
A Unified Execution Model for Data-Driven

Applications on a Composable MPSoC

Ashkan Beyranvand Nejad

Delft University of Technology

Delft, The Netherlands

a.beyranvandnejad@tudelft.nl

Anca Molnos

Delft University of Technology

Delft, The Netherlands

a.m.molnos@tudelft.nl

Kees Goossens

Eindhoven University of Technology

Eindhoven, The Netherlands

k.g.w.goossens@tue.nl

Abstract—Multi-processor Systems on Chip (MPSoCs) execute
multiple applications concurrently. These applications may be-
long to different domains, i.e., may have firm-, soft-, or non-real-
time requirements. A composable system simplifies system design,
integration, and verification by avoiding the inter-application
interference. Existing work demonstrates composability for ap-
plications expressed using a single model of computation. For
example, Kahn Process Network (KPN) and dataflow are two
common data-driven parallel models of computation, each with
different properties and suited for different application domains.
This paper extends existing work with support for concurrent,
composable execution of KPN and dataflow applications on the
same MPSoC platform. We formalize a unified execution model
by defining its operations that implement the different models of
computation on the MPSoC, and discuss the trade-offs involved.
Our experiments indicate that multiple applications modeled in
KPN and dataflow run composably on an MPSoC platform.

I. INTRODUCTION

In recent years the trend in consumer electronic devices

is to execute an increasing number of applications simultane-

ously. Applications are functionally independent software units

that are developed by possibly different parties. In consumer

electronics, many applications are data-driven, i.e., streaming,

such as audio and video codecs, or networking applications.

They may have soft-, firm-, or non-real-time requirements. A

Firm-Real-Time (FRT) application must never miss a deadline,

whereas, a Soft-Real-Time (SRT) one may occasionally miss

a deadline, and Not-Real-Time (NRT) ones are completely

timing relaxed. Consequently, these three application domains

require different design strategies and computation models.

Multi-Processor Systems on Chip (MPSoCs) are the plat-

forms that can offer concurrent execution of multiple appli-

cations. Composability is proposed and advocated to alleviate

system-wide, monolithic verification [1], [2] by avoiding inter-

application interference. An MPSoCs is composable if an

application’s timing and functionality is not influenced by the

behavior of other applications. Consequently, applications can

be designed and verified in isolation and easily integrated on

one platform, without invalidating their designed properties.

To fully exploit the computation power of an MPSoC, the

parallelism is not restricted to the application level, but each

application is further split in a number of concurrent tasks.

Currently, most applications are still first designed and tested

using an imperative, sequential, Model of Computation (MoC),

typically C. If this first implementation follows a MoC subset

denoted as Nested Loop Programming (NLP), an initial step

towards a parallel implementation is made. Two of the most

common parallel models of computation into which an NLP

application can be automatically translated [3], are (i) Kahn

Process Network (KPN) [4], and (ii) dataflow [5].

A Model of Execution (MoE) is a set of operations that

are required to execute an application expressed in a MoC on

an MPSoC. To the best of our knowledge, existing execution

models are either tailored to a single model of computa-

tion [6]–[12] and do not provide insights into possible trade-

offs in execution of each MoC.

In this context, the contributions of this paper are threefold.

First, we propose one execution model that implements all of

the NLP, KPN, and dataflow models of computation. Second,

we discuss the trade-offs involved in mapping the computation

models to the execution model. Third, we experimentally

demonstrate that a set of applications modeled in NLP, KPN,

and dataflow runs simultaneously, composably on an MPSoC

platform designed following the template in [2], [13].

The rest of this paper is organized as follows. Related work

is discussed in Section II. Section III gives an overview of

the application computation models. Section IV introduces the

target MPSoC platform. The model of execution is proposed

and formalized in Section V for NLP, KPN, and dataflow.

Section VI discusses the trade-offs involved in mapping the

MoCs to the MoE. The experimental results is presented in

Section VII, followed by the conclusions in Section VIII.

