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Abstract—Current general-purpose memory allocators do not 
provide sufficient speed or flexibility for modern high-
performance applications. To optimize metrics like performance, 
memory usage and energy consumption, software engineers often 
write custom allocators from scratch, which is a difficult and 
error-prone process. In this paper, we present a flexible and 
efficient simulator to study Dynamic Memory Managers (DMMs), 
a composition of one or more memory allocators. This novel 
approach allows programmers to simulate custom and general 
DMMs, which can be composed without incurring any additional 
runtime overhead or additional programming cost. We show that 
this infrastructure simplifies DMM construction, mainly because 
the target application does not need to be compiled every time a 
new DMM must be evaluated. Within a search procedure, the 
system designer can choose the "best" allocator by simulation for 
a particular target application. In our evaluation, we show that 
our scheme will deliver better performance, less memory usage 
and less energy consumption than single memory allocators. 

Keywords-dynamic memory manager; memory allocation; 
embedded systems design; evolutionary computation; grammatical 
evolution 

I.  INTRODUCTION AND RELATED WORK 
Many general-purpose memory allocators implemented for 

C and C++ provide good runtime and low memory usage for a 
wide range of applications [1, 2]. However, using specialized 
DMMs that take advantage of application-specific behavior can 
dramatically improve application performance [3-5]. Three out 
of the twelve integer benchmarks included in SPEC (parser, 
gcc, and vpr [6]) and several server applications, use one or 
more custom DMMs [7]. 

Current applications are developed using C++, where 
dynamic memory is allocated via the operator new() and 
deallocated by the operator delete(). Most compilers 
simply map these operators directly to the malloc() and 
free() functions of the standard C library.  

On the one hand, studies have shown that dynamic memory 
management can consume up to 38% of the execution time in 
C++ applications [8]. Thus, the performance of dynamic 
memory management can have a substantial effect on the 
overall performance of C++ applications. On the other hand, 

new embedded devices must rely on dynamic memory for a 
very significant part of their functionality due to the inherent 
unpredictability of the input data. These devices also integrate 
multiple services such as multimedia and wireless network 
communications. It heavily influences the global memory 
usage of the system [9]. Finally, energy consumption has 
become a real issue in overall system design (both embedded 
and general-purpose) due to circuit reliability and packaging 
costs [10]. Thus, the optimization of the dynamic memory 
subsystem has three goals that cannot be seen independently: 
performance, memory usage and energy consumption. There 
cannot exist a memory allocator that delivers the best 
performance and least memory usage for all programs; 
however a custom memory allocator that works best for a 
particular program can be developed [11]. 

To reach high performance, for instance, programmers 
write their own ad hoc custom memory allocators as macros or 
monolithic functions in order to avoid function call overhead. 
This approach, implemented to improve application 
performance, is enshrined in the best practices of skilled 
computer programmers [12]. Nonetheless, this kind of code is 
brittle and hard to maintain or reuse, and as the application 
evolves, it can be difficult to adapt the memory allocator as the 
application requirements vary. Moreover, writing these 
memory allocators is both error-prone and difficult. Indeed 
custom and efficient memory allocators are complicated pieces 
of software that require a substantial engineering effort. 

Therefore, to design "optimal" memory allocators, flexible 
and efficient infrastructures for building custom and general-
purpose memory allocators have been presented in the last 
decade [7, 9, 13]. All the proposed methodologies are based on 
high-level programming where C++ templates and object-
oriented programming techniques are used. It allows the 
software engineer to compose several general-purpose or 
custom memory allocator mechanisms. Thus, we define a 
Dynamic Memory Manager (DMM) as a composition of one or 
more memory allocators. The aforementioned methodologies 
enable the implementation of custom DMMs from their basic 
parts (e.g., de/allocation strategies, order within pools, splitting, 
coalescing, etc.). In addition, [9] and [13] provide a way to 
evaluate the memory usage and energy consumption, but at 
system-level. However, all the mentioned approaches require 
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the execution of the target application to evaluate every 
candidate custom DMM, which is a very time-consuming task, 
especially if the target application requires human input (like 
video games). Thus, new approaches to measure performance, 
memory usage and energy consumption are needed when 
designing a custom or general-purpose DMM. 

In this paper we present a flexible, stable and highly-
configurable DMM simulator. By profiling of the target 
application, the proposed DMM simulator can receive offline 
the dynamic behavior of the application and evaluate all the 
aforementioned metrics. As a result, the simulator can be 
integrated into a search mechanism in order to obtain optimum 
DMMs. 

