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Abstract—Due to the growing complexity of the applications
targeted by FPGA-based reconfigurable systems, the control
design of such systems is becoming one of the main hurdles
faced by designers. In this paper, we propose a semi-distributed
control model based on the separation between different control
concerns (monitoring, decision-making and reconfiguration) and
on formalism-oriented design in order to decrease the design
complexity of the control, and facilitate design verification, reuse
and scalability. This model is composed of distributed controllers
handling each the self-adaptivity of a reconfigurable region of the
system, and a coordinator that coordinates their reconfiguration
decisions in order to respect global system constraints. Implemen-
tations on FPGA showed that our semi-distributed control model
is more flexible, reusable and scalable than the centralized one,
at the cost of a slight increase in required hardware resources.

I. INTRODUCTION

Thanks to their ability to be reconfigured an arbitrary

number of times, FPGAs offer a high flexibility for modern

embedded systems design. Partial Dynamic Reconfiguration

(PDR), supported by several FPGAs, offers more flexibility

by allowing portions of the FPGA to be reconfigured at

runtime, in order to load different functionalities and adapt

to runtime changes, while the rest remains operating [1].

The progress in FPGA technologies has enabled to embed a

growing number of computing resources on one chip targeting

increasingly sophisticated applications. However, this has led

to a growing design complexity since design tools do not

evolve at the same pace as hardware technology, resulting in

a productivity gap. One of the most complex design tasks for

reconfigurable SoC (RSoC) is the control design, since it has

to handle different aspects related to runtime adaptivity. In this

context, autonomy, modularity and formalism-oriented design

can be viewed as an effective combination to deal with the

growing RSoC design complexity. In this paper, we propose a

semi-distributed control model for FPGA-based reconfigurable

systems. This model divides the control problem between

autonomous controllers handling each the self-adaptivity of

a reconfigurable region of the system through three major

tasks: monitoring, decision-making and reconfiguration using

three different modules. In order to respect global system

constraints and correlations between reconfigurable regions,

the controllers’ reconfiguration decisions are coordinated by

a coordinator before launching reconfigurations. This two-

layer decision-making is well adapted to single-FPGA, as

well as multi-FPGA systems by implementing the coordinator

on a master FPGA. The semi-distributed control is also well

adapted to higher hierarchy control architectures by organizing

the controllers into clusters coordinated by local coordinators

and implemented either on the same FPGA or on different FP-

GAs. The proposed semi-distributed decision-making model

is based on the mode-automata formalism, which allows to

abstract the control problem and gives clear control semantics

decreasing design complexity. Such a splitting of the control

problem offers a high design flexibility facilitating reuse and

scalability.

Implementation results showed that our semi-distributed

control model is more flexible, reusable and scalable than the

centralized one, at the cost of a slight increase in required

hardware resources. The rest of this paper is organized as

follows. Section 2 gives a summary of the related works.

Section 3 illustrates the proposed control model. In section

4, an example of the control implementation for a video

processing application is presented. The last section concludes

this paper and gives some future works.

II. RELATED WORKS

Distributed control for FPGA-based systems adaptivity has

been proposed by several works. In [2], a hardware controller

was allocated to each reconfigurable region in order to control

the tasks it runs throughout the application execution. How-

ever, reconfiguration decisions were only dependent on a task

graph, and the correlation between regions was not treated.

In [3], the distributed control was used for the reconfigu-

ration of an organic computing system. However, this work

focused more on the distributed access to the configuration

port (ICAP), allowing to accelerate the reconfiguration process

compared to the centralized access, without giving details

about the used control components (monitoring, decisions,

etc). In [4] [5], the authors propose a general model of net-

worked entities, handling each computing, monitoring, control

and communication. Nevertheless, the decision of reconfig-

uring such entities is done in a centralized way. Distributed

control was also used for multi-FPGA systems, which have

started to gain interest and have been investigated in several

works. However, only one controller was used per FPGA [6]

[7], which implies a high design complexity of controllers,

and no formalism was proposed to model the control system.

To master design complexity, formal control models are

important since they enable shorter design cycle by improving
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Fig. 2: The controller mode-automaton

design reuse as well as offering formal verification. Mode-

automata formalism [8], on which is based the semi-distributed

decision-making in our control model, is a simplified version

of State charts [9] in syntax. It has been adopted as a

specification language for control oriented reactive systems

[10]. It has also been used to model control for FPGA-based

reconfigurable systems [11]. However, the proposed models

targeted a centralized controller.