II. RELATED WORK

To the best of our knowledge, none of the existing ex-

ecution models supports simultaneous execution of multiple

applications modeled as NLP, KPN, and dataflow. Moreover,

unlike the existing work, our approach is composable. Various

definition of composability exist [11], [14]. Our definition

however is more restrictive in that inter-application interfer-

ence is completely prohibited. The advantage is that a mix

of FRT, SRT and NRT applications can be easily designed,

verified, and integrated on the same MPSoC platform.

Several execution platforms for KPN applications were

proposed [6]–[10], [15], [16]. The approach in [16] does

not support multi-application execution. The platform in [15]

executes KPN processes by scheduling them on reconfigurable

accelerators. [14] proposes an MPSoC platform that supports

multiple real-time applications. The system performance is

estimated using the individual application timing profile and a

model for the inter-application interference. Therefore, by our

definition, all these approaches are not composable.

Application performance can be accurately analyzed using

several dataflow models [17]–[19]. Thus dataflow is used to

express real-time applications executed on MPSoCs [11], [12].

All these approaches allow the design of real-time applica-

tions, however the analysis requires bounds on the execution

time of each task or preemption in bounded time. This is not

generally the case for non-real-time applications, thus their

integration on a common platform is not straightforward.

III. APPLICATION MODELS OF COMPUTATION

Traditionally, applications are initially designed using a

sequential MoC in a high level programming language, such

as C. The Nested Loop Programming (NLP) is a subset of

a sequential MoC. NLP models an application as a number

of loops over single assignment basic functions, as presented

in Figure 1(a). NLP can be automatically transformed into

parallel MoCs [3], [20], e.g., KPN and dataflow. The KPN and

dataflow models are networks of autonomous and concurrent

processes, often referred to as actors in dataflow terminol-

ogy [21]. A process corresponds to one or more function calls

in the NLP model of the application, and it is a functional

mapping from input streams to output streams (corresponding

to the function’s arguments). Each process executes for a

possibly infinite number of activations. Processes synchronize

by communicating packets of data, i.e., tokens, in a First-

In-First-Out (FIFO) order, along unidirectional channels, as

presented in Figure 1(b). In what follows, for clarity, we use

the term process for KPN and actor for dataflow.

A KPN process body, illustrated in Figure 1(c), consists of

a sequence of read, compute, and write operations. These

operations may be interleaved in any order, and a process may

read or write an arbitrary number of tokens from or into a

FIFO. Each FIFO implementation has bounded capacity [8].

A process blocks on a read or write when the FIFOs does not

have enough input data or output space, respectively.

A dataflow actor body is a sequence of consume, compute,

and produce operations, in this strict order, as presented in

Figure 1(d). A firing rule specifies, for one actor activation, for

each incoming and outgoing edge, the number of input tokens

consumed and the number of tokens produced, respectively.

Once the firing rule is satisfied, an actor executes its entire

body without blocking. Different variants of dataflow mod-

els exist, e.g., Static Dataflow (SDF), Cyclo-Static Dataflow

(CSDF) [17], Variable Rate Dataflow (VRD) [18], some of

which are analyzable. This means that existing formalisms [19]

can derive an end-to-end latency and throughput of an appli-

cation, given the worst case timing of each of its actors. In

this paper, we consider only the analyzable dataflow model

variants and we specifically focus on CSDF.

KPN and dataflow have different properties that make them

suitable for different application domains. Dataflow is suitable

for the FRT domain that demands timing analysis. However,

1 ...

2 FOR (i=0; i<N; i++) {

3 x[i] = P1();

4 }

5 FOR (i=0; i<N/3; i++) {

6 z[i] = P3(x[3i+2]);

7 }

8 FOR (i=0; i<N/3; i++) {

9 y[2i+1] = P2(x[3i],z[2i+1]);

10 y[2i] = P2(x[3i+1],z[2i]);

11 }

12 ...