The rest of the paper is organized as follows. First, Section 
II describes the design space of memory allocators. Then, 
Section III details the design and implementation of the DMM 
simulator, as well as some configuration examples . Section IV 
shows our experimental methodology, presenting the three 
benchmarks selected, whereas Section V shows the results for 
these benchmarks. Finally, Section VI draws conclusions and 
future work. 

II. DYNAMIC MEMORY MANAGEMENT 
In this Section, we summarize the main characteristics of 

dynamic memory management, as well as a classification of 
memory allocators, which is later used in the implementation 
of the simulator. 

A. Dynamic Memory Management 
Dynamic memory management basically consists of two 

separate tasks, i.e., allocation and deallocation. Allocation is 
the mechanism that searches for a memory block big enough to 
satisfy the memory requirements of an object request in a given 
application. Deallocation is the mechanism that returns a freed 
memory block to the available memory of the system in order 
to be reused subsequently. In current applications, the blocks 
are requested and returned in any order. The amount of 
memory used by the memory allocator grows up when the 
memory storage space is used inefficiently, reducing the 
storage capacity. This phenomenon is called fragmentation. 
Internal fragmentation happens when requested objects are 
allocated in blocks whose size is bigger than the size of the 
object. External fragmentation occurs when no blocks are 
found for a given object request despite enough free memory is 
available. Hence, on top of memory de/allocation, the memory 
allocator has to take care of memory usage issues. To avoid 
these problems, some allocators include splitting (breaking 
large blocks into smaller ones to allocate a larger number of 
small objects) and coalescing (combining small blocks into 
bigger ones to allocate objects for which there are no available 
blocks of their size). However, these two algorithms usually 
reduce performance, as well as consume more energy. To 
support these mechanisms, additional data structures are built 
to keep track of the free and used blocks. 

B. Classification of memory allocators 
Memory allocators are typically categorized by the 

mechanisms that manages the lists of free blocks (free lists). 

These mechanisms include segregated free lists, simple 
segregated storage, segregated fit, exact segregated fit, strict 
segregated fit, and buddy systems [5]. 

A Segregated free-list allocator divides the free list into 
several subsets, according to the size of the free blocks. A freed 
or coalesced block is placed on the appropriate list. An 
allocation request is serviced from the appropriate list. This 
class of mechanism usually implements a good fit or best fit 
policy. 

Simple segregated storage is segregated free-list allocation 
mechanism, which divides the storage into pages or other 
areas, and only allocates objects of a single size, or small range 
of sizes, within each area. This approach makes allocation fast 
and avoids headers, but may lead to high external 
fragmentation, as unused parts of areas cannot be reused for 
other object sizes. 

Segregated fit is another variation of the segregated free-list 
class of allocation mechanisms. There is an array of free lists, 
each holding free blocks of a particular range of sizes. The 
manager identifies the appropriate free list and allocates from it 
(often using a first-fit policy). If this mechanism fails, a larger 
block is taken from another list and split accordingly. 

Exact segregated fit is a segregated fit allocator, which has 
a separate free list for each possible block size. The array of 
free lists may be represented sparsely. Large blocks may be 
treated separately. The details of the mechanism depend on the 
division of sizes between free lists. 

Strict segregated fit is a segregated fit allocation 
mechanism which has only one block size on each free list. A 
requested block size is rounded up to the next provided size, 
and the first block on that list is returned. The sizes must be 
chosen so that any block of a larger size can be split into a 
number of smaller sized blocks. 

Buddy systems are special cases of strict segregated fit 
allocators, which make splitting and coalescing fast by pairing 
each block with a unique adjacent buddy block. To this end, an 
array of free lists exists, namely, one for each allowable block 
size. Allocation rounds up the requested size to an allowable 
size and allocates from the corresponding free list. If the free 
list is empty, a larger block is selected and split. A block may 
only be split into a pair of buddies. A block may only be 
coalesced with its buddy, and this is only possible if the buddy 
has not been split into smaller blocks. Different sorts of buddy 
system are distinguished by the available block sizes and the 
method of splitting. They include binary buddies (the most 
common type), Fibonacci buddies, weighted buddies, and 
double buddies [5]. 

III. DMM SIMULATOR DESIGN AND IMPLEMENTATION 
In this section we motivate and describe the proposed 

approach as well as outline its design goals.. 