III. SEMI-DISTRIBUTED CONTROL MODEL

The main objective of the control model proposed in this

paper is to solve design problems related to design complexity,

verification, reuse and scalability. In order to achieve this

objective, the proposed control model combines three main

points: autonomy, modularity and formalism.

A. Autonomous modular distributed controllers for self-

adaptivity

Each distributed controller is composed of three modules

handling monitoring, reconfiguration decision-making and re-

configuration realization for a given reconfigurable region, as

shows Figure 1. The monitoring module collects information

from the behavior of the controlled region and other external

events such as those sent by sensors, for example. The

monitoring data is sent to the decision module, which makes

reconfiguration decisions accordingly.

Each decision module makes local decisions about whether

or not a reconfiguration of the controlled region is required.

Due to the local vision of each controller, launching a recon-

figuration of its controlled region without checking whether

it can coexist with the current configurations of the other

regions might result in problems such as safety problems or

might not respect the control global constraints such as those

related to performance, temperature, energy consumption, etc.

Therefore, before launching a reconfiguration that it estimates

required according to the monitoring data, the controller

has to send a reconfiguration request to the coordinator. If

the coordinator authorizes the requested reconfiguration, the

decision module notifies the reconfiguration module in order

to launch the required configuration.

The role of the reconfiguration module is to apply re-

configuration actions on the controlled region, which consist

in loading the required configuration data (bitstream) in the

reconfigurable region through a configuration port, such as

ICAP for Xilinx FPGAs. After loading the required bitstream,

the reconfiguration module notifies the decision module so that

it updates its automaton’s current mode.

B. Mode-oriented decision-making

The proposed decision-making model is based on the mode-

automata formalism [8]. It is composed of the distributed

controllers’ automata and the coordinator’s automaton.

These automata communicate through coordination

information whenever one of the controllers estimates

that a reconfiguration of its controlled region is required. In

this case, it sends a reconfiguration request to the coordinator

and waits for its decision. If the request implies also the

reconfiguration of other regions in order to respect the global

system constraints, the coordinator sends reconfiguration

suggestions to the concerned controllers. These controllers

can accept or refuse those suggestions. After treating the

controllers responses, the coordinator gives its decision,

which can be either the authorization or the refusal of the

requested reconfiguration.
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Fig. 3: The coordinator mode-automaton

The Controller mode-automaton

The decision module of each controller is modeled by

a mode-automaton. Figure 2 shows an example of this

mode-automaton. Each mode Modei j corresponds to a given

configuration/mode of the controlled regioni, where i ∈ [1..n],
n is the number of the system’s reconfigurable regions,

j ∈ [1..Mi] and Mi is the number of the modes/configurations

of regioni. Here, we assume that each reconfigurable region

has a set of configuration possibilities predefined at design-

time. Inputs and outputs of the mode-automaton are shown

in its header. Inputs are monitoring data (monitoring datai)

sent by the monitoring module, a reconfiguration success

notification (loaded modei) from the reconfiguration module,

and coordination information from the coordinator. These

information include a notification at the beginning/end of

each coordination process (coord inprogress), reconfiguration

suggestions (coord suggestioni), and the coordinator decision

at the end of a coordination process (coord decisioni).

Based on monitoring data, the current mode of

the controlled region, and on coordination information

(coord inprogress and coord decisioni), the controller makes

a decision on whether a reconfiguration of the controlled

region is required. If yes, it sends a reconfiguration request

to the coordinator (controlleri request ). During a coordination

process, a controller might receive reconfiguration

suggestions from the coordination to which it can respond

(controlleri response) with acceptance or refusal depending on

monitoring data. If the coordinator authorizes a reconfiguration

to the controller (coord decisioni(modei j) = authorization),

it sends a reconfiguration command to the reconfiguration

module (load modei), indicating the mode to be

loaded. If the coordinator refuses a reconfiguration

(coord decisioni(modei j) = re f usal), it cannot be launched

because it cannot coexist with the current configurations of

the other regions, according to the global system constraints

as it will be explained later.