(a)

= FIFO

P2

P5

P4

P3

f1

f3

f6

f2

f4

f5 f7P1

(b)

1 while(true) {

2 // start of process body

3 x = read(f1);

4 compute1(x);

5 if (x = 0) {

6 y = read(f2);

7 } else {

8 y = compute2(x);

9 }

10 z = compute3(y);

11 write(f3,z);

12 // end of body

13 }

(c) (d)

Fig. 1. Application computation models: (a) a Nested Loop Programmed
(NLP) application, (b) an application task graph, (c) a KPN process example
code, (d) a dataflow actor example code

dataflow cannot model highly dynamic application behaviour,

e.g., the production and consumption of an arbitrary number

of tokens on a channel. Such behavior is common in the

signal processing domain, e.g., variable-length encoding and

decoding. KPN is a suitable model for such dynamic applica-

tions, as it allows arbitrary production and consumption rates

and arbitrary interleaving of communication and computation

inside a process. However, KPN is not amenable to timing

analysis, thus it can only fit NRT and SRT applications.

Essentially, execution of both KPN and dataflow MoC on a

MPSoC platform broadens the supported application domains.

IV. TARGET PLATFORM

Applications execute on an MPSoC platform, which consists

of a hardware and a software infrastructure. Here, we target

a composable platform [2], [13]. In this section, we briefly

introduce the hardware and software infrastructure.

MPSoC Hardware Architecture: The hardware infrastructure

comprises processor and memory tiles interconnected via a

Network-on-Chip (NoC) [22]. A processor tile consists of a

processor, local memory, and Remote Direct Memory Access

modules (RDMA) [23]. All these resources are virtualized to

achieve application isolation and therefore system composabil-

ity.

MPSoC Software Architecture: The software executing on

our MPSoC has two layers, namely the application and the

Real-Time Operating System (RTOS) layer. An application

consists of a set of tasks executing an infinite number of

iterations and communicating via FIFOs. Each task iteration is

a sequential set of execution operations, as detailed in the next

section. We define a task’s status as eligible if it can execute,

meaning that it has enough data and space in the input and

output FIFOs, respectively. If a task is not eligible, its status

is blocked.

The RTOS provides an interface to the MPSoC resources,

meaning that (i) it offers an Application Programming In-

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���

���
���
���

��
��
��
��

��
��
��
��

���
���
���

���
���
���

�
�
�
�

�
�
�
�

���
���
���

���
���
���

OS Exec.

context save context load

constant application timeconstant OS timeconstant application timeconstant OS time

OS Service UnitOS Service Unit

App. Exec. OS Exec. App. Exec.

interruptinterruptinterrupt

Fig. 2. A composable RTOS operational time-line

terface (API) for accessing the MPSoC’s resources, e.g.,

communication channels, memories, peripherals, and (ii) it

schedules applications and tasks on the processor. Here only

the inter-task communication APIs are discussed, as the other

APIs, e.g., memory management, are similar with what a

conventional RTOS would offer. For more detailed discussion

on the RTOS realization, we refer to [13].

The RTOS assigns processor time in basic quanta of fixed

duration denoted as “application slots”, implemented by a

timer issuing interrupts. Between two consecutive application

slots there is an “OS slot” in which the RTOS performs

context switching, monitoring, handles timer interrupts, and

schedules the next application to run. The processor time-

line is presented in Figure 2. The set of all application slots

is denoted as application time, and similarly, the set of all

OS slots is denoted as OS time. The processor scheduling

has two hierarchical levels: (i) inter-application, and (ii) intra-

application, i.e., task scheduling. The processing time is shared

between applications following a strict time division multiplex-

ing (TDM) policy, in which each application is allocated a

fixed set of slots. Thus the OS prohibits applications to take

hold of each other’s processor time. Moreover, the commu-

nication APIs are safely implemented such that applications

do not overwrite each other’s data, and do not monopolize

resources, e.g., communication channels, RDMAs, etc.. There-

fore, the targeted RTOS is composable.