As introduced in Section I, there are currently several 
libraries to implement general-purpose and custom DMMs. 
However, exploration techniques cannot be easily applied. 
Indeed, each custom design must be implemented, compiled 
and validated against a target application; hence, even if the 
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DMM library is highly modular, this is a very time-consuming 
process. Thus, a simulator can greatly help in such 
optimization by being part of a higher optimization module that 
allows system designers to evaluate (in terms of performance, 
memory usage and energy consumption) the DMM for the 
target application. 

Thus, the desired design goals for the development of this 
DMM exploration framework are: 

• Efficiency: since the simulator needs to be 
included into search algorithms, the DMM 
simulator must improve the execution time of a 
real DMM. 

• Flexibility: software engineers must be able to 
simulate any DMM as a composition of single 
memory allocators. Thus, the parameters of each 
allocator should be highly configurable. 

Fig. 1 shows an illustrative example on how our proposed 
methodology operates. The input is a profiling report, which 
logs all the blocks that have been de/allocated. Our search 
algorithm is based on grammatical evolution (details about its 
implementation can be found in [11]). This algorithm is 
constantly generating different DMM implementation 
candidates. Hence, when a DMM is generated (DMM(j) in Fig. 
1), it is received by the DMM simulator. Next, the DMM 
simulator emulates the behavior of the application, debugging 
every line in the profiling report. Such emulation does not 
de/allocate memory from the computer like the real 
application, but maintains useful information about how the 
structure of the selected DMM evolves in time. After the 
profiling report has been simulated, the simulator returns back 
the fitness of the current DMM to the search algorithm. After a 
given number of iterations, the search algorithm is able to find 
a custom DMM optimized for the target application in terms of 
performance, memory usage and energy consumption. 

The global design of the simulator (available at [14]) 
architecture is shown in Fig. 2. First, the sim package 
constitutes the DMM simulation library. As Fig. 3 depicts, it 
includes: (1) a Dynamic Memory Manager class, which allows 
us to simulate standard allocation operations like malloc() 

or free(), (2) the Simulator class, which reads each line in 
the profiling report and calls the corresponding function in the 
DMM, and (3) the Fitness class, which evaluates the DMM in 
terms of performance, memory usage and energy consumption. 
The gui package in Fig. 2 includes Graphical User Interfaces 
(GUIs) to facilitate some standard simulations (based on 
general-purpose DMMs). The util package contains some 
extra required functionalities: reading of the profiling report, 
analysis of the current block sizes and frequency of use, and 
other relevant parameters. The lib package implements the 
simulation kernel, and it includes all the allocation mechanisms 
described in Section II-B. Fig. 4 depicts all the allocators 
implemented in the allocator package. We also have 
implemented the Kingsley memory allocator [5]. Fig. 5 shows 
the classes implemented in the freelist package. These 
classes include all the functionality reserved to the list of free 
blocks (allocation algorithms, policies and data structured 
selected) and the block, which maintains information about its 
size (including headers), time of creation and address in 
memory. 

In order to use the simulator, the software engineer must 
start with a profiling of the application. To this end, it is 
necessary to redefine/overload several functions (e.g. malloc 
and free in the case of C, and new and delete in case of 
C++). In the following, we illustrate how these functions can 
be overloaded in C: 
extern FILE* log; 
void* myMalloc(size_t size) { 
 void* p = malloc(size); 
 fprintf(log,"%f new %d %d\n", time(),p,size); 
 return p; 
} 
void myFree(void* ptr) { 
 fprintf(log,"%f delete %d\n", time(), ptr); 
 free(ptr); 
} 

Next, after running the application, a profiling report is 
available and the system designer can test different DMMs 
using the same profiling report. Thus, the application must be 
executed just once during the whole study. 

Profiling
report

Grammatical
Evolution Algorithm

(GEA)
DMM Simulator

DMM(j)

Fitness(j)
 

Figure 1.  DMM generation and evaluation process.  
Figure 2.  Package structure for DMM simulator. 
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Figure 3.  Lib package class diagram 
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TYPE

BuddySystem

 SimpleSegregatedStorage(long, long)
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logger
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Figure 4.  Allocator package class diagram 
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Figure 5.  Freelist package class diagram. 
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The next step consists of: (a) performing an automatic 
exploration as described in Fig. 1, or (b) selecting the best 
design among a predefined set of DMM candidates. 

As a consequence, the composition of a DMM candidate is 
not complex process for the designer. For instance, one 
common way of improving memory allocation performance is 
allocating all objects from a highly-used class from a per-class 
pool of memory. Because all these objects are of the same size, 
memory can be managed by a simple singly-linked free-list. 
Thus, programmers often implement these per-class allocators 
in C++ by overloading the new and delete operators for the 
class. 