The coordinator mode-automaton

The role of the coordinator is to coordinate the

reconfiguration decisions of the controllers in order to

guarantee that the system configuration respects the global

system constraints. For this, a table containing the allowed

system configurations is used, according to constraints

of safety, performance, consumption, etc. This table is

Global configurations

mode1  j1.2

mode2  j2.2

moden  jn.2

mode1  j1.1

mode2  j2.1

moden  jn.1

Reconfigurable regions

Region1

1 2 K.......

.......

Regionn

Region2

mode1  j1.K

mode2  j2.K

mode2  jn.K

.......

.......

.......

.......

....... ....... .......

Fig. 4: Global configurations table (GC)

determined at design time and can be filled manually by the

designer or generated from high-level languages such as those

based on contract mechanism [12]. We call this table GC

(Global Configurations) shown in Figure 4, where each row

corresponds to a global configuration, which is a combination

of partial configurations of the reconfigurable regions. This

table is defined as follows: GC[i,k] = modei ji.k ∀i ∈ [1..n],
ji.k ∈ [1..Mi] and k ∈ [1..K] where, modei ji.k is the mode of

regioni corresponding to the global configuration k; n is the

number of reconfigurable regions and of controllers; K is the

number of the global configuration possibilities, and Mi is

the number of modes/configurations of regioni.

The exchanges between the controllers and the coordinator

are not continuous in time. They only happen when one of

the controllers decides that a reconfiguration of its controlled

region is required. This allows to reduce the impact of the

communication latency inside the control model on the overall

system performance. The coordination algorithm is executed

using a three-mode automaton as shows Figure 3. The idle

mode corresponds to a coordinator waiting for reconfiguration

requests coming from controllers. The TreatRequests and

TreatResponses modes correspond to a coordinator that is

treating the controllers’ reconfiguration requests and responses

to reconfiguration suggestions, respectively.

The coordinator starts at the idle mode. Whenever it

receives a reconfiguration request ({controlleri request} , {}),

it sends a notification to the controllers indicating that a

coordination is in progress (coord inprogress = true), so

that they stop sending reconfiguration requests. It moves

then to the TreatRequests mode. Due to its local vision of

the system, a request sent by a controller concerns only its

controlled region, which corresponds here to a cell of the

GC table. Note that the number of requests received at the

same time depends on the instants reconfiguration decisions

are made by controllers, as well as on the communication

type between the controllers and the coordinator (through

a bus, point-to-point, etc). In this paper, we used a point-

to-point communication as will be shown in the case study.

This implementation has the advantage of accelerating the

coordination process offering the possibility to receive more

than one request or response from controllers at the same

time. Other communication architectures are still possible

here by modifying the communication part of the coordinator

without modifying the coordination algorithm.

Once in the TreatRequests mode, the coordinator checks

whether the configuration(s) requested by the controller(s)

at a given time combined to the current configurations



of the regions handled by other controllers exist as a

global configuration possibility in the GC table. If no,

it checks which other reconfigurations that, combined

to the one requested, allow to obtain one or more global

configurations that respect the global system constraints. Here,

if more than one global configuration satisfies the requested

reconfiguration(s), possibilities are ordered according to the

control strategy/objective. In the present implementation of

the coordinator, we order possibilities in a list according

to the number of partial reconfigurations they require, and

we give the highest priority to the global configuration that

requires less partial reconfigurations in order to minimize

reconfiguration time. Different algorithms can also be used

here to order configuration possibilities.

In case the first possibility in the ordered list satisfies

the requests and doesn’t require reconfiguration of other

regions (involve others = f alse), the coordinator ends the

coordination process (coord inprogress = f alse) and sends

directly its decision ( f inal decision = authorization) to the

controllers requesting the reconfigurations as shows Figure

3. Otherwise, the coordination process is divided into steps.

Each coordination step is related to a possibility of the ordered

list. The coordinator begins with sending reconfiguration

suggestions to the controllers whose regions have to be

reconfigured in order to move to the first possibility. Then it

goes to the TreatResponses mode.

If a coordination step ends with positive responses from

all the concerned controllers, the coordination process ends

with an authorization ( f inal decision = authorization).

In this case, the coordinator notifies the controllers

(coord inprogress = f alse) and sends its reconfiguration

authorization to the controllers requesting the reconfigurations

as well as the other concerned controllers, and goes back

to the idle mode. Otherwise, the coordinator remains at the

TreatResponses mode and considers the next possibility. The

coordination ends with a refusal ( f inal decision = re f usal)

if all the possibilities have been refused by the controllers.