V. MODEL OF EXECUTION

A Model of Execution (MoE) defines the set of operations

involved in the execution of an application on an MPSoC.

An application is expressed in a model of computation, e.g.,

KPN, dataflow, An MoC defines operations for computation

and communication, e.g., read, produce, thus these should

have equivalents in the execution model. Moreover, the RTOS

provides the application scheduling operations. Therefore, the

execution operations can be categorized as: (i) computa-

tion, (ii) communication, and (iii) scheduling operations. The

implementation of the MoC using the execution operations

are represented with a regular language sequence.1 We first

abstract from scheduling and present the set of execution

operations and how they implement to each of the NLP, KPN

and CSDF models. Then, we detail the scheduling for each of

these MoCs.

A computation operation, C, is defined as the sequence of

instructions that implements the task’s functionality between

two consecutive communication operations. Inter-tasks com-

munication requires FIFO administration and access execution

1If A and B are two operations, the regular expression language is defined

as follows: Aǫ = {A}, (A + B) = {A,B,AB}, A2 = {AA}, A[1,∞) =
{A,AA,AAA, ...}, and A[0,N] = {ǫ, A,AA, ...,AN}.

operations. A FIFO administration operation is a space- or

data-check denoted with FC. A FIFO buffer access, i.e.,

placing/retrieving data into/from the buffer, is represented as

FA. FA may be performed only after making sure that space

or data exist, via FC.

The NLP model is mapped on the target execution platform

as a simple application with one task and no FIFOs. KPN pro-

cesses and CSDF actors are each implemented as tasks, and the

inter-process and inter-actor communication is implemented

through FIFOs. A KPN process activation or CSDF actor firing

corresponds to a task iteration. The similarity between these

two models stops here. A CSDF actor starts only if its firing

rule is satisfied, its corresponding task’s status therefore is

valid for an entire iteration. A KPN process may immediately

start (is eligible), and it blocks whenever it executes a read

or write for which there is not enough data and/or space.

Once it has started an iteration, a KPN task is not guaranteed

to finish it without blocking, thus the task status is not valid

for an entire iteration.

KPN read and write operations require both FIFO check

and FIFO access, whereas the CSDF produce and consume

operations require only FIFO access. Formally, read and

write operations are implemented as F
[1,∞)
C FA (where F∞

C

models that the task may wait for data infinitely), and

consume and produce operations as FA. In the KPN model

the read and write operations may be arbitrarily interleaved

with compute, (C + F
[1,∞)
C FA)

[0,∞). Here, Fx
C represents

checking a FIFO x times where x ∈ [1,∞). (C+F
[1,∞)
C FA)

∞

models the infinite firings of a process. In CSDF the execution

order is strict, starts with all consume operation, i.e., the

first F
[0,N]
A , continues with all computes, C, and ends with

all produce operation, the last F
[0,N]
A . These correspondence

of each MoC’s operation with an execution operation is also

illustrated in Figure 1(c) & 1(d) beside the KPN and CSDF

pseudo code lines.

Each level of the processor scheduling, i.e., inter-application

and intra-application, is implemented with a separate sched-

uler. The inter-application scheduler selects only the appli-

cation that owns the next slot. This execution operation is

denoted with SA. Each application may utilize its own task

scheduling policy to determine which of its tasks will run in

its slots. The task scheduler may be executed in the OS or in

the application time. We define ST as the execution operation

that selects a task according to a given policy, e.g., TDM and

Round-Robin. In KPN any policy can be used to schedule a

task although scheduling an eligible tasks is more reasonable.

Thus scheduling a KPN task can be implemented as an ST
operation. In CSDF the task scheduler has to find an eligible

task, thus it selects a task, ST, and a check of each of its FIFOs,

F
[0,N]
C , repeatedly, formally resulting in (STF

[0,N]
C)[1,N]. If an

eligible task is not found, the idle task is scheduled.