To evaluate the performance of the previous approach we 
can analyze, on the one hand, the profiling report to check how 
many different sizes appear in the target application. On the 
other hand, we can study the different classes used in the 
application as well as their sizes. Below we show how we can 
use our library to compose such complex DMM. 
ProfilingReport profReport = new ProfilingReport(); 
profReport.load("profile.mem"); 
ExactSegregatedFit exact = new ExactSegregatedFit( 
 0, 
 profReport.getMaxSizeInB(), 
 profReport.getSizesInB()); 
exact.setup( 
 FreeList.DATA_STRUCTURE.SLL, 
 FreeList.ALLOCATION_MECHANISM.FIRST, 
 FreeList.ALLOCATION_POLICY.FIFO); 
DynamicMemoryManager manager = 
 new DynamicMemoryManager(exact); 

In this example, when we build the ExactSegregatedFit 
allocator, we provide the constructor with the minimum block 
size in bytes, the maximum block size in bytes and the different 
sizes supported by this allocator. In the example above, the last 
two parameters are given by the profiling report, but they can 
be set manually. After that, we configure the allocator defining 
the data structure to be used (singly-linked list) the allocation 
mechanism (first-fit) and the allocation policy (first in, first 
out). Finally, we build the corresponding DMM. As defined 
before, a DMM may contain of one or more allocators in our 
case. 

Finally, the simulator is invoked, and after a few seconds 
we obtain all the metrics needed to evaluate the current DMM: 
Simulator simulator =  
 new Simulator(profReport, manager); 
simulator.start(); 
simulator.join(); 

At the same time that the simulation runs, several relevant 
metrics are computed, such us. number of de/allocations, 
splittings, coalescings, performance, memory usage, memory 
accesses, etc. All the previous parameters except the execution 
time can be calculated accurately. However, since the system is 
using simulation time instead of real time, the total execution 
time is calculated as the computational complexity or time 
complexity [15]. Finally, the energy is computed using the 
execution time, memory usage and memory accesses, 
following the model described in [11]. The following code 
snippet shows an illustrative example of how this task is 
performed in the proposed DMM optimization framework: 

void firstFit(long sizeInB) { 
// ... 
  while(iterator.hasNext()) { 
    counterForMetrics++; 
    currentBlock = iterator.next(); 
    if(currentBlock.sizeInB>=sizeInB) { 
      block = currentBlock; 
      iterator.remove(); 
      break; 
    } 
  } 
 
  metrics.addExecutionTime(counterForMetrics); 
  metrics.addMemoryAccesses(2*counterForMetrics); 
  // ... 
} 

The previous code excerpt shows a portion of the first-fit 
algorithm inside the simulator (FreeList class in Fig. 5). The 
main loop looks for the first block big enough to allocate the 
requested size. We count the number of iterations in the loop, 
and after that, both the execution time and memory accesses 
are updated accordingly (+1 for each cycle in the loop to 
compute the computational time and +2 for each cycle to count 
two accesses in the actual allocator: one to the current node in 
the free-list and another one to compute the size, i.e., 
subtraction of two pointers). 

As Fig. 6 shows, to facilitate the use of the simulator, we 
have developed a GUI to test some general-purpose memory 
allocators, as well as to perform an automatic exploration of 
DMMs for the target application. Given a profiling report, the 
interface simulates the selected allocator, giving its “map” and 
some of the metrics computed. In any case, all the metrics are 
saved in external files. 

 

Figure 6.  Simulation interface. 
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IV. EXPERIMENTAL METHODOLOGY 
In this section, we study the performance, memory usage 

and energy consumption implications of building general-
purpose and custom allocators using the simulator. The custom 
DMM is obtained using the simulator and a grammatical 
evolution algorithm. Details about how the evolutionary 
algorithm is implemented can be found in [11]. 

TABLE I.  STATISTICS FOR THE MEMORY-INTENSIVE BENCHMARKS 
USED IN THIS PAPER 

Memory-Intensive Benchmark Statistics 
Statistics Boxed-sim GCBench Espresso 
Objects 229983 843969 4395491 

Total memory (bytes) 2576780 2003382000 2078856900 
Max in use (bytes) 339072 32800952 430752 

Average size (bytes) 11.20 2373.76 472.95 
Memory ops 453822 1687938 8790549 

 

To evaluate each allocator runtime performance, memory 
usage and energy consumption, we use a number of memory-
intensive programs, listed in Table I.  