In this case, the coordinator notifies the controllers

(coord inprogress = f alse) and sends a reconfiguration

refusal to the controllers requesting the reconfigurations.

Then it goes back to the idle mode.

Advantages compared to the centralized model

Thanks to the distribution of the control problem between

controllers, the proposed control model provides a high design

flexibility compared to the centralized control facilitating reuse

and scalability. In the case of a centralized decision-making,

the decision module of the centralized controller can be

modeled by a mode-automaton, where each mode corresponds

to a global configuration of the system (a combination of

the configurations of the reconfigurable regions). Transitions

from a mode to another depend thus on a global vision of the

system, using monitoring data as well global constraints (the

same as those used by the coordinator in the semi-distributed

model). This makes the centralized decision module tightly

dependent on the implemented system, which is an obstacle

to design reuse. Indeed, when designers want to add other

regions to a previous system design, the whole decision model

has to be rewritten (both modes and transitions), because

each mode has to take into account the new regions. On the

other hand, with the semi-distributed decision-making model,

adding new regions requires simply adding a controller for

each new region. The monitoring and decision modules of

the controllers can be easily reused since they depend only

on the monitoring data related to the controlled region. The

coordination algorithm doesn’t change. It has only to increase

the number of controllers to be coordinated, and to modify

the global constraints checked by the coordinator. This is done

simply by modifying the GC table.

IV. CASE STUDY

This case study explains the use of the semi-distributed

control for a video scaling application, targeting a single-

FPGA system. Then it evaluates its efficiency in terms of

design complexity, reuse, scalability and resource overhead

compared to the centralized model.

A. The application

The application consists of a classical downscaler composed

of two main tasks: a horizontal filter and a vertical filter

applied to a sequence of video frames. Each filter is composed

of a repetition of an elementary task on a block of the frame.

An elementary task of a filter is executed by a hardware

accelerator in order to guarantee a high performance. Using

data-parallelism, each task can be implemented using a number

of hardware accelerators performing in parallel the same

elementary task on different frame blocks, which allows to

reduce execution time. In our case study, we assume that

each hardware accelerator is implemented in a reconfigurable

region in order to adapt to runtime changes as we will explain

later. The variety of parallelism possibilities of the considered

application allows to test the scalability of our control model

by varying the number of reconfigurable regions and thus the

number of controllers. Using similar accelerators to implement

data-parallelism for each filter task allows to reuse the same

controller for similar regions, reducing thus the design time

of the control model.

In our case study, the objective of the control model is

to adapt the downscaler application to changes in perfor-

mance and power requirements. For this, we assume that

both elementary tasks of the horizontal and vertical filters are

implemented in three versions of hardware accelerators avail-

able in an IP (Intellectual Property) library, and different in

terms of performance and power consumption. Switching these

versions during runtime allows each reconfigurable region to

have three different modes (HFilter mode j/V Filter mode j),

j ∈ [1,2,3]. Modes HFilter mode1 and V Filter mode1 are

the modes giving the highest performance but also the highest

consumption for the horizontal and vertical filters respectively.

HFilter mode3 and V Filter mode3 are the least performing

but the least consuming. Our semi-distributed control model

allocates a controller to each region in order to control its



behavior allowing to switch different modes depending on

requirements in terms of performance and power consumption.

The role of the coordinator is to verify that the global

configuration of the system respects the constraints indicated

in the GC table as we explained previously in section III-B,

and this by coordinating the reconfigurable decisions made by

controllers.

B. Hardware design of the semi-distributed control

Our control model is wholly designed in hardware in order

to avoid the execution time overhead of the software imple-

mentation. This design follows the control model described in

figure 1. The inputs of this model are performance and con-

sumption information. The objective of the control in this case

study is to make a trade-off between the performance and the

consumption constraints. We define performance requirements,

for both filters, as three performance levels given by the user,

where level 1 corresponds to the highest performance. As for

consumption requirements, we assume that a battery sensor

is used in order to give the battery level at each clock cycle.

This information is monitored by the monitoring modules of

the distributed controllers in order to be taken into account for

reconfiguration decisions.