Table I presents the operations executed in OS time and

application time for NLP, KPN, and CSDF. For KPN and

CSDF we detail the cases in which the task scheduler is

performed in: (i) OS time and (ii) application time. The

underlined operations in the table indicate the body of tasks,

i.e., processes or actors. Composability requires the RTOS to

always assign a fixed number of slots to an application, thus

the SA operation is always executed in the OS slot.

TABLE I
COMPOSABLE EXECUTION MODEL FOR MPSOC

TASK SCHEDULING IN OS-TIME (I) AND APPLICATION-TIME (II)

MoC OS Time Application Time

NLP SA C

KPN (i) SAST (C+ F
[1,∞)
C FA)

[1,∞)

(ii) SA (ST(C + F
[1,∞]
C

FA)[0,∞))[0,∞)

CSDF (i) SA(STF
[0,N]
C

)[1,N] (F
[0,N]
A

CF
[0,N]
A

)[0,1]

(ii) SA ((STF
[0,N]
C)[1,N](F

[0,N]
A CF

[0,N]
A)[0,1])[0,∞)

The execution model of KPN with tasks scheduled in OS

time, KPN (i), follows directly from the models of the task and

the task scheduler. In this case in each OS slot the application

and task are selected, SAST, and in each application slot the

task is executed, (C+ F
[1,∞)
C FA)

[0,∞).

The execution model for KPN with tasks scheduled in the

application time, KPN (ii), is more complex. In the application

slot, task selection has to be repeated whenever a task iteration

has finished, or the task is blocked. In detail, after a task is

initially selected, i.e., ST in Table I, the task may compute, C,

or read or write. In case of read or write, the FIFO has

to be first checked, FC. If the check fails, the current task is

blocked, thus instead of polling for FIFO data or space, another

task is selected, i.e. starts from the beginning by executing

another ST. Otherwise, the check returns successfully and the

FIFO buffer is accessed, FA. After this access, another FIFO

may be read or written, thus the procedure may be repeated.

Furthermore, after a task iteration finishes, another task is

selected according the same algorithm above.

In CSDF, the execution model is a composition of

F
[0,N]
A CF

[0,N]
A , as the task body, and (STF

[0,N]
C)[0,N], as the

task scheduling, The latter may be placed in OS time, CSDF

(i), or in application time, CSDF (ii). If the task scheduler

cannot find an eligible task, in CSDF (i), it schedules the idle

task, (F
[0,N]
A CF

[0,N]
A)0, and in CSDF (ii), it continues polling

for an eligible task, (STF
[0,N]
C)[0,N](F

[0,N]
A CF

[0,N]
A)0.

VI. TRADE-OFFS IN EXECUTION MODELS

A designer has many choices to implement an application

on a platform. Two important ones are: (i) which model

of computation to use and (ii) where to execute the task

scheduling. Table II summarizes the trade-offs between the

possible combinations of these two choices.

Unlike KPN, CSDF is analyzable, the status of a task is

constant during an iteration, and it cannot model dynamic

applications. The analyzability is explicit in the CSDF’s MoEs

in Table I. The operations in the CSDF task body and scheduler

execute for a bounded number of repetitions ([0, N]), in

contrast to KPN where an infinite number of executions is

possible ([0,∞]). Moreover, no FC operation exist in a CSDF

task’s body. Thus the task status is constant during an iteration

and it can be determined by checking the firing rules. Hence

a scheduler can make use of this information to increase

processor utilisation. KPN can models dynamic behavior, i.e.,

the order if reads and writes and the number of tokens

accessed is arbitrary. This behavior is not analyzable, thus

KPN does not suit FRT applications. Moreover the status of

a task is not available before giving the control to that task,

leaving room for less scheduling optimizations.

In case the task scheduler is executed in the OS time, all

scheduling decisions are taken exclusively in the OS slot.

When a task finishes or it is blocked before its slot depletes,

the remaining time is wasted. Thus this approach is non-work-

conserving, potentially leading to a lower processor utilisation.