First, Boxed-sim is a graphics application that simulates 
spheres bouncing in a box [16]. The application represents  a 
physical experiment where gravity is turned off, thus there is 
zero friction and no energy loss at each collision. 
Consequently, each sphere is given a random initial position, 
orientation and velocity, and zero initial angular velocity. Each 
run simulates a given amount of virtual time. Second, 
GCBench is an artificial garbage collector benchmark that 
allocates and drops complete binary trees of various sizes [17]. 
It maintains some permanent live data structures and reports 
time information for those operations. This benchmark appears 
to have been used by a number of vendors to aid in Java VM 
development. That probably makes it less desirable as a means 
to compare VMs. (It also has some know deficiencies, e.g. the 
allocation pattern is too regular, and it leaves too few "holes" 
between live objects.) It has been recently proposed as the most 
useful sanity test to be used by garbage collector developers. 
Finally, Espresso is an optimization algorithm for PLAs that 
minimizes boolean functions [6]. It takes as input a boolean 
function and produces a logically equivalent function, possibly 
with fewer terms. Both the input and output functions are 
represented as truth tables. The benchmark performs set 
operations such as union, intersect and difference. In particular, 
the sets are implemented as arrays of unsigned integers and set 
membership is indicated by a particular bit being on or off. 
These data structures are instantiated using dynamic memory. 

To perform the profiling of the applications, we redefined 
the malloc() and free() functions (new() and 
delete() in the case of GCBench), as described in Section 
III. Then, all the applications were compiled with Visual 
Studio 2008 and run on an Intel Core 2 Quad processor Q8300 
system with 4 GB of RAM, under Windows 7. This task must 
be performed just once within the whole DMM exploration 
process. 

Table I includes the number of objects allocated and their 
average size. The applications’ memory usages range from just 
331.125 KB (for boxed-sim) to over 31.28 MB (for GCBench). 

For all the programs, the ratio between total allocated the 
maximum amount of memory in use is large, and memory 
operations account for a significant portion of the runtime of all 
the considered applications. The next step consists of 
simulating the proposed general-purpose allocators, as well as 
performing an automatic exploration of feasible DMMs using a 
search algorithm (i.e., grammatical evolution in our case). 

V. RESULTS 
We simulated the benchmarks in Table I with the Kingsley 

allocator (labeled as KNG in the following figures), a buddy 
system based on the Fibonacci allocation algorithm (labeled as 
FIB), a list of 10 segregated free-lists (S10), and an exact 
segregated free list allocator (EXA). Finally, we compare all 
the three benchmarks with the general-purpose allocators 
mentioned vs. the custom DMM obtained with our proposed 
automatic exploration process (GE). 

In Fig. 7 we present a comparison of the execution time 
(computational complexity) of our benchmark applications 
normalized to the Kingsley allocator (i.e., greater than 1 is 
better). The best results in this case are obtained by Kingsley 
and the custom DMM. Only in the case of GCBench, the 
custom DMM is 0.98% worst than Kingsley, which is not 
relevant as Kingsley is an allocator highly optimized for 
performance, while tends to perform much worse than other 
managers regarding memory footprint and energy consumption 
[9]. Then, the Fibonacci-based buddy allocator, Segregated list 
and Exact fit, on the contrary, have different behaviors in 
function of the application, and these three allocators are worst 
than the Kingsley allocator and custom DMM in all conditions. 

 

Next Fig. 8 shows the memory usage for the same 
benchmarks, normalized to the Kingsley allocator. We define 
memory usage as the high-water mark of memory requested 
from the virtual memory. In this case, we can observe that 
Kingsley is not the best allocator, as it suffers from a high level 
of internal fragmentation which in turn results in a larger 
memory utilization. As a notorious result, the exact segregated-
fit allocator performs well in the case of Boxed-sim, but it 
presents the worst behavior in the case of espresso. It is 
because the last benchmark allocates a big amount of memory 
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at the beginning of the application, and when the free blocks 
can be reused, they are too big for the new requests. It induces 
both internal and external fragmentation. Once more, the 
custom DMM is the best choice, 58% better than Kingsley in 
the case of Boxed-sim and 75% and 11% better than Kingsley 
in the case of GCBench and Espresso, respectively. 