Provided that all reconfigurable regions have three config-

uration possibilities, each controller uses a decision module

modeled by a three-mode automaton. Figure 5 shows the

mode-automaton of the controller related to the horizontal

filter, through three different control aspects. The controller

related to the vertical filter follows the same concepts. As

we said previously, the decision-making of each controller

depends on a local vision of the system, which decreases its

design complexity. This case study shows how the local-vision

decisions of the controllers can be coordinated in order to

respect global system constraints. The controller’s decisions

(reconfiguration requests and responses to suggestions) are

based on the following rules:

• No request is sent when a coordination process is in

progress (coord inprogress = true)

• If a request has been refused by the coordinator for mode j

(re f used mode j = true), no request is sent for the same

mode or it will be refused again. Moving to the requested

mode is still possible, at a later coordination process, if

the coordinator sends a suggestion to the controller related

to the same mode and the coordination process ends with

an authorization

• Being at H/V Filter mode j1, a controller decides

that a reconfiguration to a less consuming mode

H/V Filter mode j2 is required, only if the user requires a

lower performance level, or the consumption constraints

do not allow to stay at H/V Filter mode j1, which is the

case when the following condition is valid

AB/H j1 < a j1, j2.FB/H1 (1)

as shows Figure 5(a), where H j (Vj for the vertical filter)

is the energy consumption per cycle of the controlled

region’s mode H/V Filter mode j, AB is the available

battery energy at a given clock cycle and FB is the energy

of a full battery. This constraint allows to check whether

the available energy is under a threshold (determined

by a j1, j2) that allows to stay at H/V Filter mode j1,

taking as a reference the highest consumption (H1). In

Figure 5(a), a1,2 = 75% and a2,3 = 75%.75%, which

give the thresholds to move from H/V Filter mode1

to H/V Filter mode2 and from H/V Filter mode2 to

H/V Filter mode3 respectively.

• In order to move from a H/V Filter mode j2 to a

H/V Filter mode j1 that consumes more, it is necessary

that the user requires a performance level that is higher

than the previous one and that the consumption con-

straints allow to move to the target mode, which is the

case when

AB/H j1 >= (a j1, j2 +b j2, j1).FB/H1 (2)

Note that we add the term b j2, j1 in order to avoid

that, once in H/V Filter mode j1, the consumption con-

straints in (1) lead the controller to decide to go back

to H/V Filter mode j2 so soon, which would lead to an

infinite loop. b j2, j1 has to be well chosen in order to avoid

this problem. In our case study, we take a b j2, j1 = 5% as

shows Figure 5(a).

• If the controller receives a reconfiguration suggestion

from the coordinator it treats it as follows. If the sug-

gestion requires to move to a less consuming mode,

the controller accepts directly. Otherwise, the controller

checks the consumption constraints in (2) in order to

accept or refuse as shows Figure 5(b).

The coordinator’s automaton was implemented according

to the description in Figure 3. After a reconfiguration is

authorized by the coordinator, the decision modules of the

concerned controllers notify the reconfiguration modules. Par-

tial reconfigurations can then be launched either in a parallel

or a sequential way. Parallel reconfigurations are only possible

for systems having more than one configuration port (ICAP for

Xilinx FPGAs), such as multi-FPGA systems but not single-

FPGA systems because current FPGAs have only one ICAP.

Therefore, in our single-FPGA system, the distributed recon-

figuration model was implemented in a way that it realizes

reconfigurations in a sequential manner. Each reconfiguration

module contains a dedicated register indicating which mode is

to be loaded in the controlled region. These registers are then

read by a processor, which communicates with the ICAP port

in order to load the required bitstreams in the reconfigurable

regions. When a required configuration is loaded, the proces-

sor notifies the reconfiguration module. The reconfiguration

module notifies then the decision module, which updates its

current mode in the mode-automaton accordingly.

C. Design reusability and scalability

In order to evaluate the efficiency of our control model

compared to the centralized one in terms of design reusability

and scalability, we designed the semi-distributed and cen-

tralized control models for different numbers of controlled



HFilter_mode1 HFilter_mode2 HFilter_mode3

coord_suggestion=mode2 / accept(mode2)
coord_suggestion=mode2 and  (AB / H2 >= ((75% . 75%) + 5% ) . FB / H1) 
/ accept(mode2)

coord_suggestion=mode1  and (AB / H1 >= (75%  + 5%) . FB / H1) 
/accept(mode1)

coord_suggestion=mode3 
/ accept(mode3)

coord_suggestion=mode2 and  
(AB / H2 < ((75% . 75%) + 5% ) . FB / H1) / refuse(mode2)