When executed in the application time, a new task may

be scheduled immediately after a blocked or finished task.

Therefore the entire application time can be utilized, i.e. this

method is work-conserving. Moreover, a task scheduling pol-

icy is supported only under the condition that it is thoroughly

verified and characterized, as the worst case RTOS execution

time should be tightly bounded. While this is a requirement

for a real-time application, it is not necessary for non-real-

time applications, where it can limit the available options.

The limitation of task scheduling in application time is that

applications do not have access to timers and interrupts, unless

these are virtualised, hence on our platform the scheduler

policy has to be cooperative, i.e., cannot preempt tasks.

TABLE II
TRADE-OFFS SUMMARY

Appl. Model OS time scheduling Application time scheduling

NLP FRT, SRT, NRT FRT, SRT, NRT

KPN SRT, NRT SRT, NRT
variable status during an iteration variable status during an iteration

preemptive cooperative
non-work conserving work conserving

strictly verified scheduler any scheduler

CSDF FRT, SRT, NRT FRT, SRT, NRT
preemptive cooperative

constant status during an iteration constant status during an iteration
non-work conserving work conserving

strictly verified scheduler any scheduler

VII. CASE STUDY

In this section we study the composability of the proposed

execution model, followed by a performance investigation of

different MoCs mapped to the MoE. The target platform has

two processing tiles and a memory, communicating via an on-

chip interconnect. The MPSoC is implemented on a Virtex 6

FPGA; all the MPSoC resources run at clock frequency of

50 MHz. This platform executes two applications, a synthetic

one and H.264 video decoder. The synthetic application is a

parallel application with five tasks, as presented in Figure 3(a).

The H.264 decoder is initially modelled in NLP, which is then

parallelized in six tasks, in two versions, one for KPN and

one for CSDF. We execute this applications concurrently using

Round-Robin task scheduler in the OS time and application

time.

Task
5

Task
1

Task
3

Task
2

Task
4Synthetic application

f2

f3

f4

f1

streamBuffer

nalUnitDecode

parseSliceHeader

parser

calvc

idct

intra prediction

deblocking filter

printMB

Processor Tile 0 Processor Tile 1

f1

f2

f3

f4

f5

f7

H.264 decoder

f6

(a) (b) (c)

Fig. 3. (a) Synthetic and H.264 application on a 2-Tile MPSoC Platform; finishing time for 20 iterations of (b) synthetic application, and (c) H.264 decoder

To study the composability, we have executed applications

in two scenarios, in isolation and concurrently. The applica-

tions timing results, i.e., execution and finishing times, showed

no differences in the two scenarios, indicating that the system

is composable.

We consider the finish time of the last task, i.e. Task 5 in

synthetic application and printMB in H.264, as the metric for

the applications performance. Given that we always start the

applications execution at the same point in time, the smaller

the finish time of the last task, the better is the performance.

The performance of the synthetic application is illustrated in

Figure 3(b) for various application slot sizes. Except for the

small slot sizes, the task scheduling in application time leads

to better performance, in both KPN and CSDF, because it is

work-conservative and utilizes the entire application slot. The

bigger the application slot size is, the more application time is

wasted by the OS time scheduling policy. For small slot sizes

the overhead caused by the frequent context switch between

slots leads to relativelly poor performance, and here for CSDF

the performance differences between OS and application time

scheduling are minor. In the case of KPN, OS time scheduling

performs poorly regardless of the slot size, because the status

of a task is not known when the task is selected and when the

task is blocked the entire application slot is wasted.

Figure 3(c) illustrates the performance of the H.264 modeled

in NLP, KPN and CSDF. NLP performs better than CSDF with

OS time scheduling for large application slot size, because

the wasted time in CSDF exceeds the benefits of parallelizing

the application. Similar to the synthetic application, in H264

application time scheduling leads to better performance, small

slot sizes have large overhead, and the KPN with OS time

scheduling has the worst performance.

