canada, 2009.

[12] S. Meyers, More Effective C++: 35 New Ways to Improve Your
Programs and Designs: Addison-Wesley Longman Publishing Co., Inc.,
1995.

[13] D. Atienza, S. Mamagkakis, F. Poletti et al., “Efficient system-level
prototyping of power-aware dynamic memory managers for embedded
systems,” Integr. VLSI J., vol. 39, no. 2, pp. 113-130, 2006.

[14] "JECO: Java Evolutionary Computation library,"
https://jeco.svn.sourceforge.net/svnroot/jeco.

[15] M. Sipser, Introduction to the Theory of Computation: International
Thomson Publishing, 1996.

[16] T. M. Chilimbi, “Efficient representations and abstractions for
quantifying and exploiting data reference locality,” SIGPLAN Not.,
vol. 36, no. 5, pp. 191-202, 2001.

[17] H. Boem. "GCBench,"
http://www.hpl.hp.com/personal/Hans_Boehm/gc/gc_bench.html.

282