HFilter_mode1

coord_inprogress=false and refused_mode1= false and
performance_level=1 and (AB / H1 >= (75%  + 5%) . FB / H1) 
/ request(mode1)

coord_inprogress=false and refused_mode3 = false and
performance_level=3 or (AB / H2 < 75% . 75% . FB / H1)  
 / request(mode3)

coord_inprogress=false and refused_mode2 = false  and
performance_level=2 or (AB / H1 < 75% . FB / H1) 
/ request(mode2)

coord_inprogress=false and refused_mode2 = false  and
performance_level=2 and  (AB / H2 >= ((75% . 75%) + 5% ) . FB / H1) 
 / request(mode2)

HFilter_mode2 HFilter_mode3

coord_response (mode2) = authorization
/ load(mode2)coord_response (mode2) = authorization

 / load(mode2)

HFilter_mode1 HFilter_mode2 HFilter_mode3

loaded (mode2) = true

loaded (mode1) = true

loaded (mode3) = true

loaded (mode2) = true

coord_response (mode2) = refusal
 / refused_mode2 = true

coord_response (mode1) = refusal
 / refused_mode1 = truecoord_response (mode3) = refusal

 / refused_mode3 = true coord_response (mode2) = refusal
 / refused_mode2 = true

coord_response (mode1) = authorization
 / load(mode1) coord_response (mode3) = authorization

 / load(mode3)loaded (mode2) = true

loaded (mode1) = true

loaded (mode2) = true

loaded (mode1) = true

loaded (mode3) = true

loaded (mode2) = true

loaded (mode3) = true

loaded (mode2) = true

Controller's reconfiguration requests

Treating the coordinator's suggestions

Treating the coorinator's reponse

coord_inprogress=false and refused_mode3 = false and
performance_level=3  / request(mode3)

coord_suggestion=mode3/ accept(mode3) coord_suggestion=mode1 and  (AB / H1 < (75%  + 5%) . FB  / H1) 
/ refuse(mode1)

coord_suggestion=mode2 and  (AB / H1 < (75%  + 5%) . FB / H1) )/ refuse(mode1)

coord_suggestion=mode1 and  (AB / H1 >= (75%  + 5%) . FB / H1) )
/ accept(mode1)

coord_response (mode3) = refusal /
 refused_mode3= true coord_response (mode1) = refusal

 / refused_mode1 = true

coord_inprogress=false and refused_mode1= false and
performance_level=1 and (AB / H1 >= (75%  + 5%) . FB / H1) )
/ request(mode1)a)

b)

c)

coord_response (mode3) = authorization
 / load(mode3)

coord_response (mode1) = authorization
 / load(mode1)

Fig. 5: Mode-automaton of the HFilter’s controller

regions (up to n = 10 regions, where n/2 regions implement

the horizontal filter and the rest the vertical filter). We started

the semi-distributed model design with one controller for each

type of filter. Later, we reused these controllers to compose

bigger control models. For the coordination scalability, we

only modified the number of coordinated controllers given

as parameter to the coordinator, as well as the GC table.

The splitting of the control problem between the controllers

and the coordinator allowed us to test them separately, which

facilitated significantly the design phase. On the other hand,

adapting the centralized controller to different numbers of

regions was more complicated. The centralized controllers

were implemented using one mode-automaton as explained

previously. The controller was rewritten each time to adapt to

the system implementation, which led to longer design phases.

D. The semi-distributed control through a simulation scenario

Our semi-distributed control model was simulated using

ISE 12.4 of Xilinx for different numbers of controllers. In

order to explain more the evolution of the semi-distributed

decision making at runtime, we will consider a simulation

scenario for a control model with 4 controllers and a

coordinator. The first two controllers control regions HFilter1

and HFilter2, which implement the horizontal filter. The

two others control regions V Filter1 and V Filter2, which

implement the vertical filter. In this case study, we suppose

that global systems constraints require that all the regions

have to implement the same mode number as shows Table

I. This choice allows to test both acceptance and refusal in

coordination processes by restricting global configuration

possibilities. The inputs of the control model are the available

battery signal sent by the battery sensor, and the processor

commands. These commands allow to send the user required

performance level, read reconfiguration registers of the

reconfiguration modules and notify them at the end of the

reconfigurations. These inputs were simulated using VHDL

processes. Here, we suppose that the processor reads the

reconfiguration registers after each frame downscaling. Table

II represents the characteristics of the simulated system for

the studied scenario, in terms of performance (frame/s) and

power consumption. These values are used to determine

the energy consumption per cycle of the controlled regions,

the decrementation step of the battery, and the instants the

processor reads the reconfiguration registers.