VIII. CONCLUSIONS

In this paper we propose a unified execution model to

implement data-driven applications on a composable MPSoC

platform. The applications can be realized in three different

models of computation, e.g., Nested Loop Programmed (NLP),

Kahn Process Network (KPN), and dataflow. The execution

model is formalized by introducing the operations necessary

to execute each of these models on an MPSoC. We discuss

the trade-offs involved in executing these models such as: (i)

which model of computation to use for an application, (ii) who

should schedule the tasks of the application (the operating sys-

tem or the application itself) and (iii) the properties of different

scheduling options, e.g., preemptive and work-conserving.

Using the proposed execution model, we experimentally study

the system composability and performance of a synthetic and

a H.264 video decoder applications, modeled as NLP, KPN

and dataflow, executed on an MPSoC prototyped in FPGA.

REFERENCES

[1] H. Kopetz, Real-Time Systems: Design Principles for Distributed Em-
bedded Applications, 1997.

[2] A. Hansson, K. Goossens, M. Bekooij, and J. Huisken, “CoMPSoC:
A template for composable and predictable multi-processor system on
chips,” ACM ToDAES, 2009.

[3] A. Turjan et al., “Translating affine nested-loop programs to process
networks,” in CASES, 2004.

[4] G. Kahn, “The semantics of a simple language for parallel program-
ming,” in IFIP, 1974.

[5] E. A. Lee et al., “Dataflow process networks,” 2002.
[6] J. Y. Hur et al., “Systematic customization of on-chip crossbar intercon-

nects,” in ARC, 2007.
[7] J. Hur et al., “Customizing reconfigurable on-chip crossbar scheduler,”

in ASAP, 2007.
[8] T. Stefanov et al., “System design using Kahn Process Networks: The

Compaan/Laura approach,” in DATE, 2004.
[9] C. Zissulescu et al., “Laura: Leiden architecture research and exploration

tool,” in FPL, 2003.
[10] W. Haid et al., “Efficient execution of Kahn Process Networks on

multi-processor systems using protothreads and windowed FIFOs,” in
ESTIMedia, 2009.

[11] A. Kumar et al., “Analyzing composability of applications on MPSoC
platforms,” J. Syst. Archit., vol. 54, March 2008.

[12] O. Moreira et al., “Multiprocessor resource allocation for hard-real-time
streaming with a dynamic job-mix,” in RTAS, 2005.

[13] H. Hansson et al., “Design and implementation of an operating system
for composable processor sharing,” Microprocessors and Microsystems,
2011, special issue on Network-on-Chip Architectures and Design
Methodologies.

[14] J. Castrillon et al., “Trace-based KPN composability analysis for map-
ping simultaneous applications to MPSoC platforms,” in DATE, 2010.

[15] M. Dyer et al., “Efficient execution of process networks on a recon-
figurable hardware virtual machine,” in Field-Programmable Custom
Computing Machines (FCCM), 2004.

[16] I. Auge et al., “Platform-based design from parallel C specifications,”
TCAD, 2005.

[17] T. M. Parks et al., “A comparison of synchronous and cycle-static
dataflow,” in Asilomar, 1995.

[18] M. Wiggers et al., “Efficient computation of buffer capacities for multi-
rate real-time systems with back-pressure,” in CODES, 2006.

[19] M. Bekooij et al., “Efficient buffer capacity and scheduler setting com-
putation for soft real-time stream processing applications,” in SCOPES,
2007.

[20] B. Kienhuis, E. Rijpkema, and E. Deprettere, “Compaan: deriving
process networks from matlab for embedded signal processing archi-
tectures,” in CODES, 2000.

[21] J. Eker et al., “A structured description of dataflow actors and its
application,” 2003.

[22] K. Goossens et al., “The Aethereal network on chip after ten years:
Goals, evolution, lessons, and future,” in DAC, 2010.

[23] B. Akesson et al., “Architectures and modeling of predictable memory
controllers for improved system integration,” in DATE, 2011.