Finally, Fig. 9 shows the energy consumed by the four 
allocators. Since energy depends on execution time, the map of 
the energy consumption is quite equivalent to the execution 
time depicted in Fig. 7. However, energy consumed may vary 
greatly in function of the data structure used (singly-linked list, 
doubly-linked list, binary search tree, etc.), because it heavily 
influences in the number of memory accesses and thus, in 
energy. In this case, all the four allocators (included the custom 
DMM) use simple data structures (based on lists), so the 
energy is equivalent to the execution time. However, it is not a 
necessary condition, so the energy consumption is an 
independent metric and must be studied separately. In this case, 
both Kingsley and the custom DMM are good candidates for 
all the three benchmark problems. However, the custom DMM 
requires a lot less memory than the Kingsley allocator. As a 
result, the custom DMM is the best choice. 

As a conclusion, we can state the exact fit allocation, a 
common practice among object-oriented applications, is not the 
best choice, especially for the Espresso benchmark. We can 
also observe the benefits of using our proposed DMM 
simulator in the memory exploration process, because it 
enables to compile and run the three applications just once to 
study the four different allocation mechanisms, which enables 
large savings in the dynamic memory optimization exploration. 

Finally, we present the custom DMM obtained by our 
search algorithm for the Boxed-sim benchmark in Table II. The 
Boxed-sim benchmark includes 35 different block sizes, 
varying from 4 to 147456 bytes (144 KB). The automatically-
obtained custom DMM presents 3 different internal allocators, 
all of them without splitting or coalescing. The first one is a 
binary buddy, where all the five free-lists are implemented as 
doubly-linked lists with exact allocation and LIFO policy. The 
allowed range by each free list is depicted in the last column of 
Table II. The second and third allocators follow a simple 
segregated storage mechanism and contain just one free-list. 
The first of them is implemented as a doubly-linked list with a 

first-fit allocation algorithm with FIFO policy. The second one, 
varying from 256 B to 144 KB is implemented as a singly-
linked list, first-fit allocation algorithm and LIFO policy. 
According to the output of the simulator, the most requested 
block sizes are 4 and 16 bytes (111971 and 112069 times, 
respectively). Thus, that the best approach is managing the first 
region of block sizes using a binary buddy allocation, which 
prevents high internal fragmentation while being very fast in 
the allocation function. 

TABLE II.  CUSTOM DMM MAP FOR THE BOXED-SIM BENCHMARK. 

Binary buddy (No splitting, No coalescing) 
DLL EXACT LIFO (0..1] 
DLL EXACT LIFO (1..2] 
DLL EXACT LIFO (2..4] 
DLL EXACT LIFO (4..8] 
DLL EXACT LIFO (8..16] 
Simple Segregated Storage (No splitting, No coalescing) 
DLL FIRST FIFO (16..256] 
Simple Segregated Storage (No splitting, No coalescing) 
SLL FIRST LIFO (256..147456] 

VI. CONCLUSION AND FUTURE WORK 
Dynamic memory management continues to be a critical 

part of many recent applications in embedded systems for 
which performance, memory usage and energy consumption is 
crucial. Programmers, in an effort to avoid the overhead of 
general-purpose allocation algorithms, write their own custom 
allocation implementations trying to achieve (mainly) a better 
performance level. Because both general-purpose and custom 
allocators are monolithic designs, very little code reuse occurs 
between allocator implementations. In fact, memory allocator 
are hard to maintain and, as a certain application evolves, it 
becomes very complex to adapt the memory allocator to the 
changing needs of each application. In addition, writing custom 
memory allocators is both error-prone and difficult. Overall, 
efficient multi-objective (performance, memory footprint and 
energy efficient) memory allocators are complicated pieces of 
software that require a substantial engineering and maintaining 
effort. 

In this paper, we have described a simulation framework in 
which custom and general-purpose allocators can be effectively 
constructed and evaluated. Our framework allows system 
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Figure 8.  Space (memory usage) normalized to the Kingsley allocator 
(greater than 1 is better) 
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Figure 9.  Energy consumption normalized to the Kingsley allocator (greater 
than 1 is better) 
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designers to rapidly build and simulate high-performance 
allocators, both general and custom ones, while overcoming the 
tedious task of multiple profiling steps for each allocator 
instance within a target application. In particular, the proposed 
methodology avoids the compilation and execution of the 
target application in a case-by-case basis. Thus, the design of a 
custom DMM is quickly and free of (initial) implementation 
errors. 

In addition to the proposed one-time DMM simulation 
approach, we have developed a complete search procedure to 
automatically find optimized custom DMMs for the application 
in study. Using this methodology, we have designed custom 
DMMs for three different benchmark applications, which 
important energy and memory footprint savings with respect to 
state-of-the-art memory allocation solutions. 
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