Figure 6 describes the simulation scenario represented by

a chart, where the x axis describes instants when different

events occur. These events are related to the current battery

level, the performance level required by the user and the

coordination processes. The y axis describes the available

battery energy with a precision of the thresholds used by the

different controllers to make reconfiguration decisions. The

chart points are labeled with numbers corresponding to the

global configuration at different instants of the simulation.

At t < t1, the current global configuration is number 1. The

user required performance level is 1. At t = t1, the available

battery energy (AB) reaches 75% of a fully-charged battery

(FB). In this case, all controllers send reconfiguration requests

to the coordinator asking to move to H/V Filter mode2 as

we have seen in Figure 5(a). The coordinator notifies the

controllers that a coordination process is in progress. Then, it

looks for the global configuration(s) that satisfy the received



Global configuration number
1 2 3

Region 1 HFilter mode1 HFilter mode2 HFilter mode3

Region 2 HFilter mode1 HFilter mode2 HFilter mode3

Region 3 V Filter mode1 V Filter mode2 V Filter mode3

Region 4 V Filter mode1 V Filter mode2 V Filter mode3

TABLE I: GC table for the 4-region system

Global configuration 1 2 3

Consumption of H/VFilter (mW) 60/70 40/50 20/30

Performance (frames/s) 10 8 5

TABLE II: Power consumption and performance for different

configurations of the 4-region system

requests. Here, only one global configuration satisfies the

requests, which corresponds to column 2 of Table I. Since

the current coordination process doesn’t involve additional

controllers to those that sent the requests, a reconfiguration

authorization is sent to the controllers with a notification

of the end of the coordination process. The decision

modules of the controllers send reconfiguration commands

to the reconfiguration modules asking them for loading

H/V Filter mode2 as it was shown in Figure 5(c). Then,

when the processor launches its read commands, it finds that

the controllers require to move to H/V Filter mode2. After

loading the required partial configurations, the processor

notifies the controllers (loaded(mode2) = true in Figure

5(a)) so that they update the current modes of their mode-

automata to be H/V Filter mode2. The whole process ends

at t = t1 + p1, by modifying the global configuration to 2.

Note that p j corresponds to the coordination process number

j including the time required to load partial bitstream if the

reconfiguration has been authorized.

At t = t2, the available battery is less than

(75%.75%).FB.V 2/V 1. Controllers 3 and 4 send

reconfiguration requests to the coordinator related to

V Filter mode3. The coordinator sends then reconfiguration

suggestions (moving to HFilter mode3) to Controller 1 and 2.

These controllers accept the suggestions according to Figure

5(b). The coordinator authorizes then the reconfiguration to

all the controllers. The whole process ends at t = t2 + p2 by

modifying the global configuration to 3.

available battery energy

75%.75%.FB.H2/H1
75%.75%.FB.V2/V1

(75%.75% +5%).FB.H2/H1
(75%.75% +5%).FB.V2/V1

75%.FB
80%.FB

100%.FB

0%.FB
0 t1 t1 + p1 t2 t2 + p2 t3 t5 + p3t5 t6 + p4t6t4

simulation time

performance level=1 performance level=2

1

1

2

2

2 3

3

3

3 3
3

Fig. 6: Simulation scenario

At t = t3, the battery is flat, so it moves to the charging

mode. Since the regions implementing the horizontal filter

consume less than the other regions, controllers 1 and 2 are

the first to reach a battery threshold allowing their regions to

move to mode2 if the performance level required by the user

is 2. For this, we simulate the change of the user performance

level to 2 at t = t4. At t = t5, the battery threshold is reached

for Controllers 1 and 2 (AB > (75%.75%+5%).FB.H2/H1).

In this case, controllers 1 and 2 send reconfiguration requests

to the coordinator in order to move to HFilter mode2 at

t = t5. The coordinator suggests V Filter mode2 to controllers

3 and 4. Since the available battery doesn’t allow to move

to V Filter mode2 (AB < (75%.75% + 5%).FB.V 2/V 1),

controllers 3 and 4 send a refusal to the coordinator. The

coordination process ends at t = t5 + p3 with a reconfiguration

refusal sent by the coordinator to controllers 1 and 2.

Those controllers will not send requests to move to mode2

anymore because they will be refused. They can wait until

the coordinator sends them reconfiguration suggestions to

move to mode2. At t = t6, there is enough battery to move

to V Filter mode2. Controllers 3 and 4 send reconfiguration

requests to the coordinator. The coordinator sends suggestions

to controllers 1 and 2 to move to HFilter mode2. These

controllers accept, and the whole process ends at t = t6 + p4

by modifying the global configuration to 2.

E. Resource and power overheads

After simulating both control models, we synthesized them

for Virtex6-xc6vlx240t in order to estimate their overheads in

terms of hardware resources. Figure 7 shows that the overhead

of the distributed controllers is linear with the number of

reconfigurable regions, because as we explained in section IV-

C, the controllers are reused to move from a parallelism degree

to another. The overhead of controllers is up to 0.57% of slice

registers and 1.36% of slice LUTs, which is an acceptable

overhead compared to the overhead of reconfigurable regions

as presented in works such as [13] and [14]. The coordinator’s

overhead is also linear with the number of regions. The main

reason to this is that the implemented coordinator uses a point-

to-point communication allowing to handle many requests/re-

sponses from and to the controllers at the same time, which

increases the required resources with the number of distributed

controllers. Using different communication types decreases the

overhead of the coordinator at a cost of longer coordination

processes. However, here also there is an overhead of the

communication architecture (overhead of a bus, a NoC, etc.).

Up to 10 controlled regions the overhead of the implemented

version of the coordinator is acceptable (0.035% of slice

registers and 0.29% of slice LUTs).

Table III gives a comparison between the overhead of

the semi-distributed and the centralized models. The semi-

distributed control model has an overhead that is almost

twice the centralized model overhead for different numbers

of regions. This difference of overhead is mainly due to the

resources required for the coordination between controllers as

well as to the higher modularity of the semi-distributed control.



Resource occupation Number of controlled regions
2 4 6 8 10

Semi-distributed control model Slice registers 375 (0.12%) 744 (0.25%) 1112 (0.37%) 1479 (0.49%) 1847 (0.61%)
Slice LUTs 474 (0.31%) 907 (0.6%) 1388 (0.92%) 2010 (1.33%) 2499 (1.66%)

Centralized control model Slice registers 290 (0.1%) 434 (0.14%) 576 (0.19%) 720 (0.24%) 862(0.29%)
Slice LUTs 286 (0.19%) 545 (0.36%) 736 (0.49%) 964 (0.64%) 1207 (0.8%)

TABLE III: Synthesis details of the semi-distributed and centralized control models

Fig. 7: Resource overhead variation of the semi-distributed

model with the number of controlled regions

Fig. 8: Power overhead of both semi-distributed and central-

ized control models

However, the overhead of the semi-distributed model (up to

2499 slice LUTs) is quite acceptable for large FPGAs such

as Virtex-6 used here, and the even larger Virtex-7 [15]. The

power overhead of the semi-distributed model is also almost

twice the centralized model overhead for different numbers

of regions for a frequency of 100Mhz as shows Figure 8.

Up to 10 regions this overhead does not exceed 5mW, which

is considered as an acceptable consumption compared to the

consumption of reconfigurable regions.

V. CONCLUSION

In this paper, we propose a semi-distributed control model

aiming to decrease the complexity and enhance the reusability

and scalability of the control design. This control model is

well adapted to both single-FPGA and multi-FPGA systems.

It is composed of distributed controllers controlling each

the runtime adaptivity of a region of the system, and a

coordinator for the controllers reconfiguration decisions.

The semi-distributed decision-making model is based on the

mode-automata formalism allowing to decrease its design

complexity and facilitate its reuse. Implementation on FPGA

showed that our decentralized control model is more flexible,

reusable and scalable than the centralized one, at the cost

of a slight increase in required hardware resources. As

future works, we plan to integrate our control model in

a whole reconfigurable system in order to evaluate more

its efficiency. Our control model can also be used in a

Model-Driven Engineering based SoC design flow in order to

generate automatically its code, taking advantage of the high

abstraction offered by the control formalism.
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